搜档网
当前位置:搜档网 › 高频开关电源设计

高频开关电源设计

高频开关电源设计
高频开关电源设计

高频开关电源设计

目录

引言 (1)

1本文概述 (2)

1.1选题背景 (2)

1.2本课题主要特点和设计目标 (2)

1.3课题设计思路 (3)

2SABER软件 (4)

2.1SABER简介 (4)

2.2SABER仿真流程 (5)

2.3本章小结 (5)

3三相桥式全控整流器的设计 (7)

3.1工作原理 (7)

3.1.1 三相桥式全控整流电路的特点 (8)

3.2保护电路 (8)

3.2.1 过电压产生的原因 (8)

3.2.2 过压保护 (8)

3.2.3 过电流产生的原因 (10)

3.2.4 过流保护 (10)

3.3SABER仿真 (13)

3.3.1 设计规范 (13)

3.3.2 建立模型 (13)

3.3.3 仿真结果 (14)

3.3.4 结果分析 (16)

3.4本章小结 (16)

4功率因素校正技术 (16)

4.1谐波 (16)

4.1.1 谐波的危害 (16)

4.1.2 谐波补偿和功率因素校正 (17)

4.2有源功率因数校正 (17)

4.2.1 APFC技术分类 (17)

4.2.2 临界导电模式APFC的控制原理 (18)

4.2.3 功率因素校正电路的缺点及解决方法 (20)

4.3本章小结 (20)

5软开关功率变换技术 (21)

5.1软开关技术的提出 (21)

5.1.1 开关损耗的成因 (22)

5.2软开关技术 (23)

5.2.1 软开关技术的一般实现方法 (24)

5.2.2 软开关的发展历程主要分类 (26)

5.3本章小结 (26)

6双管正激变换器的设计 (27)

6.1工作原理 (27)

6.2SG3525的功能介绍以及应用 (28)

6.2.1 SG3525基本工作原理和应用特点 (29)

6.2.2 SG3525在双管正激开关电源中的应用 (29)

6.3启动电路的改进 (31)

6.4SABER仿真 (31)

6.4.1 设计步骤简介 (31)

6.4.2 设计规范 (32)

6.4.3 开环设计(功率电路设计) (32)

6.4.4 调制器设计和闭环仿真 (36)

6.5仿真结果 (39)

6.6本章小结 (39)

7BOOST变换器的设计 (40)

7.1工作原理 (40)

7.2SABER仿真 (42)

7.2.1 设计规范 (42)

7.2.2 参数设计 (42)

7.2.3 仿真结果 (43)

7.3本章小结 (44)

8系统集成调试 (45)

9结论与展望 (46)

谢辞 (47)

参考文献 (48)

附录 (49)

引言

人类已经进入工业经济时代,并处于转入高新技术产业迅猛发展的时期。电源是向负载提供优质电能的供电设备,是工业的基础。

电源涉及功率半导体器件,综合电力变换技术、现代电子技术、自动控制技术等多学科的边缘交叉技术。随着科学技术的发展,电源技术又与现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关。在现代通信,电子仪器、计算机、工业自动化、电力工程、国防以及某些高新技术中发挥着重要作用。

开关电源是直流电源系统的一个重要组成部分。高频开关技术是采用高频功率半导体器件和脉宽调制(PWM)技术的功率变换技术。其发展方向是高频,高功率因素,抗干扰和模块化,其中进一步实现高频化是开关电源的发展趋势,同时软开关技术也成为开关电源的主流技术,由于工作频率高,电路中的滤波电感和电容的体积可大大缩小;同时,高频变压器取代了工频变压器.则变压器的体积减小、重量降低;另外,由于开关管高频工作,功率损耗小,因而开关电源效率高。开关管一般采用PWM控制方式,稳压稳流特性极佳。

现在应用于开关电源技术的仿真软件已有多种,它们有通用的软件,也有专业的软件,其中通用的最具影响的是PSPICE 和MATLAB。PSPICE 是美国加州大学伯克利分校推出的集成电路分析软件SPICE 的微机版,广泛应用于电子电路的设计。早期的MATLAB 主要应用于控制系统的仿真和分析,经过不断扩展已经成为包括通信、电气工程、优化控制等诸多领域的科学计算软件。虽然上述两个软件均可用于开关电源系统的仿真,但是笔者认为开关电源技术作为一门跟实践紧密联系的课程,采用专业级的仿真软件效果将会更好,因此本次设计将采用专业级的电源仿真软件-SABER。

本文应用高频开关PWM技术,设计了一种开关频率50KHZ的高频开关电源,系统主电路包括三相桥式全控整流器、双管正激变换器、BOOST变换器。根据题目要求,应用SABER软件对上述几个电路进行了原理性仿真测试,并对仿真结果进行了分析。

1本文概述

1.1 选题背景

开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET 构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。

从开关电源发展史来讲,如今已经走到第五代。第一代是70年初,那时候从线性电源开始走向开关电源;第二代是1976开始取得UL安规认证;第三代从80年代中期开始,开关电源走向全球通用,因此电源的开发就不能局限在北美或者日本市场,输入电压要考虑85~265V范围内,同时欧规和其他安规都要考虑进来;第四代在90年中期,欧盟要求EMC(电磁兼容),包括PFC方面的高次谐波要求;现在进入了第五代,2006年7月,欧盟将强制执行ROHS条例,以限制有毒物质的使用,新一代的电源产品就这样诞生了。

开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

近年来,开关电源已广泛应用于电力,通信,交通等各个领域,并取得了显著的经济效益。随着开关器件以及磁性材料性能的不断改进,开关频率逐步提高,功率逐步增大,开关电源的性能也更加优良。相关技术的发展和开发软件的改进,也使开关电源的研发水平大大提高。

1.2 本课题主要特点和设计目标

高可靠性、高电气指标等特征,使得开关电源具有更强的竞争力,应用领域不断扩大,高频开关电源向着高频、高效、高功率因素发展,必然将有更多更好的新技术出现,来不断完善它。

本文通过对开关电源的工作原理进行探究,分析了提高电源性能的新技术,设计了主体电路,分析了控制保护电路,并用SABER软件对电路进行原理性仿真模拟。

本课题所设计的开关电源,具体要求如下:

(1)输入:三相交流输入380V,在±10%变化内;

(2)输出:200VDC/10A;

(3)稳压精度0.1%,功率因数大于0.9,具有过流过压保护措施

1.3 课题设计思路

交流输入的开关电源的设计电路如图1.1所示。交流电经整流和PFC后转换成高压直流电,经DC/DC变换器后转换成所需的直流电输出。

图1.1 开关电源的基本设计

本文主要通过对传统开关电源的研究,针对其不足,提出了改善,运用PWM技术,使电源输出更稳定,性能更好,效率更高。

2SABER软件

2.1 SABER简介

SABER是由analogy公司开发、现由Synopsys公司经营的系统仿真软件,被誉为全球最先进的系统仿真软件,也是唯一的多技术、多领域的系统仿真产品,现已成为混合信号、混合技术设计和验证工具的业界标准,可用于电子、电力电子、机电一体化、机械、光电、光学、控制等不同类型系统构成的混合系统仿真,这也是SABER的最大特点。SABER作为混合仿真系统,可以兼容模拟、数字、控制量的混合仿真,便于在不同层面上分析和解决问题,其他仿真软件不具备这样的功能。

SABER仿真软件是当今世界上功能强大的电力电子仿真软件之一,我们从以下几个方面对SABER仿真软件进行介绍:

(1) 原理图输入和仿真。SABER Sketch是SABER的原理图输入工具,通过它可

以直接进入SABER仿真引擎。在SABER Sketch中,用户能够创建自己的原理图,启动SABER完成各种仿真(偏置点分析、DC分析、AC分析、瞬态分析、温度分析、参数分析、傅立叶分析、蒙特卡诺分析、噪声分析、应力分析、失真分析等),可以直接在原理图上查看仿真结果,SABER Sketch及其仿真功能可以帮助用户完成混合信号、混合技术(电气、液压等)系统的仿真分析。SABER Sketch中的原理图可以输出成多种标准图形格式,用于报告、设计审阅或创建文档。

(2) 数据可视化和分析。Cosmos Scope是SABER的波形查看和仿真结果分析工

具,它的测量工具有50多种标准的测量功能,可以对波形进行准确的定量分析。它的专利工具——波形计算器,可以对波形进行多种数学操作。Cosmos Scope中的图形也可以输出成多种标准图形格式用于文档。

(3) 模型库。SABER拥有市场上最大的电气、混合信号、混合技术模型库,它具

有很大的通用模型库和较为精确的具体型号的器件模型,其元件模型库中有4700多种带具体型号的器件模型,500多种通用模型,能够满足航空、汽车和电源设计的需求。

SABER模型库向用户提供了不同层次的模型,支持自上而下或自下而上的系统仿真方法,这些模型采用最新的硬件描述语言(HDL),最大限度的保证了模型的准确性,支持模型共享。

(4) 建模。不同类型的设计需要不同类型的模型,SABER提供了完整的建模功能,

可以满足各种仿真与分析的需求。其建模语言主要有MAST、VHDL-AMS、Fortran,建模工具包括State-AMS、5维的图表建模工具TLU,SABER可以对SPICE、

SIMULINK模型进行模型转换,同时SABER还拥有强大的参数提取工具,可以通过协同仿真实现模型复用。

SABER的混合信号、混合技术设计和验证能力已经得到了业界的验证,功能强大

高频开关电源的设计与实现资料

电力电子技术课程设计报告 题目高频开关稳压电源 专业电气工程及其自动化 班级 学号 学生姓名 指导教师 2016年春季学期 起止时间:2016年6月25日至2016年6月27日

设计任务书11 高频开关稳压电源设计√ 一、设计任务 根据电源参数要求设计一个高频直流开关稳压电源。 二、设计条件与指标 1.电源:电压额定值220±10%,频率:50Hz; 2. 输出:稳压电源功率Po=1000W,电压Uo=50V; 开关频率:100KHz 3.电源输出保持时间td=10ms(电压从280V下降到250V); 三、设计要求 1.分析题目要求,提出2~3种电路结构,比较并确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要的 保护电路; 3.参数计算,选择主电路及保护电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.林渭勋等,《电力电子设备设计和应用手册》; 3.张占松、蔡宣三,《开关电源的原理与设计》,电子工业 出版社。

目录 一、总体设计 (1) 1.主电路的选型(方案设计) (1) 2.控制电路设计 (4) 3.总体实现框架 (4) 二、主要参数及电路设计 (5) 1.主电路参数设计 (5) 2.控制电路参数设计 (7) 3.保护电路的设计以及参数整定 (8) 4.过压和欠压保护 (8) 三、仿真验证(设计测试方案、存在的问题及解决方法) (9) 1、主电路测试 (9) 2、驱动电路测试 (10) 3、保护电路测试 (10) 四、小结 (11) 参考文献 (11)

高频开关电源的设计55400

目录 1绪论 (1) 1.1高频开关电源概述 (1) 1.2意义及其发展趋势 (2) 2高频开关电源的工作原理 (3) 2.1 高频开关电源的基本原理 (3) 2.2 高频开关变换器 (5) 2.2.1 单端反激型开关电源变换器 (5) 2.2.2 多端式变换器 (6) 2.3 控制电路 (8) 3高频开关电源主电路的设计 (9) 3.1 PWM开关变换器的设计 (9) 3.2 变换器工作原理 (10) 3.3 变换器中的开关元件及其驱动电路 (11) 3.3.1 开关器件 (11) 3.3.2 MOSFET的驱动 (11) 3.4高频变压器的设计 (13) 3.4.1 概述 (13) 3.4.2 变压器的设计步骤 (13) 3.4.3 变压器电磁干扰的抑制 (15) 3.5 整流滤波电路 (15) 3.5.1 整流电路 (15) 3.5.2 滤波电路 (16) 4 总结 (19) 参考文献 (20)

1 绪论 1.1高频开关电源概述 八十年代,国高频开关电源只在个人计算机、电视机等若干设备上得到应用。由于开关电源在重量、体积、用铜用铁及能耗等方面都比线性电源和相控电源有显著减少,而且对整机多相指标有良好影响,因此它的应用得到了推广。近年来许多领域,例如电力系统、邮电通信、军事装备、交通设施、仪器仪表、工业设备、家用电器等都越来越多应用开关电源,取得了显著效益。究其原因,是新的电子元器件、新电磁材料、新变换技术、新控制理论及新的软件(简称五新)不断地出现并应用到开关电源的缘故。五新使开关电源更上一层搂,达到了频率高、效率高、功率密度高、功率因数高、可靠性高(简称五高)。有了五高,开关电源就有更强的竞争实力,应用也更为扩大,反过来又遇到更多问题和更实际的要求。这些问题和要求可归纳为以下五个方面: (l)能否全面贯彻电磁兼容各项标准? (2)能否大规模稳定生产或快捷单件特殊生产? (3)能否组建大容量电源? (4)电气额定值能否更高(如功率因数)或更低(如输出电压)? (5)能否使外形更加小型化、外形适应使用场所要求? 这五个问题是开关电源能否在更广泛领域应用的关键,是五个挑战。(简称五挑战)把挑战看成开关电源发展的动力和机遇,一向是电源科技工作者的态度。以功率因数为例,AC-DC开关电源或其他电子仪器输入端产生功率因数下降问题,用什么办法来解决?毫无疑问,利用开关电源本身的工作原理来解决开关电源应用中产生的问题是最积极的态度。实践中,用DC-DC开关电源和有源功率因数校正的开关电源,(成本比单机增加20%):成功解决了这个问题。现在,又进一步发展成单级有功率因数校正的开关电源,(成本只增加5%);在三相升压式单开关整流器中减少谐波方法,有人采用注入六次谐波调脉宽控制,抑制住输入电流的五次谐波,解决了电流谐波畸变率小于100k的要求。

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

高频开关电源设计与应用

电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。 功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。使电源的工作特性就像一个电阻一样,而不在是容性的。 目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。C CM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MO S管。这种类型的控制方式,在小功率PFC电路中非常常见。 今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。 要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例: 已知参数: 交流电源的频率fac——50Hz 最低交流电压有效值Umin——85Vac 最高交流电压有效值Umax——265Vac 输出直流电压Udc——400VDC 输出功率Pout——600W 最差状况下满载效率η——92% 开关频率fs——65KHz 输出电压纹波峰峰值Voutp-p——10V 那么我们可以进行如下计算: 1,输出电流Iout=Pout/Udc=600/400=1.5A 2,最大输入功率Pin=Pout/η=600/0.92=652W 3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A 4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A 5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A 6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A 7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH 8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。实际的电路中,我用了1320uF,4只330uF的并联。 有了电感量、有了输入电流,我们就可以设计升压电感了! PFC电路的升压电感的磁芯,我们可以有多种选择:磁粉芯、铁氧体磁芯、开了气隙的非晶/微晶合金磁芯。这几种磁芯是各有优缺点,听我一一道来。

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5 层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该

高频开关电源设计

高频开关电源设计

目录 引言 (1) 1本文概述 (2) 1.1选题背景 (2) 1.2本课题主要特点和设计目标 (2) 1.3课题设计思路 (3) 2SABER软件 (4) 2.1SABER简介 (4) 2.2SABER仿真流程 (5) 2.3本章小结 (5) 3三相桥式全控整流器的设计 (7) 3.1工作原理 (7) 3.1.1 三相桥式全控整流电路的特点 (8) 3.2保护电路 (8) 3.2.1 过电压产生的原因 (8) 3.2.2 过压保护 (8) 3.2.3 过电流产生的原因 (10) 3.2.4 过流保护 (10) 3.3SABER仿真 (13) 3.3.1 设计规范 (13) 3.3.2 建立模型 (13) 3.3.3 仿真结果 (14) 3.3.4 结果分析 (16) 3.4本章小结 (16) 4功率因素校正技术 (16) 4.1谐波 (16) 4.1.1 谐波的危害 (16) 4.1.2 谐波补偿和功率因素校正 (17) 4.2有源功率因数校正 (17) 4.2.1 APFC技术分类 (17) 4.2.2 临界导电模式APFC的控制原理 (18) 4.2.3 功率因素校正电路的缺点及解决方法 (20) 4.3本章小结 (20) 5软开关功率变换技术 (21)

5.1软开关技术的提出 (21) 5.1.1 开关损耗的成因 (22) 5.2软开关技术 (23) 5.2.1 软开关技术的一般实现方法 (24) 5.2.2 软开关的发展历程主要分类 (26) 5.3本章小结 (26) 6双管正激变换器的设计 (27) 6.1工作原理 (27) 6.2SG3525的功能介绍以及应用 (28) 6.2.1 SG3525基本工作原理和应用特点 (29) 6.2.2 SG3525在双管正激开关电源中的应用 (29) 6.3启动电路的改进 (31) 6.4SABER仿真 (31) 6.4.1 设计步骤简介 (31) 6.4.2 设计规范 (32) 6.4.3 开环设计(功率电路设计) (32) 6.4.4 调制器设计和闭环仿真 (36) 6.5仿真结果 (39) 6.6本章小结 (39) 7BOOST变换器的设计 (40) 7.1工作原理 (40) 7.2SABER仿真 (42) 7.2.1 设计规范 (42) 7.2.2 参数设计 (42) 7.2.3 仿真结果 (43) 7.3本章小结 (44) 8系统集成调试 (45) 9结论与展望 (46) 谢辞 (47) 参考文献 (48) 附录 (49)

基于UC3875的高频开关电源的设计

引言 近年来,随着电子技术的发展,邮电通信、交通设施、仪器仪表、工业设施、家用电器等越来越多地应用开关电源,随着科学技术的不断进步,对大功率电源的需求也就越来越大。与此同时大量集成电路、超大规模集成电路等电子通信设备日益增多,要求电源的发展趋势是小型化、轻量化。通常滤波电感、电容和变压器的体积和重量比较大,因此主要是靠减少它们的体积来实现小型化、轻量化。 我们可以通过减少变压器的绕组匝数和金减小铁心尺寸来提高工作频率,但在提高开关频率的同时,开关损耗会随之增加,电路效率会严重下降。针对这些问题出现了软开关技术,它利用以谐振为主的辅助换流手段,解决了电路中的开关损耗和开关噪声问题,使开关电源能高频高效地运行,从20世纪70年代以来国内外就开始不断研究高频软开关技术,目前已比较成熟,下面以2KW的电源为例进行设计。 1.设计内容和方法 1.1主电路型式的选择 变换电路的型式主要根据负载要求和给定电源电压等技术条件进行选择。在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。 传统的全桥变换电路开关元件在电压很高或电流很大的条件下,在门极的控制下开通或关断,开关过程中电压、电流均不为零,出现重叠,导致了开关损耗。开关损耗随开关频率增加而急剧上升,使电路效率下降,阻碍了开关频率的提高。在移相控制技术的基础上,利用功率管的输出电容和输出变压器的漏电感作为谐振元件,使全桥变换器四个开关管依次在零电压下导通,实现恒频软开关。由于减少了开关过程损耗,变换效率可达80%-90%,并且不会发生开关应力过大。所以选用移相控制全桥型零电压开关脉宽调制(PSC FB ZVS-PWM)变换电路。 移相控制全桥变换电路是目前应用最为广泛的软开关电路之一,它的特点是电路简单,与传统的硬开关电路相比,并没有增加辅助开关等元件。原理如图1所示,主要由四个相同的功率管和一个高频变压器压器组成。E为输入直流电压, T1~T4 为开关管, D1~D4 为体内二极管,C1 ~C4 为开关的输出电容。以第一个桥臂为例介绍,利用变压器漏感和功率输出电容C1 谐振,漏感储能向电容 C1释放过程中,使电容上的电压逐步下降到零,体内二极管D1开通,创造了T1 的ZVS条件。

30kHz半桥高频开关电源变压器的设计

30kHz半桥高频开关电源变压器的设计 Designof30kHzHigh-frequencySMPSTransformer 在传统的高频变压器设计中,由于磁心材料的限制,其工作频率较低,一般在20kHz左右。随着电源技术的不断发展,电源系统的小型化,高频化和高功率比已成为一个永恒的研究方向和发展趋势。因此,研究使用频率更高的电源变压器是降低电源系统体积,提高电源输出功率比的关键因素。本文根据超微晶合金的优异电磁性能,通过示例介绍30kHz超微晶高频开关电源变压器的设计。 1变压器的性能指标 电路形式:半桥式开关电源变换器原理见图1: 工作频率f:30kHz 变换器输入电压Ui:DC300V 变换器输出电压U0:DC2100V 变换器输出电流Io:0.08A 整流电路:桥式整流 占空比D:1%~90% 输出效率η:≥80% 耐压:DC12kV 温升:+50℃ 工作环境条件:-55℃~+85℃ 2变压器磁心的选择与工作点确定 从变压器的性能指标要求可知,传统的薄带硅钢、铁氧体材料已很难满足变压器在频率、使用环境方面的设计要求。磁心的材料只有从坡莫合金、钴基非晶态合金和超微晶合金三种材料中来考虑,但坡莫合金、钴基非晶态价格高,约为超微晶合金的数倍,而饱和磁感应强度Bs却为超微晶合金2/3左右,且加工工艺复杂。因此,综合三种材料的性能比较(表1),选择饱和磁感应强度Bs高,温度稳定性好,价格低廉,加工方便的超微晶合金有利于变压器技术指标的实现。 表1(1)钴基非晶态合金和超微晶合金的主要磁性能比较

磁心工作点的选择往往从磁心的材料,变压器的工作状态,工作频率,输出功率,绝缘耐压等因素来考虑。超微晶合金的饱和磁感应强度Bs较高约为1.2T,在双极性开关电源变压器的设计中,磁心的最大工作磁感应强度Bm一般可取到0.6~0.7T,经特别处理的磁心,Bm可达到0.9T。在本设计中,由于工作频率、绝缘耐压、使用环境的原因,把最大工作磁感应强度Bm定在0.6T,而磁心结构则定为不切口的矩形磁心。这种结构的磁心与环形磁心相比具有线圈绕制方便、分布参数影响小、磁心窗口利用率高、散热性好、系统绝缘可靠、但电磁兼容性较差。 3变压器主要参数的计算 3.1变压器的计算功率 半桥式变换器的输出电路为桥式整流时,其开关电源变压器的计算功率为: Pt=UoIo(1+1/η)(1) 将Uo=2100V,Io=0.08A,η=80%代入式(1),可得Pt=378W。 3.2变压器的设计输出能力 变压器的设计输出能力为: Ap=(Pt·104/4BmfKWKJ)1.16(2) 式中:工作频率f为30kHz,工作磁感应强度Bm取0.6T,磁心的窗口占空系数KW取0.2,矩形磁心的电流密度(温升为50℃时)KJ取468。经计算,变压器的设计输出能力AP=0.511cm4。 3.3变压器的实际输出能力 铁基超微晶铁心及超微晶软磁合金通过省级技术鉴定 1999年10月24日,由江西省科委等机关委托主持的对江西大有科技有限公司研制的新产品DY-ON型铁基超微晶磁铁心和超微晶软磁合金通过了省级技术鉴定,获得与会专家学者的高度评价,一致认为这两项产品性能稳定,各项技术指标分别达到美国UL94-P标准和国标GBm292-89技术要求,在国内同类产品中具有特色。 非晶态(超微晶)软磁合金,是90年代世界六大高科技新型材料之一,它具有优异的特点,目前国内市场供不应求,前景广阔。 联系人:江西省宜春市东风大街62号宜春地区粮食局(336000)方华平

高频开关电源的设计与制作(论文)

高频开关电源的设计与制作(论文) 《高频开关电源的设计与制作》论文版本,是提取了重点来简单论述的。这也是在毕业设计最后学校要求进行缩减后拿去参评校级优秀毕业设计的,当然这是获奖的啦!欢迎下载 参考!高频开关电源的设计与制作洛阳理工学院电气工程与自动化系黄贝利指导老师杨文方2011摘要:开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。我们设计了以MOSFET作为功率开关器件采用脉宽调制(PWM)技术,输 出实时采样电压反馈信号,来控制输出电压变化的。本文具体介绍了其系统构成,工作原理,基本控制器结构、功能和特点。关键词:高频开关电源变换器SG3525 过流保护0. 前言随着电力电子技术的高速发展,开关电源不断向高频、高可靠、低耗、低噪声、抗干扰和模块化方向发展。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。现在迫切需要物美价廉,能满足多种不同工况要求的多规格、多品种、系列化的高质量、高性能的高频高压开关电源。虽国内已有少数厂家生产高频高压开关电源,但价格昂贵。因此设计开发价格低廉的高频高压开关电压是大势所趋,具有良好的市场。[1] [2]1. 系统设计原理及其框图开关电源采用功率半导体器件作为开关器件,通过

周期性间断工作,控制开关器件的占空比来调整输出电压。其中DC/DC变换器进行功率转换,它是开关电源的核心部分,此外还有起动、过流与过压保护、噪声滤波等电路。输出采样电路检测输出电压变化,与基准电压研比较,误差电压经过放大及脉宽调制(PWM)电路,再经过驱动电路控制功率器件的占空比,从而达到调整输出电压大小的目的。开关电源结构框图如图1所示:图1 开关电源结构框图2. 高频开关电源的电路设计2.1 电源输入滤波及桥式整流电源输 入滤波又称电磁干扰(EMI),主要用于抑制电气噪声和消除电磁干扰。经滤波后送入桥式整流电路,将其整流得到所需的300V高压直流电,然后再送入功率变换器。图2 输入滤波电路图3桥式整流电路 《高频开关电源的设计与制作》论文版本,是提取了重点来简单论述的。这也是在毕业设计最后学校要求进行缩减后拿去参评校级优秀毕业设计的,当然这是获奖的啦!欢迎下载参考! 2.2 软启动电路 软启动电路是防止在开机瞬间产生浪涌电 流对电路个器件造成损坏而设置的。图4为采用 继电器K1和限流电阻R2构成。通过限流电阻R 2来对电容器充电,为了不使该限流电阻消耗过

基于UC3875的高频开关电源的设计

基于UC3875的高频开关电源的设计 (2011-10-13 16:42) 分类:开关电源 引言 近年来,随着电子技术的发展,邮电通信、交通设施、仪器仪表、工业设施、家用电器等越来越多地应用开关电源,随着科学技术的不断进步,对大功率电源的需求也就越来越大。与此同时大量集成电路、超大规模集成电路等电子通信设备日益增多,要求电源的发展趋势是小型化、轻量化。通常滤波电感、电容和变压器的体积和重量比较大,因此主要是靠减少它们的体积来实现小型化、轻量化。 我们可以通过减少变压器的绕组匝数和金减小铁心尺寸来提高工作频率,但在提高开关频率的同时,开关损耗会随之增加,电路效率会严重下降。针对这些问题出现了软开关技术,它利用以谐振为主的辅助换流手段,解决了电路中的开关损耗和开关噪声问题,使开关电源能高频高效地运行,从20世纪70年代以来国内外就开始不断研究高频软开关技术,目前已比较成熟,下面以2KW的电源为例进行设计。 1.设计内容和方法 1.1主电路型式的选择 变换电路的型式主要根据负载要求和给定电源电压等技术条件进行选择。在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。 传统的全桥变换电路开关元件在电压很高或电流很大的条件下,在门极的控制下开通或关断,开关过程中电压、电流均不为零,出现重叠,导致了开关损耗。开关损耗随开关频率增加而急剧上升,使电路效率下降,阻碍了开关频率的提高。在移相控制技术的基础上,利用功率管的输出电容和输出变压器的漏电感作为谐振元件,使全桥变换器四个开关管依次在零电压下导通,实现恒频软开关。由于减少了开关过程损耗,变换效率可达80%-90%,并且不会发生开关应力过大。所以选用移相控制全桥型零电压开关脉宽调制(PSC FB ZVS-PWM)变换电路。 移相控制全桥变换电路是目前应用最为广泛的软开关电路之一,它的特点是电路简单,与传统的硬开关电路相比,并没有增加辅助开关等元件。原理如图1所示,主要由四个相同的功率管和一个高频变压器压器组成。E为输入直流电压,T1~T4 为开关管, D1~D4 为体内二极管,C1 ~C4 为开关的输出电容。以第一个桥臂为例介绍,利用变压器漏感和功率输出电容C1 谐振,漏感储能向电容C1释放过程中,使电容上的电压逐步下降到零,体内二极管D1开通,创造了T1 的ZVS条件。

大功率高频开关电源的设计要点

大功率高频开关电源的设计要点 摘要开关电源设计需要综合分析电力电子、电磁学、微电子技术、热力学等多门学科,具有较强的综合性。同时电源为电力设备正常运行的核心,尤其是现在资源需求与环保节能理念下,需要在原有基础上,对开关电源设计方法进行更为深入的研究。本文重点分析了大功率高频开关电源设计要点。 【关键词】大功率高频开关电源系统设计 开关电源即交互式电源,为高频化电能转换装置,可以利用不同形似架构,将一个准电压转换成用户端需要的电压或电流。大功率高频开关电源现在已经被广泛的应用到军工设备、LED照明、通讯设备、科研设备、电力设备等领域,具有功耗小、效率高的优点。在对其进行设计时,需要结合其运行原理,确定系统各环节设计要点,对各节点功能进行优化。 1 大功率高频开关电源 1.1 开关电源特点 电气设备容量持续增大,为满足实际应用需求,市场上逐渐出现更多的大功率高频开关电源,同时与传统开关电源相比,还可以有效降低对电网的影响,更符合节能环保发展

理念。另外,开关电源的高频化设计,可以进一步减小其体积大小,并可根据实际需求来灵活控制电容、电感容量,将生产成本控制到最低。因此,在对大功率高频开关电源进行设计时,需要充分发挥出其所具有的优点,便于更好的满足实际发展需求。 1.2 开关电源原理 基于线性开关,开关电源开关管工作处于开关状态,将基础降压电路作为例子进行分析,确定开关电源工作过程与所处状态。如图1所示,当开关处于闭合状态时,持续电压将会对电感LO两端产生作用,电感电流将呈直线上升趋势,可用公式表达:iL(on)=(Vin-V out)ton/L。当开关处于开通状态时,电能将被存储在电感中,来满足关断时间内对负载的输出需求,其中存储能量可用公式表示:Estored=1/2Lo (I2pk-I2min)。开关断开后,电感Lo输入端电压会降为零,电感上能量需要通过续流二极管D维持负载,整个区间内电感电流可以用公式描述:iL(off)=(V out-VD)toff/L。通过伏秒平衡来表示输出电压与输入电压关系:V out=D?Vin,其中D表示开关占空比,取值ton/T。在开关电源再次开通后,结束整个运行过程。 2 大功率高频开关电源设计要点 2.1 拓扑结构选择 开关电源功率拓扑主要负责DC/DC高频逆变的实现,

开关电源设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 引言 (1) 1设计意义及要求 (2) 1.1设计意义 (2) 1.2开关电源的组成部分 (2) 1.3开关电源的工作过程 (2) 1.4开关电源的工作方式 (3) 1.5脉宽调制器的基本原理 (3) 2方案设计 (5) 2.1设计要求 (5) 2.2方案选择 (5) 2.3整流滤波部分 (6) 2.4降压斩波电路 (7) 2.5脉宽调制电路 (8) 2.6MOSFET管的驱动电路 (9) 2.7总电路图 (11) 3主电路参数设定 (12) 3.1变压器、二极管、MOSFET管选择 (12) 3.2反馈回路的设计 (13) 3.3MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16) 附录一 (17)

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

用SG3525来设计的半桥高频开关电源

毕业论文 题目基于SG3525的半桥高频 开关电源设计 专业 班级 学生姓名 指导教师 答辩日期

学院毕业论文任务书 系:机电工程系专业:电气自动化技术班学号:姓名: 指导教师:教研室主任:

目录 第1章绪论 (1) 1.1 课题背景 (1) 1.1.1开关电源原理 (1) 一、开关电源的电路组成: (1) 二、输入电路的原理及常见电路: (2) 2、 DC输入滤波电路原理: (3) 第2章 SG3525芯片的工作原理 (4) 2.1 本章PWM控制芯片SG3525功能简介: (4) 2.1.1 SG3525引脚功能及特点简介: (4) 2.1.2 SG3525的工作原理 (6) 第3章电源系统介绍 (7) 3.1 主电路结构及其工作原理 (7) 3.2 控制电路 (8) 第4章高频变压器的设计 (9) 4.1 原副边电压比n (9) 4.2 磁芯的选取及变压器的结构 (9) 4.3 变压器初、次级匝数 (9) 4.4 确定绕组的导线线径和导线股数 (10) 结论 (10) 致谢: (13) 参考文献: (14)

第1章绪论 1.1 课题背景 随着PWM技术的不断发展和完善,开关电源具有体积小、效率高等一系列 优点,在各类电子产品中得到广泛的应用。但由于开关电源的控制电路比较复杂、输出纹波电压较高,所以开关电源的应用也受到一定的限制。 电子装置小型轻量化的关键是供电电源的小型化,因此需要尽可能地降低电源电路中的损耗。开关电源中的调整管工作于开关状态,必然存在开关损耗,而且损耗的大小随开关频率的提高而增加。另一方面,开关电源中的变压器、电抗器等磁性元件及电容元件的损耗,也随频率的提高而增加。 目前市场上开关电源中功率管多采用双极型晶体管,开关频率可达几十kHz;采用MOSFET的开关电源转换频率可达几百kHz。为提高开关频率必须 采用高速开关器件。对于兆赫以上开关频率的电源可利用谐振电路,这种工作方式称为谐振开关方式。它可以极大地提高开关速度,原理上开关损耗为零,噪声也很小,这是提高开关电源工作频率的一种方式。采用谐振开关方式的兆赫级变换器已经实用化。 开关电源的集成化与小型化已成为现实。然而,把功率开关管与控制电路都集成在同一芯片上,必须解决电隔离和热绝缘的问题。 开关电源以其高的性价比得到了广泛的应用。开关电源的电路拓扑结构很多, 常用的电路拓扑有推挽、全桥、半桥、单端正激和单端反激等形式。其中, 在半桥电路中, 变压器初级在整个周期中都流过电流, 磁芯利用充分,且没有偏磁的问题,所使用的功率开关管耐压要求较低,开关管的饱和压降减少到了最小,对输入滤波电容使用电压要求也较低。由于以上诸多原因, 半桥式变换器在高频开关电源设计中得到广泛的应用。 1.1.1开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

高频开关电源的设计[1]

学校代码10126学号00812032分类号密级 本科学期论文(设计) 学院、系电子信息工程学院电子工程系 专业名称电子信息科学与技术 年级2008级 学生姓名孙哲琦 指导教师窦海峰 2010年9 月28 日

高频开关电源的设计 摘要: 通信电源是电信网的能源,其供电质量的好坏直接关系到整个电信网的畅通,本课题首先分析了近年来国内外高频通信开关电源的发展状况,在理论分析和电路实验的基础上,开发出了一种新型的高频通信开关电源(交流配电模块、直流配电模块、4只高频开关整流模块和监控模块置于同一机架内),该电源优化了电路的主要参数,设计了相移脉宽调制零电压开关谐振(PS-ZVS PWM)全桥变换器电路和以集成控制器UC3875芯片为核心的控制电路,实现了功率开关管的零电压开通和近似零电压关断,研制出高效率(达93%)、高稳定度(±0.5%)、高可靠性、低电磁干扰的高频开关整流模块。同时文中还提到了以MCS-51单片机电路为核心的的电源监控模块与监控设计思路。保证了整机能够安全可靠工作。 关键词:高频开关电源,相移脉宽调制,模块

High Frequency Switching Power Supply's Design Author: Sun zhe qi Tutor: Dou hai feng ABSTRACT: The correspondence power switch is the telecommunication network energy, its power supply quality relates directly to the entire telecommunication network unimpededness, this topic has first analyzed the recent years domestic and foreign communications switching power supply development condition, tests in the theoretical analysis and the electric circuit in the foundation, developed one kind of new communication switching power supply (alternating-current distribution module, direct current power distribution module, 4 high frequency switches rectification module and monitoring module puts in identical rack), this power source optimized the electric circuit main parameter, has designed the phase-shift pulse-duration modulation zero potential switch resonance (PS-ZVS PWM) the entire bridge converter electric circuit and take integrates the controller UC3875 chip as the core control circuit, Realized the power switching valve zero potential to clear with the approximate zero potential shuts off, develops the high efficiency (to reach 93%), the high stability (±0.5%), redundant reliable, the low electronmagetic interference high frequency switch rectification module. At the same time in the article also proposed based on MCS-51 is the core power source monitoring module and monitoring design mentality. It has guaranteed entire machine safe reliable work. Keywords: High frequency switching power, Phase-Shifting PWM ZVS, Modules

相关主题