搜档网
当前位置:搜档网 › 单轴压缩情况下软岩的动态力学特性试验研究(1).

单轴压缩情况下软岩的动态力学特性试验研究(1).

单轴压缩情况下软岩的动态力学特性试验研究(1).
单轴压缩情况下软岩的动态力学特性试验研究(1).

单轴压缩情况下软岩的动态力学特性试验研究(1)

摘要:本文对软岩(砂浆模拟材料)

进行了应变速率范围为10-5到101s-1的动单轴压缩实验。实验结果表明,试

样的抗压强度随应变速率的增加有较明显的增加趋势,增加幅度大于硬岩。同时,试样的弹性模量以及泊松比随着应变速率的增加均有增加的趋势,但幅度

小于强度的增加幅度。本文还根据不同应变速率下试样破裂面的sem实验结

果,初步分析了软岩动态力学特性机理。

关键词:动单轴压缩软岩力学特性

mechanical properties of soft rock under dynamic uniaxial compression

abstract: the present paper introduced the experimental study on soft rock (analogized with mortar) under dynamic uniaxial compression at the strain rates from 10-5 to 101 s-1. it is indicated that the compressive strength of the soft rock increase with the increasing strain rate and the rising rates are higher than that of soft rock. the young’s moduli and poisson’s ratio of the soft rock increase with the increasing strain rate, but the rising rates are less than that of compressive strength. in addition, based on the sem results, the mechanism of the strain rate effect of the soft rock is primarily analyzed.

key words: dynamic u niaxial compression / soft rock/ mechanical properties

一、前言

岩石材料在动载荷作用下的力学特性是研究爆炸以及地震载荷在岩石结构

中传播与衰减规律的基本参数。应用动载实验机等试验系统,国内外研究人员

对不同的岩石特别是硬岩(花岗岩、石灰岩等)进行了大量的实验,如文[1-9]的研究工作。这些研究结果表明,在中等应变速率范围内(10-5s-1-101s-1),硬岩

(如花岗岩、石灰岩等)的抗压强度随应变速率的增加由增加趋势,但增加幅度

不大,同时,硬岩的变形参数如弹性模量、泊松比随应变速率的变化较小。例如,吴绵拔和刘远惠[8]对花岗岩进行的中等应变速率下的实验结果表明,当应变速率从10-5s-1增加到10-1s-1时,花岗岩的单轴抗压强度增加25%,变形模量增加19%,试样的泊松比基本上与应变速率无关。olsson[2]用两种实验设备对凝

灰岩进行的应变速率为10-6到103s-1的单轴抗压实验结果表明,当应变速率小于76s-1时,岩石试样的强度随应变速率的变化不大(当应变速率由10-6增加到

101s-1时,岩石的抗压强度增加约10%,而当应变速率大于约76 s-1后,岩石试样的强度随应变速率的增加而大幅度增加。zhao 等人[4]对bukit timah花岗

岩进行的动单轴压缩实验结果表明,当应变速率由10-5增加到101s-1时,花岗岩

的抗压强度增加约20%,同时,花岗岩的弹性模量和泊松比随应变速率的变化影响较小。

值得指出的是,现有的研究工作主要针对硬岩,很少有涉及到软岩动态力学特性的实验研究工作。因此,本文以砂浆为模拟材料,研究软岩材料在动载荷作用下的强度、变形特性同应变速率的关系。同时,结合不同应变速率下试样破裂面的sem实验结果,初步分析了软岩动态力学特性机理。

二、试样制备与实验设备

实验采用试样为砂浆材料,材料的配合比(重量比)为:水泥:砂:水=1:1.2:0.44。砂的粒径范围为0.5-1.2mm,水泥为普通525#硅酸盐水泥。试样制作过程中,先浇注成大试件,在室温下养护至少28天,然后在大试件上用套钻钻取,制作成f30′60mm的圆柱体试样。试样的两端磨平(不平行度小于0.02mm),没有宏观缺陷。

所有实验均在中国科学院武汉岩土所自行研制的rdt-10000型岩石高压动三轴实验系统上进行,图1为该系统的照片,该系统的主要性能指标如下:最大轴力:220kn,试样尺寸:f30′60,最快加载时间:8ms;围压范围:0-1000mpa。该设备的详细性能指标见文[10]。

图1 rdt-10000型岩石高压动三轴实验系统

fig.1 rdt-10000 type rock dynamic triaxial compression system

三、实验结果及分析

实验过程中,试样的轴向应力由安设在试样上部的压力传感器测量,试样的强度取为试样破坏时的最大轴向应力。试样的应变速率为试样轴向破坏应变除以加载时间。试样的轴向、环向应变、分别由粘贴在试样中部的应变片量测得到,试样的体应变由轴向应变和环向应变计算由下式得到:

(1)

根据文[11],试样的弹性模量(e)以及泊松比(g)按如下方法确定:

(2)

(3)

代表性应力-应变曲线见图2。图3为是实验得到的试样强度随应变速率的变化规律。可以看出,当应变速率从10-5s-1增加到101s-1,试样强度增加60%左右。而对于硬岩(如花岗岩),在相同的应变速率范围,试样强度增加20%左右[4],因此,软岩强度随应变速率的增加幅度要高于硬岩。

图2 代表性应力应变曲线

fig.2 typical stress strain curves

图3

强度随应变速率的变化规律

fig.3 change of compressive strength with strain rate

图4、5为试样的弹性模量和泊松比随应变速率的变化规律,可以看出,与硬岩(如花岗岩)的弹性模量和泊松比随应变速率的增加变化幅度不大相比,试样的弹性模量和泊松比随着应变速率的增加有较明显的增加趋势,但增加幅度要小于强度随应变速率的增加幅度,当应变速率从10

图像压缩实验报告

竭诚为您提供优质文档/双击可除 图像压缩实验报告 篇一:实验三图像压缩 实验三图像压缩 一、实验目的 1.理解有损压缩和无损压缩的概念; 2.理解图像压缩的主要原则和目的; 3.了解几种常用的图像压缩编码方式。 4.利用mATLAb程序进行图像压缩。 二、实验仪器 1计算机; 2mATLAb等程序; 3移动式存储器(软盘、u盘等)。 4记录用的笔、纸。 三、实验原理 1.图像压缩原理 图像压缩主要目的是为了节省存储空间,增加传输速度。图像压缩的理想标准是信息丢失最少,压缩比例最大。不损

失图像质量的压缩称为无损压缩,无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。 信息的冗余量有许多种,如空间冗余,时间冗余,结构冗余,知识冗余,视觉冗余等,数据压缩实质上是减少这些冗余量。高效编码的主要方法是尽可能去除图像中的冗余成分,从而以最小的码元包含最大的图像信息。 编码压缩方法有许多种,从不同的角度出发有不同的分类方法,从信息论角度出发可分为两大类。 (1).冗余度压缩方法,也称无损压缩、信息保持编码或嫡编码。具体说就是解码图像和压缩编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。 (2)信息量压缩方法,也称有损压缩、失真度编码或烟压缩编码。也就是说解码图像和原始图像是有差别的,允许有一定的失真。 应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分为以下3类: (1)无损压缩编码种类 哈夫曼(huffman)编码,算术编码,行程(RLe)编码,Lempelzev编码。 (2)有损压缩编码种类

土力学实验报告

园林学院 土力学实验报告 学生姓名 学号2009041001 专业班级土木工程091 指导教师李西斌 组别第三组 成绩

实验目录 前言 (1) 实验一含水量试验 (2) 实验二密度实验 (5) 实验三液限和塑限试验 (7) 实验四固结试验 (13) 实验五直接剪切试验 (18)

前言 土是矿物颗粒所组成的松散颗粒集合体,其物理力学性质与其他材料不同;土力学是利用力学的基本原理和土工试验技术来研究土的强度和变形及其规律性的一门应用学科。 土的天然含水率、击实性、压缩性、抗剪强度是水利工程中的四大问题,他们的好坏与否直接关系到水利工程的经济效益与安全问题,因此在工程中作好土料的指标实验,确定出相应标对水利工程具有十分重要的意义。

实验一 含水量试验 一、概述 土的含水率 是指土在温度105~110℃下烘干至恒量时所失去的水质量与达 到恒量后干土质量的比值,以百分数表示。 含水率是土的基本物理性质指标之一,它反映了土的干、湿状态。含水率的变化将使土物理力学性质发生一系列变化,它可使土变成半固态、可塑状态或流动状态,可使土变成稍湿状态、很湿状态或饱和状态,也可造成土在压缩性和稳定性上的差异。含水率还是计算土的干密度、孔隙比、饱和度、液性指数等不可缺少的依据,也是建筑物地基、路堤、土坝等施工质量控制的重要指标。 二、实验原理 土样在在105℃~110℃温度下加热,土中自由水会变成气体挥发,土恒重后, 即可认为是干土质量s m ,挥发掉的水分质量为w s m m m =-。 三、实验目的 测定土的含水量,供计算土的孔隙比、液性指数、饱和度等不可缺少的一个基本指标。并查表可确定地基土的允许承载力 四、实验方法 含水率实验方法有烘干法、酒精燃烧法、比重法、碳化钙气压法、炒干法等,其中以烘干法为室内实验的标准方法。在此仅用烘干法来测定。 烘 烘干法是将实样放在温度能保持105~110℃的烘箱中烘至恒量的方法,是室内测定含水率的标准方法。 (一)仪器设备 (1)保持温度为105~110℃的自动控制电热恒温烘箱; (2)称量200g 、最小分度值0.01g 的天平; (3)玻璃干燥缸;

材料压缩实验报告

实验三 压缩实验 一、实验目的 1.测定压缩时低碳钢的屈服极限s σ和铸铁的强度极限b σ。 2.观察低碳钢和铸铁压缩时的变形和破坏现象,并进行比较和分析原因。 二、设备和量具 1.手动数显材料试验机sscs-100; 2.游标卡尺。 三、实验原理及步骤 低碳钢和铸铁等金属材料的压缩试样一般制成圆柱形,高h o 与直径d o 之比在1~3 的范围内。目前常用的压缩试验方法是两端平压法。这种压缩试验方法,试样的上下两端与试验机承垫之间会产生很大的摩擦力,它们阻碍着试样上部及下部的横向变形,导致测得的抗压强度较实际偏高。当试样的高度相对增加时,摩擦力对试样中部的影响就变得小了,因此抗压强度与比值h o /d o 有关。由此可见,压缩试验是与试验条件有关的。为了在相同的试验条件下,对不同材料的抗压性能进行比较,应对h o /d o 的值作出规定。实践表明,此值取在1~3的范围内为宜。若小于l ,则摩擦力的影响太大;若大于3,虽然摩擦力的影响减小,但稳定性的影响却突出起来。 低碳钢试样压缩时同样存在弹性极限、比例极限、屈服极限而且数值和拉伸所得的相应数值差不多,但是在屈服时却不象拉伸那样明显。从进入屈服开始,试样塑性变形就有较大的增长,试样截面面积随之增大。由于截面面积的增大,要维持屈服时的应力,载荷也就要相应增大。因此,在整个屈服阶段,载荷也是上升的,在测力盘上看不到指针倒退现象,这样,判定压缩时的P S 要特别小心地注意观察。在缓慢均匀加载下,测力指针是等速转动的,当材料发生屈服时,测力指针的转动将出现减慢,这时所对应的载荷即为屈服载荷

P S。由于指针转动速度的减慢不十分明显,故还要结合自动绘图装置上绘出的压缩曲线中的的拐点来判断和确定P S。 低碳钢的压缩图(即P一△1曲线)如图3—1所示,超过屈服之后,低碳钢试样由原来的圆柱形逐渐被压成鼓形,即如图3—3。继续不断加压,试样将愈压愈扁,但总不破坏。所以,低碳钢不具有抗压强度极限(也可将它的抗压强度极限理解为无限大),低碳钢的压缩曲线也可证实这一点。 图3-1 低碳钢压缩图图3-2 铸铁压缩图 灰铸铁在拉伸时是属于塑性很差的一种脆性材料,但在受压时,试件在达到最大载荷P b前将会产生较大的塑性变形,最后被压成鼓形而断裂。铸铁的压缩图(P一△1曲线)如图3—2所示,灰铸铁试样的断裂有两特点:一是断口为斜断口,如图3—4所示。 图3-3 压缩时低碳钢变形示意图图3-4 压缩时铸铁破坏断口 二是按P b/A0求得的 远比拉伸时为高,大致是拉伸时的 3—4倍。为什 b

土力学实验报告

土力学 实验报告 姓名 班级 学号

含水量实验 一、实验名称:含水量实验 二、实验目的要求 含水量反映了土的状态,含水量的变化将使土的一系列物理力学性质指标 也发生变化。测定土的含水量,以了解土的含水情况,是计算土的孔隙比、液性指数、饱和度和其他物理力学性质指标不可缺少的一个基本指标。 三、试验原理 土样在100~105℃温度下加热,途中自由水首先会变成气体,之后结合水也会脱离土粒的约束,此时土体质量不断减少。当图中自由水和结合水均蒸发脱离土体,土体质量不再变化,可以得到固体矿物即土干的重。土恒重后,土体质量即可被认为是干土质量m s ,蒸发掉的水分质量为土中水质量m w =m-m s 。 四、仪器设备 烘箱、分析天平、铝制称量盒、削土刀、匙、盛土容器等。 五、试验方法与步骤 1.先称量盒的质量m 1,精确至0.01g 。 2.从原状或扰动土样中取代表性土样15~30g (细粒土不少于15g ,砂类土、有机质土不少于50g ),放入已称好的称量盒内,立即盖好盒盖。 3.放天平上称量,称盒加湿土的总质量为m 0+m ,准确至0.01g 。 4.揭开盒盖,套在盒底,通土样一样放入烘箱,在温度100~105℃下烘至质量恒定。 5.将烘干后的土样和盒从烘箱中取出,盖好盒盖收入干燥器内冷却至室温。 6.从干燥器内取出土样,盖好盒盖,称盒加干土质量m 0+m s (准确至0.01g ) 。 六、试验数据记录与成果整理 含水量试验(烘干法)记录 计算含水量:%100) () ()(000?++-+= s s m m m m m m w 实验日期 盒质量 m 0/g 盒+湿土质 量(m 0+m )/g 盒+干土质 量(m 0+m s ) /g 水质量/g 干土质量m s /g 含水量w/% 1 2 3 4=2-3 5=3-1 4/5

软岩的工程地质特性研究

随着地下工程建设规模不断扩大,在城乡建设、水电、交通、矿山、港口以及国防军事等领域都涉及软岩问题,而国家西部大开发的战略实施,大量的交通、能源与水利工程在西部的兴建,地下工程软弱围岩的稳定性和支护方法更已成为地下工程中迫切需要解决的问题。在我国天生桥、二滩、小浪底、乌江构皮滩、瀑布沟等大型水电工程中,均存在软弱岩体的流变性及围岩的稳定性问题;许多煤矿开采时间较长,由于资源开采深度的增加,使一些生产矿井软岩巷道大变形、大地压、难支护的工程问题更加突出;在软岩地区修建的桥隧工程中,围岩的稳定性同样是工程设计和施工中的重点和难点,且常常由于围岩地质条件多变,围岩、支护结构失稳事故时有发生,给人民生命财产造成巨大损失。 1 软岩的概念及其物理力学特征 1.1 软岩的概念 关于软岩的定义,总括起来,大体上可分为描述性定义、指标化定义和工程定义3类。1984年12月在昆明召开的煤矿矿山压力名词讨论会,将软岩界定为“强度低、孔隙度大、胶结程度差、受构造面切割及风化影响显著或含有大量膨胀性粘土矿物的松、散、软、弱岩层”,并从地质岩体分类的角度指出该类岩石的常见种类多为泥岩、页岩、粉砂岩和泥质矿岩,是天然形成的复杂的地质介质。这是一种典型的描述性定义方式。而到了1990年至1993年间,国际岩石力学学会逐步将软岩明确定义为单轴抗压强度( c)在0.5~25MPa之间的一类岩石。虽然此种包含具体指标的定义方式考虑了岩石的物理力学性质,但这种分类仍然属于从地质角度定义软岩的范畴,未考虑施工条件和使用环境的差异,将该定义用于工程实践中会出现一些矛盾。如地下硐室所处深度足够的浅,地应力水平足够的低,则单轴抗压强度小于25MPa的岩石也不会产生软岩的特征,工程实践中,采用比较经济的一般支护技术即可奏效;相反,单轴抗压强度大于25MPa的岩石,当其工程部位所处的深度足够的深、地应力水平足够的高,也可以产生软岩的大变形、大地压和难支护的现象。因此,地质软岩的定义用于工程实践时往往产生歧义。 近些年,工程软岩的概念被提了出来,它是指在工程力作用下能产生显著塑性变形的工程岩体。如果说目前流行的软岩定义强调了软岩的软、弱、松、散等低强度的特点,那么工程软岩的定义不仅重视软岩的强度特性,而且强调软岩所承受的工程力荷载的大小,强调从软岩的强度和工程力荷载的对立统一关系中分析、把握软岩的相对性实质。 工程软岩要满足的条件是:

材料拉伸与压缩试验报告

材料的拉伸压缩实验 【实验目的】 1.研究低碳钢、铸铁的应力——应变曲线拉伸图。 2.确定低碳钢在拉伸时的机械性能(比例极限R p、下屈服强度R eL、强度极限R m、延伸率A、断面收缩率Z等等)。 3. 确定铸铁在拉伸时的力学机械性能。 4.研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。 【实验设备】 1.微机控制电子万能试验机; 2.游标卡尺。 3、记号笔 4、低碳钢、铸铁试件 【实验原理】 1、拉伸实验 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即低碳钢拉伸曲线,见图1。 对于低碳钢材料,由图1曲线中发现OA直线,说明F正比于?l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用σs=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。 图1低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。

当载荷达到强度载荷F b后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式σb=F b/A0计算强度极限(A0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即 % 100 1? - = l l l δ,% 100 1 0? - = A A A ψ 式中,l0、l1为试件拉伸前后的标距长度,A1为颈缩处的横截面积。 2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即铸铁压缩曲线,见图2。 对铸铁材料,当承受压缩载荷达到最大载荷F b时,突然发生破裂。铸铁试件破坏后表明出与试件横截面大约成45?~55?的倾斜断裂面,这是由于脆性材料的抗剪强度低于抗压强度,使试件被剪断。 材料压缩时的力学性质可以由压缩时的力与变形关系曲线表示。铸铁受压时曲线上没有屈服阶段,但曲线明显变弯,断裂时有明显的塑性变形。由于试件承受压缩时,上下两端面与压头之间有很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。 铸铁压缩实验的强度极限:σb=F b/A0(A0为试件变形前的横截面积)。 【实验步骤及注意事项】 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l0的标距线,在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d0。 (2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。若夹具已 图2 铸铁压缩曲线

竹子的力学特性

选题:从力学观点分析竹子的力学特征 徐锴,材料1302,2013012057 【摘要】本文通过分析竹子的材料和构造,说明竹子的强度特性。并通过该种特性进行一些实际应用设计,本文选用建筑中的应用。 【关键词】竹子,强度,建筑,可持续发展 1、收集的常识【1】: (1)竹,禾本科,竹木质化,有明显的节,节间常中空,高大、生长迅速,竹枝杆挺拔,修长。(2)分布于热带、亚热带至温带地区,其中东亚、东南亚和印度洋及太平洋岛屿上分布最集中,种类也最多。 (3)在竹材研究方面,国内外对竹材的物理性质研究的较多,研究重点主要集中在密度、吸水率及干缩性等方面。密度在很大程度上决定着竹材的力学性质,密度主要取决于纤维含量、纤维直径及细胞壁厚度,密度随纤维含量增加而增加。 2、分析竹子强度特性【2】 相比较于钢材,竹子体轻,但是硬度大。根据实验测定, 竹材的形变量非常小, 弹性和韧性却很高, 顺纹抗拉强度170M Pa, 顺纹抗压强度达80M Pa。特别是刚竹, 其顺纹抗拉强度最高竟达280M Pa, 几乎相当于同样截面尺寸材的一半。虽然钢材的抗拉强度为一般竹材的2.5~3倍,但若按单位重量计算抗拉能力,则竹材要比钢材强2~3倍。

3、竹强度大的力学分析 3.1 空心圆截面的强度分析【4】 (1)根据化工设备机械基础的弯曲强度理论【4】, 杆件强度主要指标是弯曲应力。弯曲强度条件为 ][W M max max σσ≤=。 要提高杆件的强度, 除了合理安排受力, 降低M max 的数值以外, 主要是采用合理的截面形状, 尽量提高抗弯截面模量W 的数值, 充分利用材料。,实心圆截面和空心圆截面的抗弯截面模量分别是 3d 321W π=实 )1(32 1W 43απ-=D 空 式中, d 是实心杆直径, D 是空心杆外径, 1D 是空心杆内径。2 1D D = α为空心杆内、外径比值, 当空心杆和实心杆的截面积相同时 )(2122D -D 4 1d 41ππ=或212D -D d = 则11-1-1D 32 1d 321W W 22433>+==α ααππ)(空实 (1)根据以上分析, 空心圆截面杆的抗弯强度比同样截面积的实心杆大; 并且空心圆截面杆内、外直径的比值α越大,其抗弯强度也随之增大。 例如, 当α= 0。 7 时, 它的抗弯强度比同样重量的实心圆截面大2倍。 因为, 杆件抗弯时从正应力的分布规律可知在杆截面上离中性轴越远, 正应力越大, 而中性轴附近的应力很小, 这样其材料的性能未能充分发挥作用。 若将实心圆截面改为空心圆截面, 也就是将材料移置到离中性轴较远处, 却可大大提高抗弯强度。 (2)在风荷载下,竹子主要抵抗的是弯矩和剪力。对于抗弯,边缘最大正应力与截面的截面惯性矩I 成反比,而I 随截面半径增大而增大,故空心结构形成的大半径有利于降低边缘最大正应力提高抗弯能力。 3.2 材料分布的强度分析 (1)由于边缘的正应力最大,故将优质材料布置在边缘是最优化的结构布置,竹子就做到了这点:竹壁自外而内,分为竹青、竹肉和竹黄三个部分,竹子的表面呈现出青色的叫竹青,

地下水和围压对软岩力学性质影响的试验研究

第26卷第11期岩石力学与工程学报V ol.26 No.11 2007年11月Chinese Journal of Rock Mechanics and Engineering Nov.,2007 地下水和围压对软岩力学性质影响的试验研究 郭富利,张顶立,苏洁,肖丛苗 (北京交通大学隧道及地下工程教育部工程研究中心,北京 100044) 摘要:常规三轴压缩试验一直是认识岩石在复杂环境(如地下水丰富和高地应力)下力学性质的主要手段,因此, 利用XTR01–01型微机控制电液伺服岩石三轴试验仪研究在不同饱水时间和不同围压下软岩强度的变化规律, 就宜万铁路堡镇隧道高地应力大变形段中所揭示的黑色炭质页岩设计了不同饱水状态下的三轴试验方案,并进行 了三轴力学性质测试,描述了软岩在饱水时间为1个月的全应力–应变曲线特征,重点探讨了围压和饱水状态对 软岩强度的影响规律,详细分析了二者对软岩强度变化的作用机制及特点。最后,根据围岩动态演化规律,结合 试验研究结论,提出高地应力软弱围岩的支护原则。 关键词:岩石力学;饱水软岩;力学性质软化;三轴试验;支护原则 中图分类号:TU 452 文献标识码:A 文章编号:1000–6915(2007)11–2324–09 EXPERIMENTAL STUDY ON INFLUENCES OF GROUNDWATER AND CONFINING PRESSURE ON MECHANICAL BEHA VIORS OF SOFT ROCKS GUO Fuli,ZHANG Dingli,SU Jie,XIAO Congmiao (Tunnel and Underground Engineering Research Center of Ministry of Education,Beijing Jiaotong University,Beijing100044,China) Abstract:Baozhen tunnel is the only soft rock tunnel and the key project in the Yichang—Wanzhou Railway. The very complex geological environments,such as high earth stress,deep-buried rich groundwater,very weak and cracked rock masses and asymmetric pressure along the rock strata,make self-stability of the tunnel unfavorable. During tunnel construction,the high deformation rate,intense and long-time deformation are the basic characteristics. At the same time,the deformation shows asymmetrical features and uniformities. Through analyzing the causes of large deformation,it is deemed that groundwater and high earth stress are the critical factors causing large deformation. So using XTR01–01 microcomputer electro-hydraulic servo-controlled triaxial test instrument to study the change law of soft rock strength under different saturated time and confining pressure is significant to assure the design, construction and operation safety of tunnel. The mechanical behaviors of black macker that is widely distributed in Baozhen tunnel are discussed by designing a series of triaxial compressive tests under different saturated times;and research on variation laws of mechanical properties under different confining pressures and saturated times is carried out,describing complete stress-strain curve of macker(saturated time is 1 month) with different confining pressures. The variation laws along with confining pressure and saturated time are analyzed. In addition,the mechanism and relationship between confining pressure,saturated time and strength are researched. Finally,according to dynamic evolution law of adjacent rock,the supporting principles for large deformation in weak rock and high earth stress are put forward. Key words:rock mechanics;water-saturated soft rocks;softening of mechanical properties;triaxial test;supporting principles 收稿日期:2007–06–18;修回日期:2007–07–26 基金项目:国家高技术研究发展计划(863)项目(2006AA11Z119) 作者简介:郭富利(1976–),男,2003年毕业于太原理工大学采矿工程专业,现为博士研究生,主要从事岩石力学试验方面的研究工作。E-mail:guofuli1@https://www.sodocs.net/doc/d38010672.html,

文件压缩与解压实验报告

院系:计算机学院 实验课程:实验3 实验项目:文本压缩与解压 指导老师: 开课时间:2010 ~ 2011年度第 1学期专业: 班级: 学生: 学号:

一、需求分析 1.本程序能够实现将一段由大写字母组成的内容转为哈弗曼编码的编码功能以及将哈弗曼编码翻译为字符的译码功能。 2.友好的图形用户界面,直观明了,每一个操作都有相应的提示,用户只需按着提示去做,便能轻松实现编码以及译码的效果,编码及译码结果都被保存成txt 文档格式,方便用户查看。 3.本程序拥有极大的提升空间,虽然现在只能实现对大写字母的译码以及编码,但通过改进鉴别的算法,即能够实现小写字母乃至其他特殊符号等的编码。 4.本程序可用于加密、解密,压缩后文本的大小将被减小,更方便传输 5.程序的执行命令包括: 1)初始化 2)编码 3)译码 4)印代码文件 5)印哈弗曼树 6)退出 6.测试数据 (1)THIS PROGRAM IS MY FAVOURITE (2)THIS IS MY FAVOURITE PROGRAM BUT THE REPORT IS NOT 二、概要设计 为实现上述功能,应有哈弗曼结点,故需要一个抽象数据类型。 1.哈弗曼结点抽象数据类型定义为: ADT HaffTree{ 数据对象:HaffNode* ht,HaffCode* hc 基本操作: Haffman(int w[],int n) 操作结果:构造哈弗曼树及哈弗曼编码,字符集权值存在数组w,大小为n setdep() setdep(int p,int l) 操作结果:利用递归,p为哈弗曼节点序号,l为哈弗曼节点深度setloc() 操作结果:设置哈弗曼节点坐标,用以输出到界面 setloc2() 操作结果:设置哈弗曼节点坐标,用以输出到文本,默认状态下不启用 } ADT HaffTree 2.本程序包含4个模块 1)主程序模块: 接受用户要求,分别选择执行①初始化②编码③译码④印代码文件⑤印哈弗曼树⑥退出 2)哈弗曼树单元模块——建立哈弗曼树 3)哈弗曼编码单元模块——进行哈弗曼编码、译码 4)响应用户操作,输出内容到界面或文本 各模块之间的关系如下:

包装用缓冲材料动态压缩实验~实验报告

运输包装实验报告 (二)包装缓冲材料动态压缩试验 天津科技大学110611 一、 实验目的 通过缓冲材料动态冲击实验掌握材料动态冲击的 实验过程与方法,学习实验设备的构成、实验的 操作方法;掌握s m G σ-曲线的绘制及动态缓冲曲 线的使用。 二、 实验设备及材料 1. 包装冲击试验机DY-2 2. 电子分析天平 PB203-N 3. 实验纪录仪器与装置 4. 发泡缓冲材料EPE 三、 试验样品 试验样品的数量:5 厚度(压缩之前)的测量: A1组:48.62 mm A2组:49.96mm A3 组:48.44mm

A4组:48.26mm A5组:47.81mm A6组:52.55mm A7组:49.8mm 以A4组详述:测量标准的已知参量: d0=8.32mm d1=23.1mm d2=24.64mm 四角的厚度分别为: d1=9.33mm d2=7.87mm d3=9.70mm d4=8.47mm d均=(9.33+7.87+9.70+8.47)/4=8.84mm 压缩前试样的厚度为: T=23.1+24.64+8.84-8.32=48.26mm 压缩之后测量标准的已知参量: d0=8.32mm d1=29.12mm d2=24.0mm 四、试验方法 1.实验室的温湿度条件 实验室的温度:21摄氏度 实验室的湿度:35% 2.实验样品的预处理

将实验材料放置在试验温湿度条件下24小时以上3.实验步骤 (1)将试验样品放置在式烟机的底座上,并使其中心与重锤的中心在同一垂线上。适当 的固定试验样品,固定时应不使实验样品 产生变形。 (2)使试验机的重锤从预定的跌落高度(760mm)冲击实验样品,连续冲击五次, 每次冲击脉冲的间隔不小于一分钟。记录 每次冲击加速度-时间历程。实验过程中, 若未达到5次冲击时就已确认实验样品发 生损坏或丧失缓冲能力时则中断实验。4.冲击试验结束3分钟后,按原来方法测量试验样品的厚度作为材料动态压缩实验后的厚度 T实验步骤 d (1)将试验样品放置在式烟机的底座上,并使其中心与重锤的中心在同一垂线上。适当 的固定试验样品,固定时应不使实验样品

钢材力学性能标准一览表

钢材力学性能指标汇总表 钢筋的公称横截面积与公称重量 公称直径,mm 公称横截面积mm 2 公称重量,Kg/m 6.5 33.18 8 50.27 0.395 10 78.54 0.617 12 113.1 0.888 14 153.9 1.21 16 201.1 1.58 18 254.5 2.00 20 314.2 2.47 22 380.1 2.98 25 490.9 3.85 28 615.8 4.83 32 804.2 6.31 36 1018 7.99 40 1257 9.87 50 1964 15.42 注:表中公称重按密度为7.85g/cm3计算。 一、钢筋混凝土用热轧带肋钢精GB1499-1998 1、力学性能 牌号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 不小于 HRB335 6~25 28~50 335 490 16 HRB400 6~25 28~50 400 570 14 HRB500 6~25 28~50 500 630 12 2、弯曲性能(按下表规定的弯心直径弯曲180°后,钢筋受弯曲部位表面不得产生裂纹) 牌号公称直径mm 弯曲试验弯心直径 HRB335 6~25 28~50 3a 4a HRB400 6~25 28~50 4a 5a HRB500 6~25 28~50 5a 7a 二、钢筋混凝土用热轧光圆钢筋GB13013-91 表面形状钢筋级别强度等级代号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯d弯心直径a公称直径 不小于 光圆Ι R235 8~20 235 370 25 180°d=a 三、低碳钢热轧圆盘条GB/T701-1997 牌号屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯180°d弯心直径a公称直径 不小于 Q215 215 375 27 d=0 Q235 235 410 23 d=0.5a 四、冷轧扭钢筋JG3046-1999

土力学实验报告(最终版)

《土力学与基础工程》 土 工 实 验 报 告 书 学院:环资学院 班级:地质1301班 姓名:郑 学号:20131140 时间:2015.11.24

目录 实验一侧限压缩实验 (3) 1实验目的 (3) 2实验原理 (3) 3仪器设备 (3) 4操作步骤 (3) 5实验数据整理 (4) 实验二直接剪切实验 (7) 1土的抗剪强度及实验方法 (7) 1.1 土的抗剪强度 (7) 1.2实验目的 (7) 1.3实验原理 (7) 2 直接剪切实验步骤 (7) 2.1 仪器设备 (7) 2.2 操作步骤 (7) 2.3 实验数据整理 (8) 三、三轴压缩实验 (10) 1实验目的 (10) 2实验原理 (10) 3实验设备 (10) 4实验步骤 (10) 5计算与绘图 (10) 6实验记录 (12) 四、实验总结 (12)

实验一 侧限压缩实验 1实验目的 通过测定变形和压力的关系或者孔隙比与压力的关系、变形和时间的关系,进而计算单位沉降量 i s 、压缩系数 v 、压缩指数c C 、压缩模量s E 。 2实验原理 实验基于构成土骨架的矿物颗粒在土体变形过程中保持刚性且竖向变形是连续的假设前提。 3仪器设备 (1)固结仪:试样面积302 cm ,高为2cm ; (2)加压设备:称量500kg~1000kg 。感量为0.2kg~0.5kg 的磅秤。 (3)百分表:量程10mm ,分度值为0.01mm ; (4)其它:钢丝锯、天平、环刀、刮土刀等。 4操作步骤 (1)制备式样:取面积为302 cm 的环刀抹上适量的凡士林并称量,记录读数为42.9g ,取原状土按一定的含水量制备试样,用环刀切取土样并用天平称量,记录数据为162.0g ; (2)土样装入固结仪器中:先装入下透水石,再将带有环刀的试样小心装入护环,在装入固结仪容器内,然后放上透水石和加压盖板,至于加压框下,对准加压框架的正中,安装量表。(透水石的湿度应尽量与试样保持一致); (3)为保证试样与仪器上下各部件之间接触良好,应施加1KPa 预压荷载,然后调整量表归零; (4)对试样施加压力,加压等级分别为50.0、100、200、300、400、1600KPa ; (5)需要确定原状土的先期固结压力时,加压率应小于1,可采用0.5或0.25倍。最后一级压力应大于1000KPa ; (6)第一级压力的大小取决于土的软硬程度,此次实验采取50KPa ; (7)加荷后按下列时间顺序计量表读数:6”、15”、1’、2’15”、4’、6’15”、9’、12’15”、16’、20’15”、25’、30’15”、36’、42’15”、49’、64’、100’、200’、400’、23h 和24h ,至稳定为止。(中间加压等级只读数0’’、60’’即可); (8)固结稳定标准规定为每级压力下压缩24h ; (9)整理设备,清理实验仪器。

岩石物理力学性质试验规程 第23部分:岩石点荷载强度试验(标准状

I C S19.020 D00 中华人民共和国地质矿产行业标准 D Z/T0276.23 2015 代替D Y-94 岩石物理力学性质试验规程 第23部分:岩石点荷载强度试验 R e g u l a t i o n f o r t e s t i n g t h e p h y s i c a l a n dm e c h a n i c a l p r o p e r t i e s o f r o c k P a r t23:T e s t f o r d e t e r m i n i n g t h e p o i n t l o a d s t r e n g t ho f r o c k 2015-02-04发布2015-04-01实施中华人民共和国国土资源部发布

D Z/T0276.23 2015 前言 D Z/T0276‘岩石物理力学性质试验规程“分为31个部分: 第1部分:总则及一般规定; 第2部分:岩石含水率试验; 第3部分:岩石颗粒密度试验; 第4部分:岩石密度试验; 第5部分:岩石吸水性试验; 第6部分:岩石硬度试验; 第7部分:岩石光泽度试验; 第8部分:岩石抗冻试验; 第9部分:岩石耐崩解试验; 第10部分:岩石膨胀性试验; 第11部分:岩石溶蚀试验; 第12部分:岩石耐酸度和耐碱度试验; 第13部分:岩石比热试验; 第14部分:岩石热导率试验; 第15部分:岩石击穿电压和击穿强度试验; 第16部分:岩石体积电阻率和表面电阻率试验; 第17部分:岩石放射性比活度试验; 第18部分:岩石单轴抗压强度试验; 第19部分:岩石单轴压缩变形试验; 第20部分:岩石三轴压缩强度试验; 第21部分:岩石抗拉强度试验; 第22部分:岩石抗折强度试验; 第23部分:岩石点荷载强度试验; 第24部分:岩石声波速度测试; 第25部分:岩石抗剪强度试验; 第26部分:岩体变形试验(承压板法); 第27部分:岩体变形试验(钻孔变形法); 第28部分:岩体强度试验(直剪试验); 第29部分:岩体强度试验(承压板法); 第30部分:岩体锚杆载荷试验; 第31部分:岩体声波速度测试三 本部分为D Z/T0276的第23部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分代替D Y-94‘岩石物理力学性质试验规程20.点荷载强度试验“三本部分与D Y-94相比,主要技术变化如下: 增加了 术语和定义 原理 两章; 增加了软岩试验时D值的测量说明; Ⅰ

数据压缩实验报告

实验一常见压缩软件的使用 一、实验目的 使用一些常见的压缩软件,对数据压缩的概念、分类、技术和标准形成初步的认识和理解。 二、实验要求 1.认真阅读实验指导书,按实验步骤完成实验内容。 2.实验过程中注意思考实验提出的问题,并通过实验解释这些问题。 3.通过实验达到实验目的。 三、实验环境 计算机硬件:CPU处理速度1GHz以上,内存258M以上,硬盘10G以上 软件:Windows操作系统2000或XP。 四、实验内容 1.使用WinZip或WinRAR两种压缩软件分别对文本文件(.txt,.doc)、程序源代码文件(.c)、数据文件(.dat)、二进制目标代码文件(.obj)、图像文件(.bmp)、音频文件(.wav)和视频文件(.avi,.wmv)进行压缩,分别计算出压缩率,判断这两种压缩软件采用的是可逆压缩还是不可以压缩,猜测其可能用到了那些压缩(编码)技术? 2.使用jpegimager、TAK和BADAK分别进行图像、音频和视频的压缩,体验其压缩效果。3.使用bcl程序对文本文件、程序源代码文件、数据文件、二进制目标代码文件、图像文件等进行多种统计编码技术的压缩,包括香农-费诺(shannon-fano)编码、霍夫曼(huffman)编码、游程编码rle、字典编码lz等,记录每种压缩方法对不同类型文件的压缩效果并进行比较,结合所学知识,解释其中的原因。 五、实验步骤 1、下载并打开WinZip和WinRAR两种压缩软件 2、分别新建两个文档:qqjj.winzip 和winrar。添加所要压缩的文件:文本文件(.txt,.doc)、程序源代码文件(.c)、数据文件(.dat)、二进制目标代码文件(.obj)、图像文件(.bmp)、音频文件(.wav)和视频文件(.avi,.wmv)进行压缩,如图所示:

土体抗拉张力学特性研究现状与展望

土体抗拉张力学特性研究现状与展望 : 传统非饱和土力学认为来源于土壤学或土壤物理学中的基质吸力就是非饱和土的粒间吸力,下面是小编搜集整理的一篇探究抗拉张力学特性试验的论文范文,供大家阅读参考。 1、引言 在传统工程地质环境及土力学性质的研究中,土体通常不主动作为抗拉材料使用,认为土的抗拉强度很小或几乎视为零[1,2],实际工程中土体的抗拉强度常常被忽略,多侧重于抗压和抗剪,对抗拉张的研究较少[3,4].然而,许多工程问题中的土体会发生开裂现象,诸如红色问题土中常见的崩岗[5]、滑坡以及黄土中常见的滑塌[6]等地质灾害孕育过程中坡顶几乎都产生的张拉裂缝[7,8],其破坏模式是拉张和剪切的耦合,都与其抗拉张力学特性密切相关。 抗拉张强度是评价非饱和土的崩岗、崩塌及土坝、堤防、路基、垃圾填埋场等边坡的稳定性的重要参数,黄文熙[9]早就指出抗拉张是黏性土的一个比较重要的力学 性质。试验研究表明[4,10] 天然非饱和黏性土的抗拉强度一般可达到十几到几十千帕,从抗拉力学角度,土体的抗拉强度几乎相当于同等面积内2m×3m间距锚杆的抗拔力。可见,抗拉强度在 土体稳定性中起着相当重要的作用,忽略土的抗拉张强度显然是对土的强度认识上的不全面。 本文从土体抗拉张力学特性的实验研究和理论分析2个角度出发,介绍并对比分析了国内外土体抗拉张力学特性的试验以及理论方面的最新研究,通过总结分析历史上大量的岩土破坏试验抽象概括出了土体的8种破坏模式,随后认为土体变形破坏的实质是拉剪耦合的渐进性发展过程,并指出研究非饱和土抗拉特性的核心问题就是要弄清土体抗议与粒间吸力之间的关系,最后总结了研究现状中存在的主要问题,展望了今后的研究与发展方向。 2、抗拉张力学特性试验研究 土体的抗拉张力学特性的测试主要在室内进行,分2类:一类是直接测定法,即单轴拉伸试验和三轴拉伸试验方法;另一类是间接测定方法,包括径向压裂试验、弯 曲梁试验和环状试样法等。比较土体抗剪特性及理论的研究,土体抗拉张特性的研究程度无论从试验手段还是从理论方面都还是远远落后的。例如,至今仍没有统一规范并获得业界普遍认同的土体抗张特性测试仪器。不过,当前抗拉张的新型试验

2016土力学实验报告详解

吉林铁道职业技术学院 土力学实验报告 班级________________ 学号:________________ 姓名:________________ 小组:

实验一土的颗粒分析实验 一、目的与适用范围 颗粒分析试验就是测定土中各种粒组所占该土总质量的百分数的试验方法,可分为筛析法和沉降分析法。其中沉降分析法又有密度计法和移液管法等。对于粒径大于0.075mm的土粒可用筛分析的方法来测定,而对于粒径小于0.075mm 的土粒则用沉降分析方法来测定。 这里我们仅对筛析法进行介绍。 二、筛析法 筛析法就是将土样通过各种不同孔径的筛子,并按筛子孔径的大小将颗粒加以分组,然后再称量并计算出各个粒组的质量占该土总质量的百分数。筛析法是测定土的颗粒组成最简单的一种试验方法,适用于粒径小于、等于60mm,大于0.075mm的土。 (一)仪器设备 1、分析筛; ①圆孔粗筛,孔径为60mm,40mm,20mm,10mm,5mm和2mm。 ②圆孔细筛,孔径为2mm,1mm,0.5mm,0.25mm,0.075mm。 2、称量1000g、最小分度值0.1g的天平;称量200g、最小分度值0.01g的天平; 3、振筛机; 4、烘箱、量筒、漏斗、研钵、瓷盘、不锈钢勺等。 (二)操作步骤 先用风干法制样,然后从风干松散的土样中,用四分法按下表称取代表性的试样,称量准确至0.1g,当试样质量超过500g时,称量应准确至1g。 筛析法取样质量

(1)将按上表称取的试样过孔径为2mm的筛,分别称取留在筛子上和已通过筛子孔径的筛子下试样质量。当筛下的试样质量小于试样总质量的10%时,不作细筛分析;当筛上的试样质量小于试样总质量的10%时,不作粗筛分析。 (2)取2mm筛上的试样倒入依次叠好的粗筛的最上层筛中,进行粗筛筛析,然后再取2mm筛下的试样倒入依次叠好的细筛的最上层筛中,进行细筛筛析。细筛宜置于振筛机上进行震筛,振筛时间一般为10~15min。 (3)按由最大孔径的筛开始,顺序将各筛取下,称留在各级筛上及底盘内试样的质量,准确至0.1g。 (4)筛后各级筛上及底盘内试样质量的总和与筛前试样总质量的差值,不得大于试样总质量的1%。 2、含有细粒土颗粒的砂土 (1)将按上表称取的代表性试样,置于盛有清水的容器中,用搅棒充分搅拌,使试样的粗细颗粒完全分离。 (2)将容器中的试样悬液通过2mm的筛,取留在筛上的试样烘至恒量,并称烘干试样质量,准确至0.1g。 (3)将粒径大于2mm的烘干试样倒入依次叠好的粗筛的最上层筛中,进行粗筛筛析。按由最大孔径的筛开始,顺序将各筛取下,称留在各级筛上及底盘内试样的质量,准确至0.1g。 (4)取通过2mm筛下的试样悬液,用带橡皮头的研杆研磨,然后再过0.075mm筛,并将留在0.075mm筛上的试样烘干至恒量,称烘干试样质量,准确至0.1g。 (5)将粒径大于0.075mm的烘干试样倒入依次叠好的细筛的最上层筛中,进行细筛筛析。细筛宜置于振筛机上进行震筛,振筛时间一般为10~15min。 (6)当粒径小于0.075mm的试样质量大于试样总质量的10%时,应采用密度计法或移液管法测定小于0.075mm的颗粒组成。 实验一土的筛分实验报告 1、实验目的: 2、实验仪器设备: 3、实验方法:

实验二金属材料地压缩试验1

实验二金属材料的压缩试验 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 材料 直径d o(mm)高度 l(mm) L d o 截面积A0 (mm 2 ) 屈服载荷 F s (K N) 最大载荷 F b (K N) 1 2 平均 低碳钢铸铁

载荷一变形曲线(F—△l曲线)及结果 材料低碳钢铸铁F—△l曲线 断口形状 实验结果屈服极限ós=屈服极限ób= 四、问题讨论 (1)观察铸铁试样的破坏断口,分析破坏原因; (2)公析比较两种材料拉伸和压缩性质的异同。

金属村翻盖的压缩试验 原始试验数据记录 实验指导老师: 200 年月日

实验四金属扭破坏实验、剪切弹性模量测定 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 弹性模量E= 泊松比μ= 实验前 材料标距 L0(mm) 直径d0(mm)平均极惯 性矩I p (mm4) 最小抗扭 截面模量 W T (mm3)截面I 截面II 截面III 1 2 平均 1 2 平均 1 2 平均 低碳钢铸铁

低碳钢钢剪切弹性模量测定 扭矩T(K N)扭转角(rad)扭转角度增量(rad)△φT0= T1 T2 T0 T3 T4 T5 △T= 理论值相对误差 截荷-变形曲线(F-△l曲线及结果) 材料低碳钢铸铁 T—φ曲线 断口形状 实验记录屈服扭矩T s 破坏扭矩T b 破坏扭矩T b 实验结果屈服极限t s 强度极限t b

四、问题讨论 (1)为什么低碳钢试样扭转破坏断面与横截面重合,而铸铁试样是与试样轴线成450螺旋断裂面? (2)根据低碳钢和铸铁拉伸、压缩、扭转试验的强度指标和断口形貌,分析总结两类材料的抗拉、抗压、抗剪能力。

相关主题