搜档网
当前位置:搜档网 › 高频开关电源的设计[1]

高频开关电源的设计[1]

高频开关电源的设计[1]
高频开关电源的设计[1]

学校代码10126学号00812032分类号密级

本科学期论文(设计)

学院、系电子信息工程学院电子工程系

专业名称电子信息科学与技术

年级2008级

学生姓名孙哲琦

指导教师窦海峰

2010年9 月28 日

高频开关电源的设计

摘要:

通信电源是电信网的能源,其供电质量的好坏直接关系到整个电信网的畅通,本课题首先分析了近年来国内外高频通信开关电源的发展状况,在理论分析和电路实验的基础上,开发出了一种新型的高频通信开关电源(交流配电模块、直流配电模块、4只高频开关整流模块和监控模块置于同一机架内),该电源优化了电路的主要参数,设计了相移脉宽调制零电压开关谐振(PS-ZVS PWM)全桥变换器电路和以集成控制器UC3875芯片为核心的控制电路,实现了功率开关管的零电压开通和近似零电压关断,研制出高效率(达93%)、高稳定度(±0.5%)、高可靠性、低电磁干扰的高频开关整流模块。同时文中还提到了以MCS-51单片机电路为核心的的电源监控模块与监控设计思路。保证了整机能够安全可靠工作。

关键词:高频开关电源,相移脉宽调制,模块

High Frequency Switching Power Supply's Design

Author: Sun zhe qi

Tutor: Dou hai feng ABSTRACT:

The correspondence power switch is the telecommunication network energy, its power supply quality relates directly to the entire telecommunication network unimpededness, this topic has first analyzed the recent years domestic and foreign communications switching power supply development condition, tests in the theoretical analysis and the electric circuit in the foundation, developed one kind of new communication switching power supply (alternating-current distribution module, direct current power distribution module, 4 high frequency switches rectification module and monitoring module puts in identical rack), this power source optimized the electric circuit main parameter, has designed the phase-shift pulse-duration modulation zero potential switch resonance (PS-ZVS PWM) the entire bridge converter electric circuit and take integrates the controller UC3875 chip as the core control circuit, Realized the power switching valve zero potential to clear with the approximate zero potential shuts off, develops the high efficiency (to reach 93%), the high stability (±0.5%), redundant reliable, the low electronmagetic interference high frequency switch rectification module. At the same time in the article also proposed based on MCS-51 is the core power source monitoring module and monitoring design mentality. It has guaranteed entire machine safe reliable work.

Keywords: High frequency switching power, Phase-Shifting PWM ZVS, Modules

目录

1绪论 (1)

1.1开关电源的发展及国外现状 (1)

1.2国内通信电源的发展及现状 (2)

1.3研究内容 (3)

2电路原理方案分析和选择 (5)

2.1高频开关整流模块 (5)

2.2直流配电模块 (8)

2.3监控模块 (9)

3主要电路设计 (12)

3.1高频开关整流模块主电路的设计 (12)

结论 (17)

致谢 (18)

参考文献 (19)

1 绪论

1.1开关电源的发展及国外现状

开关电源就是用通过电路控制开关管进行高速的导通与截止.将直流电变为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压的电源。通信设备发生故障时,可能会影响部分用户或使接通率下降。而电源发生故障时,将会造成通信全部中断,所以人们一直将电源视为整个通信系统的心脏,受到足够的重视。通信电源分为一次电源和二次电源两大类,一次电源将交流电转换成稳定的直流电接入通信设备,二次电源一般位于通信设备内部,将一次电源的直流电转换成多种电压值的稳定直流电以供通信设备内部各部分使用。自1957 年第一只可控硅(SCR)问世后,可控硅取代了笨重而且效率低下的硒或氧化亚铜整流器件,可控硅整流器就作为通信设备的一次电源使用。在随后的20年内,由于半导体工艺的进步,可控硅的电压、电流额定值及其它特性参数得到了不断提高和改进,满足了通信设备不断发展的需要,因此,直到70年代,发达国家还一直将可控硅整流器作为大多数通信设备的一次电源使用。虽然可控硅整流器工作稳定,能满足通信设备的要求,但其是相控电源,工作于工频,有庞大笨重的电源变压器、电感线圈、滤波电容,噪声大,效率低,功率因数低,稳压精度也较低。因此,自1947年肖克莱发明晶体管,并在随后的几年内对晶体管的质量和性能不断完善提高后,人们就着力研究利用晶体管进行高频变换的方案。1955年美国罗耶(GH·Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换电路的开始,1957年美国查赛(J. J. Jen Sen.)又发明了自激式推挽双变压器变换器电路。在此基础上,1964 年,美国科学家提出了取消工频变压器的串联开关电源的设想,并在NEC杂志上发表了“脉宽调制应用于电源小型化”等文章,为使电源实现体积和重量的大幅下降提供了一条根本途径。随着大功率硅晶体管的耐压提高和二极管反向恢复时间的缩短等元器件性能的改善,1969年终于做成了25KHz的开关电源。电源界把开关电源的频率提高到 20KHz 以上称为电源技术的“20KHz 革命”。开关电源技术的这一新的发展,在世界上引起了强烈的反响和重视,开关电源的研究成了国际会议的热门话题。经过几年的努力,从开关电源的电路拓扑型式到与其相配套的元器件等研究都取得了相当大的进展。

随着通信用开关电源技术的广泛应用和不断深入,实际工作中人们对开关电源提出了更高的要求,提出了应用技术的高频化、硬件结构的模块化、软件控制的数字化、产品性能的绿色化、新一代电源的技术含量大大提高,使之更加可靠、稳定、高效、小型、安全。在高频化方面,为提高开关频率并克服一般的PWM和准谐振、多谐振变换器的缺点,又开发了相移脉宽调制零电压开关(PS PWM ZVS,Phase Shift Pulse Width Modulation Zero V oltage Switch)(零电流)谐振变换器,这种电路克服了 PWM 方式硬开关造成的较大的开关损耗的缺点,又实现了恒频工作,克服了准谐振和多谐振变换器工作频率变化及电压、电流幅度大的缺点。采用这种工作原理,大大减小了开关管的损耗,不但提高了效率也提高了工作频率,减小了体积,更重要的是降低了变换电路对分布参数的敏感性,拓宽了开关器件的安全工作区,在一定程度上降低了对器件的要求,从而显著提高了开关电源的可靠性。

1.2 国内通信电源的发展及现状

早期,科研技术人员开发了以国产大功率电动发电机组为主的成套设备作为通信电源。在引进原民主德国FGD系列和前苏联BCC51系列自动化硒整流器基础上,借鉴国外先进技术,与工厂共同研制成功国产XZL系列自动化硒整流器,并在武汉通信电源厂批量生产,开始用硒整流器装备通信局(站),替换原有的电动发电机组,这标志着我国国产通信电源设备跃到一个新的水平。我国80年代开始生产20KHz DC/DC变换器,但由于受元器件性能的影响,质量很不稳定,无法作为通信设备的一次电源使用。只是作为通信设备的二次电源使用(二次电源对元器件的耐压及电流要求较低)。直到上世纪90年代初,我国大多数通信设备所用的一次电源仍然是可控硅整流器。这种电源工作于工频50Hz,有庞大的工频变压器、电感线圈、电解电容等,笨重庞大、效率低、噪声大、性能指标低,不易实现集中监控。由于通信事业发展的需要,八十年代后期,邮电部加强了通信电源技术发展的各项工作,制订了“通信基础电源系统设备系列暂行规定”,“通信局(站)电源系统总技术要求”和电源设备行业标准等文件,多次派代表参加国际电信能源会议,并在八十年代后期才第一批引进了澳大利亚生产的48V/50A(开关频率为40KHz)和48V/100A(开关频率为

20KHz)的高频开关电源,在吸收国外先进技术的基础上,投入较大的力量,开始研制自己的开关电源。邮电部武汉电源厂、通信仪表厂等厂家开发出了自己的以PWM

方式工作的开关电源,并推向电信行业应用,取得了较好的效果。随后邮电部对电源

提出了更新换代和实现监控(包括监控)的要求,众多厂家都投入力量研制开发,推出了采用PWM技术的高频开关电源,有些厂家还推出了实现远程监控的解决方案,短短几年后,电信部门所用的一次通信电源几乎都更换成了采用PWM集成控制芯片、大功率晶体管、功率场效应管、绝缘栅双极晶体管的半桥或全桥电路,其开关频率为几十至100KHZ、效率高于90%、功率因数接近1、稳压精度优于0.5%、模块化组合的高频开关电源,电信行业成套电源技术提高到了一个崭新的水平。最近几年来,为了提高开关电源的可靠性,进一步提高转换效率,提高工作频率,减小体积,并降低电磁干扰,在吸收国外最新进展的基础上,开始了准谐振、多谐振开关变换器和相移脉宽调制零电压(零电流)谐振变换器的研究实验工作。尤其是由于后者具有较多的优点,受到了大家的重视,投入了较多的研究力量,取得了一些进展,提高了效率、可靠性,降低了电磁干扰,并已有少量应用,但总的来说仍处于研究探索阶段。从整体性能看,我国通信电源设备与国外同类产品相比存在一定的差距。主要差距在工作的可靠性、稳定性和技术性能等方面。因此,组织力量研制开发具有自主知识产权、技术含量高的新一代通信电源,对振兴民族工业,提高产品的质量和市场竞争力,提高开发队伍的研究水平都具有重要意义。

1.3 研究内容

HE型程控交换机系列(备用)电源采用可控硅整流技术,将交、直流屏组合到一个机架内成为组合电源,主要在乡镇邮电局程控机房使用。后根据邮电部对通信电源更新换代的要求,于1997年,HE-48型高频开关电源又研制成功,这种电源主要用于乡镇程控交换机房。采用PWM脉宽调制高频开关变换技术,开关频率为50KHz,取消了庞大的工频电源变压器,电感和电容的尺寸也大为减小,交直流屏、整流器和监控部分都实现了模块化,并置于同一机架内(图1.1)。

监控模块以单片机为核心,可监控交、直流屏及多个整流模块的工作参数,并可通过其RS232接口实现集中监控。但经过几年的运行发现,整流模块的功率管发热较严重,个别模块出现故障时,发现基本都是功率管击穿烧毁。针对以上情况,我认为应该从以下方面加以改善:将原来整流模块所采用的脉宽调制(PWM)半桥式电路改为相移脉宽调制零电压开关(谐振)全桥变换器。该变换器同时具有PWM方式和准谐振、多谐振开关变换器的优点,只是在开关转换时采用谐振方式,开关转换后仍采用PWM工作方式,既实现了软开关,大大降低了开关损耗,又以恒频方式工作,避免了

准谐振、多谐振开关变换器工作频率变化及正弦波电流峰值大的缺点。经运行表明,整流模块的功率开关管发热情况显著改善,整流模块效率提高了3-4%,整机可靠性大为提高,在此基础上研制了新型高频开关电源。主要研究内容为:

①新型高频开关电源整机由4个48V/25A高频开关整流模块、交流配电模块、直流配电模块、监控模块组成,置于同一机柜内。具有多路直流稳压输出,可分别给程控交换机、光端机等通信设备供电。由于该电源全自动化工作,又具有集中监控功能。

②48V/25A相移脉宽调制零电压(零电流)谐振全桥变换器电路和以集成相移脉宽调制控制器为核心的控制电路。经反复实验优化主要电路参数,使高频开关整流模块稳定可靠工作,转换效率达93%,稳压精度达±0.5%。

③以MCS-51单片机电路为核心的监控模块,实现对交、直流屏,多个高频开关整流模块的监控,并可通过互联网实现县邮电局对各个县镇邮局电源的集中监控,实现遥信、遥测、遥控三遥功能。

图1.1开关电源整机框图

2 电路原理方案分析和选择

程控交换机等通信设备一旦安装开通,就长期连续工作,不能间断,因此要求通

信电源第一应具有高效率、高可靠性,并能长期连续稳定工作,第二应实现全自动化,无需工作人员直接操作,第三应具有监控和三遥(遥测、遥信、遥控)功能。为了减小整机体积和重量,并增加备份,方便扩容,电表单元、交流配电模块、高频开关整流模块、直流配电模块、监控模块等部分置于同一机框内。根据电源容量需要,装入适当块数的高频开关整流模块,随着交换机容量的扩大,还可陆续增加整流模块,以满足通信设备的需要。

2.1 高频开关整流模块

由于该电源的高频开关整流模块的输出既对通信设备供电也同时给额定电压为

48蓄电池组充电,因此其最高输出电压可达56.4V 定输出电流为25A ,其输出的最大功率为56.4251410A W ?=,属于中等功率,鉴于此,可采用单相交流电对其供电。

开关电源采用常规的PWM 方式工作,在开关转换期间,功率器件上会同时承受

高电压和大电流,造成转换时功率损耗较大,有时功率器件发热严重,影响可靠性,而且随着工作频率的提高,这种现象更为严重。为了减少开关损耗,提高工作频率并增加可靠性,人们在PWM 硬开关的基础上提出几种软开关电路拓扑,主要有准谐振开关变换器(QRC ),多谐振开关变换器(MRC )以及相移脉宽调制零电压(零电流)谐振变换器。准谐振变换器和多谐振变换器优点是工作在谐振状态,实现了软开关,大大降低了开关损耗,而且可以吸收电路的寄生参数(不在乎电路的寄生参数存在),几乎不产生电磁干扰。缺点是输出同样功率时,与PWM 方式相比,其正弦波电流峰值较大,对开关器件要求较高,此外其正弦波较高的峰值电流引起的正向导通损耗增大,在一定程度上又抵消了一些降低开关损耗的好处,而且工作频率随输入电压和负载变化有一定的变化范围,不便设计输出滤波电路的参数。相移脉宽调制零电压开关(谐振)变换器仍采用PWM 工作方式,只在开关转换时采用谐振方式,这样既克服了PWM 方式硬开关造成的较大开关损耗问题,又实现了恒频工作,避免了准谐振和多谐振开关变换器工作频率变化及正弦波电流峰值大的缺点。

相移脉宽调制零电压开关(谐振)变换器必须用全桥电路实现,其原理电路如图

2.1 所示。

图2.1相移脉宽调制零电压开关(谐振)变换器原理框图

从电路形式上看,它与常规的PWM全桥变换器电路完全相同。PWM变换器采用两个对角开关器件同时驱动导通,将输入电压交错加到高频变压器的初级,并用改变占空比即导通时间的方法实现调整。而在相移PWM电路中,四个开关管连续工作在约50%(略小于50%)的固定占空比上,然后控制左右两个半桥支路之间的相位关系,通过改变输出脉冲的宽度进行调整,当对角开关管同时导通时才输出功率。当接于电源正端的上部开关管(V1、V3)或接于负端的下部开关管(V2、V4)同时导通时,变压器初级实质上被短路,并被钳位于相应的输入电源母线端。由变压器漏感维持电流,创造了实现谐振转换的条件。因此,相移脉宽调制全桥电路同时具有脉宽调制电路和谐振电路的优点,选用此种电路,不但电路简单,而且容易获得较高的技术性能,也可显著提高开关变换器的可靠性。

功率器件主要有双极型晶体管(GTR),功率场效应管(MOSFET)和绝缘栅双极型晶体管(IGBT)等。作为开关功率器件,双极型晶体管因出现的早,过去用的较多,价格较低,饱和压降较小,但这种管子的输入是电流驱动,基极驱动功率较大,驱动电路也较复杂,而且这种器件由饱和状态到关断状态时,由于要将过量的少数载流子从基区除去,所以有一个过渡的存储时间(一般常达几个μs),只有经过此段存储时间以后,器件才开始关断,集电极上才可以承受电压。因此限制了该种器件的工

作频率不可能很高,如果要提高工作频率,就要采用抗饱和电路,则增加了电路的复杂性,而且工作频率提高也很有限,另外,在器件的额定工作范围内会产生二次击穿现象,安全工作区窄,器件并联使用时,均流比较麻烦。场效应管是电压驱动器件,输入阻抗很高,几乎不需要驱动功率,大大减化了驱动电路,有时可由CMOS电路和集成电路直接驱动,该种器件不像双极型晶体管有少数载流子储存在基区电荷中,而是多数载流子器件,它不存在存储效应,没有存储时间,高的开关速度使器件在高频下可有效工作,提高了开关电源的工作频率。这种器件不存在二次击穿现象,它的安全工作区范围宽,由电压、电流的额定值和功率负荷所决定。场效应功率管和双极型功率管安全工作区的比较如图 2.2所示,

从图中可看出,在额定电压电流相同情况下,场效应管的安全工作区明显较大。由于该种器件的漏源导通电阻RDS(ON)具有正温度系数,当温度升高时,RDS(ON)增大,当器件并联应用时,有自动均流作用,均流电路可以非常简单。该种器件的缺点是导通压降较大,而且对静电感应敏感,需要适当的静电放电保护措施。绝缘栅双极型晶体管(IGBT)是新出现的一种器件,是由场效应管和双极型晶体管组合而成,其输入电路如同场效应管,输出电路如同双极型晶体管,因此其输入阻抗高、输出阻抗低、饱和压降小,具有双极型晶体管和场效应管所具有的一些优点,而且耐压高,额定电流大,但其开关输出脉冲的后沿有一个1μs长的拖尾电流,工作频率不能做的太高,而且价格较贵,通常认为,在中、小功率范围内,采用场效应管是适宜的,其开关频率很高,可以减少整个电源的体积、重量和成本,驱动可以采用简单的脉冲变压器,通过管子并联的方案可解决其容量不足问题,其耐压值较低适合单相输入的情况。绝缘栅晶体管输出容量大、耐压高、饱和压降小,是大功率开关电源的首选器件。综上所述,考虑到属于中小功率范围,采用单相交流电供电,全桥变换电路,对功率器件耐压和额定电流要求较低,并且应尽量使电路简化,工作可靠,尽可能提高工作频率,使体积缩小,重量减轻,我们选择了VMOS场效应管。

由于功率转换电路工作在较高频率,接在高频变压器后的整流二极管也工作在较高频率,整流二极管也需用高频大功率管。大功率高频整流二极管工作在高频状态,应使用具有低的正向压降,小的反向电流,低的反向恢复时间和软恢复特性,同时具有足够的耐压,较高的浪涌能力的整流二极管。肖特基二极管的正向压降很低,其它方面的性能也比较好,但其耐压较低(50V),在本电源中无法使用,因此选用具有软

恢复特性的快恢复二极管,以减小电源所产生的噪声。高频变压器是变换器电路的关键部件之一,由于功率器件性能的改善以及软开关技术等的采用使得开关器件损耗大为降低,因此,降低高频变压器的损耗已成为提高开关电源效率的重要因素。硅(硒)钢片磁感应强度虽然很高,但在高频下损耗大不能使用。铁氧体磁性材料电阻率高、高频损耗小,但它的饱和磁感应强度太低,所以使用时,需要较大的磁芯面积,且具有易碎性,制造大型磁芯有一定难度。非晶态合金是近年来发展起来的新材料,其磁感应强度高,电阻率大,对涡流阻力大,矫顽力小,损耗低,但以U 型供货的磁芯磁感应强度大大降低,而以环形供货的磁芯绕制线圈比较困难,并且尺寸不够大,要满足较大容量的开关电源需求还有待进一步解决。鉴于以上分析,我们选用E 型铁氧体磁芯绕制高频变压器,考虑到工作频率较高,为减小趋肤效应的影响,采用铜箔绕制。

电压)

图2.2 IRF306功率MOSFET 和2N6545双极型功率管安全工作区的比较

2.2 直流配电模块

该部分将4块高频开关整流模块的输出汇合后分成两路,一路直接给蓄电池充

电,另一路经电压调整后输出,给程控交换机等通信设备供电(图2.3)。如果市电中断,蓄电池能自动对通信设备供电,若停电时间过长,蓄电池电压降至44V 时,检测控制电路立即将蓄电池的供电电路自动切断,防止蓄电池过放,以保护蓄电池。该部分还应将充电电压、总电流、输出电压、电流转换成相应的直流信号,供监控模块检测。

直流

输出

图2.3直流配电模块原理框图

2.3 监控模块

监控模块的功能应为:

①检测4只高频开关整流模块,交流配电模块以及直流配电模块的电压、电流等参数并显示某些重要参数。

②通过对整流模块工作状态的检测,判断其工作状态是否正常,当工作不正常,而整流模块的本身控制保护电路又没有动作时,监控模块可使其自动停止工作,并产生声光报警信号,实现双重保护,以保证电路安全;通过对交流电压的测量,在其电压过高或过低时也使整流模块自动停止工作,当市电电压恢复正常时,又能使整流模块自动开始工作。当市电停电时间较长,蓄电池出现欠压时,可自动切断其供电,防止蓄电池过放,当市电来电,蓄电池电压上升后,又可自动恢复供电。

③还应具有本地监控功能。本地监控时通过其RS232串行接口和本地计算机相连实现;当电源的某部分出现故障时,监控模块的面板上会点亮相应的指示灯,并主动将故障情况报告给本地监控计算机,计算机可以巡检并显示电源各部分的电压值、电流值、运行状态和故障内容,也可实现对电源的开机、关机、浮充/均充等工作状态转换和异常情况告警。为完成上述功能,监控模块的电路以单片计算机80C31为核心,扩展输入、输出I/O接口和A/D转换,液晶显示等外围电路,由于要检测的模拟量多达20多个,因此采用具有多路输入的ADC0809 进行模/数转换。由于农村乡镇的工作环境恶劣,供电情况也差,为保证可靠工作,在硬件和软件方面都应采取措

施, 增强抗干扰能力。监控模块的电路方框图如图2.4所示。 整机系统组成电原理框图如图2.5所示。单相交流电接入交流配电模块,经分配后,给4只高频开关整流模块提供单相交流电,高频开关整流模块将交流电转换成电压稳定的直流电,接入直流配电模块汇总后,给蓄电池充电,并时对程控交换机等通信设备供电。监控模块对整机各部分进行检测,执行控制、保护、告警及显示等项功能。并可通过RS232接口与本地进行通信,实现集中监控。

图2.4 监控模块电路方框图 单片机监控模块

整流模块1

整流模块

交流

配电

单元直流配电单元

本地PC机RS232

图2.5 整机组成原理框图

由于采用VMOS场效应功率管,其工作频率可以很高,但随着工作频率的提高,虽然变压器及滤波元器件尺寸将缩小,而磁芯损耗和开关损耗却都会增大。综合考虑所使用的功率开关管的性能、变压器及滤波元件的尺寸大小,磁芯损耗和开关损耗,确定开关频率为50KHz。

3 主要电路设计

3.1高频开关整流模块主电路的设计

根据开关电源对高频开关整流模块的技术要求及相应的电路方案选择,高频开关整流模块采用如下的原理电路图(图 3.1):

L1

图3.1高频开关整流模块主电路原理电路图

相移脉宽调制零电压开关(谐振)全桥变换器的工作原理如图3.2的电路图和波形图所示。如前所述,虽然在形式上它与常规的PWM全桥变换器电路相同,但开关管的驱动和工作方法是完全不同的。实际上,每个半桥支路上的开关管(左支路 V1、V2,或右支路V3、V4)的驱动波形的占空比略小于50%,存在一定的死区时间(即延迟时间),设置延迟时间既是为了防止桥路直通造成电源短路,也是实施谐振的必要时间。图3.2(a)中所示的开关管都是由理想的MOSFET管、结电容、本体二极管组成,相移谐振工作是利用开关管内部的结电容和本体二极管来进行工作的。

在to时刻之前,假定开关管V1、V4导通,流过变压器初级的电流将功率传

的反射作用,继续流动,V4管递给负载。在to时刻,V4管关断,由于输出电感L

o

已关断,流V3管的结电容,使C4电荷增加,C3上电荷减小,节点B的电压谐振

导通并钳位,直到V3

上升,直到t1时刻,V3管的本体二极管 VD3正向偏置,VD

3

导通,这样就实现了V3管的零电压导通。t2时刻为V4管、V3管之间转换,右支路

的死区时间的结束,此时电流继续流过V1、V3,但没有电压加到变压器初级绕组。

(a)

(b) (c)

图 3.2相移PWM全桥电路及其波形

(a)电路;(b)波形;(c)右支路开关实现零电压开关的谐振机理

右支路开关实现零电压转换的谐振机理如图3.2(C)所示。随后,V1管关断,在桥路的左支路死区时间内,节点A的电压谐振下降,直到V2管的本体二极管呈正向偏置,这样V2管也能在零电压下实现无损耗开通,其作用机理与右支路类似。虽然转换机理类似,但二者区别较大,在右支路V3、V4管转换前,变压器中流动着负载电流,输出滤波电感折合到初级,该电流使节点B的电压迅速升高,而左支路V1、V2管转换时,只有变压器的励磁电流和漏感起作用,因此,左支路比右支路转换需要较长的死区时间。在设计和调整电路时应充分注意这一问题。

由于检测和控制的参量较多,其中需检测的模拟量为22个,开关量为2个,要控制的开关输出量为48个,因此,在电路设计上,以单片机80C31为核心,使用部分P2口线和译码器扩展了数量较多的模拟输入接口和数字输入/输出接口以及键盘输入接口、液晶显示接口等。电路原理框图如图 3.6 所示,只读存储器 27256(32K ×8)存储程序,静态随机存储芯片62256存储检测的数据,3只8通道、8 位A/D 转换器ADC0809对4个整流模块的输出电压、电流、蓄电池充电电压、电流、整机输出电压、电流、输放电压等22个模拟量进行 A/D 转换,转换后的数字量由P0口输入。80C31接收到检测数据后,一方面驱动LCD分屏幕进行显示,另一方面与额定值进行比较,判断整流模块的输出电压是否正常,蓄电池是否欠压,交流输入电压是否过压、欠压、缺相,若出现异常,立即发命令关断相关整流模块,或让蓄电池停止供电,并点亮(送出5V信号)相应告警发光管,驱动蜂鸣器发声告警。若情况恢复正常,稍微延迟后,80C31将(去掉5V信号)取消声光告警,并开通相应的整流模块。均充/浮充转换由键盘输入命令,80C31 先将整流模块关断,再进行转换,转换后再将整流模块开通。

液晶显示选用大屏幕高分辨率的汉字液晶显示模块PDA240×160,该模块采用先进的SED1335控制器,字符和汉字显示清楚,可分屏幕实时显示电源各部分的工作参数。键盘采用小型3×3触摸键盘,操作人员可输入命令进行开、关整流模块,均充/浮充转换,并可进行翻屏显示。其主程序流程图如图3.4所示。

为增强抗干扰能力在电路和软件设计时采取了以下措施:

①在80C31的RESET端加上自动复位电路(看门狗),当由于强干扰出现死机或程序飞时可自动复位、重新启动工作。

②在印刷板设计时,采用数字、模拟地线分别与电源端地线相连,并在印刷电路的各个关键部位配置去耦电路。

图3.3监控模块电路框图

图3.4主程序流程图

高频开关电源的设计与实现资料

电力电子技术课程设计报告 题目高频开关稳压电源 专业电气工程及其自动化 班级 学号 学生姓名 指导教师 2016年春季学期 起止时间:2016年6月25日至2016年6月27日

设计任务书11 高频开关稳压电源设计√ 一、设计任务 根据电源参数要求设计一个高频直流开关稳压电源。 二、设计条件与指标 1.电源:电压额定值220±10%,频率:50Hz; 2. 输出:稳压电源功率Po=1000W,电压Uo=50V; 开关频率:100KHz 3.电源输出保持时间td=10ms(电压从280V下降到250V); 三、设计要求 1.分析题目要求,提出2~3种电路结构,比较并确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要的 保护电路; 3.参数计算,选择主电路及保护电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.林渭勋等,《电力电子设备设计和应用手册》; 3.张占松、蔡宣三,《开关电源的原理与设计》,电子工业 出版社。

目录 一、总体设计 (1) 1.主电路的选型(方案设计) (1) 2.控制电路设计 (4) 3.总体实现框架 (4) 二、主要参数及电路设计 (5) 1.主电路参数设计 (5) 2.控制电路参数设计 (7) 3.保护电路的设计以及参数整定 (8) 4.过压和欠压保护 (8) 三、仿真验证(设计测试方案、存在的问题及解决方法) (9) 1、主电路测试 (9) 2、驱动电路测试 (10) 3、保护电路测试 (10) 四、小结 (11) 参考文献 (11)

高频开关电源的设计55400

目录 1绪论 (1) 1.1高频开关电源概述 (1) 1.2意义及其发展趋势 (2) 2高频开关电源的工作原理 (3) 2.1 高频开关电源的基本原理 (3) 2.2 高频开关变换器 (5) 2.2.1 单端反激型开关电源变换器 (5) 2.2.2 多端式变换器 (6) 2.3 控制电路 (8) 3高频开关电源主电路的设计 (9) 3.1 PWM开关变换器的设计 (9) 3.2 变换器工作原理 (10) 3.3 变换器中的开关元件及其驱动电路 (11) 3.3.1 开关器件 (11) 3.3.2 MOSFET的驱动 (11) 3.4高频变压器的设计 (13) 3.4.1 概述 (13) 3.4.2 变压器的设计步骤 (13) 3.4.3 变压器电磁干扰的抑制 (15) 3.5 整流滤波电路 (15) 3.5.1 整流电路 (15) 3.5.2 滤波电路 (16) 4 总结 (19) 参考文献 (20)

1 绪论 1.1高频开关电源概述 八十年代,国高频开关电源只在个人计算机、电视机等若干设备上得到应用。由于开关电源在重量、体积、用铜用铁及能耗等方面都比线性电源和相控电源有显著减少,而且对整机多相指标有良好影响,因此它的应用得到了推广。近年来许多领域,例如电力系统、邮电通信、军事装备、交通设施、仪器仪表、工业设备、家用电器等都越来越多应用开关电源,取得了显著效益。究其原因,是新的电子元器件、新电磁材料、新变换技术、新控制理论及新的软件(简称五新)不断地出现并应用到开关电源的缘故。五新使开关电源更上一层搂,达到了频率高、效率高、功率密度高、功率因数高、可靠性高(简称五高)。有了五高,开关电源就有更强的竞争实力,应用也更为扩大,反过来又遇到更多问题和更实际的要求。这些问题和要求可归纳为以下五个方面: (l)能否全面贯彻电磁兼容各项标准? (2)能否大规模稳定生产或快捷单件特殊生产? (3)能否组建大容量电源? (4)电气额定值能否更高(如功率因数)或更低(如输出电压)? (5)能否使外形更加小型化、外形适应使用场所要求? 这五个问题是开关电源能否在更广泛领域应用的关键,是五个挑战。(简称五挑战)把挑战看成开关电源发展的动力和机遇,一向是电源科技工作者的态度。以功率因数为例,AC-DC开关电源或其他电子仪器输入端产生功率因数下降问题,用什么办法来解决?毫无疑问,利用开关电源本身的工作原理来解决开关电源应用中产生的问题是最积极的态度。实践中,用DC-DC开关电源和有源功率因数校正的开关电源,(成本比单机增加20%):成功解决了这个问题。现在,又进一步发展成单级有功率因数校正的开关电源,(成本只增加5%);在三相升压式单开关整流器中减少谐波方法,有人采用注入六次谐波调脉宽控制,抑制住输入电流的五次谐波,解决了电流谐波畸变率小于100k的要求。

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

高频开关电源设计与应用

电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。 功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。使电源的工作特性就像一个电阻一样,而不在是容性的。 目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。C CM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MO S管。这种类型的控制方式,在小功率PFC电路中非常常见。 今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。 要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例: 已知参数: 交流电源的频率fac——50Hz 最低交流电压有效值Umin——85Vac 最高交流电压有效值Umax——265Vac 输出直流电压Udc——400VDC 输出功率Pout——600W 最差状况下满载效率η——92% 开关频率fs——65KHz 输出电压纹波峰峰值Voutp-p——10V 那么我们可以进行如下计算: 1,输出电流Iout=Pout/Udc=600/400=1.5A 2,最大输入功率Pin=Pout/η=600/0.92=652W 3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A 4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A 5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A 6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A 7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH 8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。实际的电路中,我用了1320uF,4只330uF的并联。 有了电感量、有了输入电流,我们就可以设计升压电感了! PFC电路的升压电感的磁芯,我们可以有多种选择:磁粉芯、铁氧体磁芯、开了气隙的非晶/微晶合金磁芯。这几种磁芯是各有优缺点,听我一一道来。

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5 层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该

高频开关电源设计

高频开关电源设计

目录 引言 (1) 1本文概述 (2) 1.1选题背景 (2) 1.2本课题主要特点和设计目标 (2) 1.3课题设计思路 (3) 2SABER软件 (4) 2.1SABER简介 (4) 2.2SABER仿真流程 (5) 2.3本章小结 (5) 3三相桥式全控整流器的设计 (7) 3.1工作原理 (7) 3.1.1 三相桥式全控整流电路的特点 (8) 3.2保护电路 (8) 3.2.1 过电压产生的原因 (8) 3.2.2 过压保护 (8) 3.2.3 过电流产生的原因 (10) 3.2.4 过流保护 (10) 3.3SABER仿真 (13) 3.3.1 设计规范 (13) 3.3.2 建立模型 (13) 3.3.3 仿真结果 (14) 3.3.4 结果分析 (16) 3.4本章小结 (16) 4功率因素校正技术 (16) 4.1谐波 (16) 4.1.1 谐波的危害 (16) 4.1.2 谐波补偿和功率因素校正 (17) 4.2有源功率因数校正 (17) 4.2.1 APFC技术分类 (17) 4.2.2 临界导电模式APFC的控制原理 (18) 4.2.3 功率因素校正电路的缺点及解决方法 (20) 4.3本章小结 (20) 5软开关功率变换技术 (21)

5.1软开关技术的提出 (21) 5.1.1 开关损耗的成因 (22) 5.2软开关技术 (23) 5.2.1 软开关技术的一般实现方法 (24) 5.2.2 软开关的发展历程主要分类 (26) 5.3本章小结 (26) 6双管正激变换器的设计 (27) 6.1工作原理 (27) 6.2SG3525的功能介绍以及应用 (28) 6.2.1 SG3525基本工作原理和应用特点 (29) 6.2.2 SG3525在双管正激开关电源中的应用 (29) 6.3启动电路的改进 (31) 6.4SABER仿真 (31) 6.4.1 设计步骤简介 (31) 6.4.2 设计规范 (32) 6.4.3 开环设计(功率电路设计) (32) 6.4.4 调制器设计和闭环仿真 (36) 6.5仿真结果 (39) 6.6本章小结 (39) 7BOOST变换器的设计 (40) 7.1工作原理 (40) 7.2SABER仿真 (42) 7.2.1 设计规范 (42) 7.2.2 参数设计 (42) 7.2.3 仿真结果 (43) 7.3本章小结 (44) 8系统集成调试 (45) 9结论与展望 (46) 谢辞 (47) 参考文献 (48) 附录 (49)

基于UC3875的高频开关电源的设计

引言 近年来,随着电子技术的发展,邮电通信、交通设施、仪器仪表、工业设施、家用电器等越来越多地应用开关电源,随着科学技术的不断进步,对大功率电源的需求也就越来越大。与此同时大量集成电路、超大规模集成电路等电子通信设备日益增多,要求电源的发展趋势是小型化、轻量化。通常滤波电感、电容和变压器的体积和重量比较大,因此主要是靠减少它们的体积来实现小型化、轻量化。 我们可以通过减少变压器的绕组匝数和金减小铁心尺寸来提高工作频率,但在提高开关频率的同时,开关损耗会随之增加,电路效率会严重下降。针对这些问题出现了软开关技术,它利用以谐振为主的辅助换流手段,解决了电路中的开关损耗和开关噪声问题,使开关电源能高频高效地运行,从20世纪70年代以来国内外就开始不断研究高频软开关技术,目前已比较成熟,下面以2KW的电源为例进行设计。 1.设计内容和方法 1.1主电路型式的选择 变换电路的型式主要根据负载要求和给定电源电压等技术条件进行选择。在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。 传统的全桥变换电路开关元件在电压很高或电流很大的条件下,在门极的控制下开通或关断,开关过程中电压、电流均不为零,出现重叠,导致了开关损耗。开关损耗随开关频率增加而急剧上升,使电路效率下降,阻碍了开关频率的提高。在移相控制技术的基础上,利用功率管的输出电容和输出变压器的漏电感作为谐振元件,使全桥变换器四个开关管依次在零电压下导通,实现恒频软开关。由于减少了开关过程损耗,变换效率可达80%-90%,并且不会发生开关应力过大。所以选用移相控制全桥型零电压开关脉宽调制(PSC FB ZVS-PWM)变换电路。 移相控制全桥变换电路是目前应用最为广泛的软开关电路之一,它的特点是电路简单,与传统的硬开关电路相比,并没有增加辅助开关等元件。原理如图1所示,主要由四个相同的功率管和一个高频变压器压器组成。E为输入直流电压, T1~T4 为开关管, D1~D4 为体内二极管,C1 ~C4 为开关的输出电容。以第一个桥臂为例介绍,利用变压器漏感和功率输出电容C1 谐振,漏感储能向电容 C1释放过程中,使电容上的电压逐步下降到零,体内二极管D1开通,创造了T1 的ZVS条件。

30kHz半桥高频开关电源变压器的设计

30kHz半桥高频开关电源变压器的设计 Designof30kHzHigh-frequencySMPSTransformer 在传统的高频变压器设计中,由于磁心材料的限制,其工作频率较低,一般在20kHz左右。随着电源技术的不断发展,电源系统的小型化,高频化和高功率比已成为一个永恒的研究方向和发展趋势。因此,研究使用频率更高的电源变压器是降低电源系统体积,提高电源输出功率比的关键因素。本文根据超微晶合金的优异电磁性能,通过示例介绍30kHz超微晶高频开关电源变压器的设计。 1变压器的性能指标 电路形式:半桥式开关电源变换器原理见图1: 工作频率f:30kHz 变换器输入电压Ui:DC300V 变换器输出电压U0:DC2100V 变换器输出电流Io:0.08A 整流电路:桥式整流 占空比D:1%~90% 输出效率η:≥80% 耐压:DC12kV 温升:+50℃ 工作环境条件:-55℃~+85℃ 2变压器磁心的选择与工作点确定 从变压器的性能指标要求可知,传统的薄带硅钢、铁氧体材料已很难满足变压器在频率、使用环境方面的设计要求。磁心的材料只有从坡莫合金、钴基非晶态合金和超微晶合金三种材料中来考虑,但坡莫合金、钴基非晶态价格高,约为超微晶合金的数倍,而饱和磁感应强度Bs却为超微晶合金2/3左右,且加工工艺复杂。因此,综合三种材料的性能比较(表1),选择饱和磁感应强度Bs高,温度稳定性好,价格低廉,加工方便的超微晶合金有利于变压器技术指标的实现。 表1(1)钴基非晶态合金和超微晶合金的主要磁性能比较

磁心工作点的选择往往从磁心的材料,变压器的工作状态,工作频率,输出功率,绝缘耐压等因素来考虑。超微晶合金的饱和磁感应强度Bs较高约为1.2T,在双极性开关电源变压器的设计中,磁心的最大工作磁感应强度Bm一般可取到0.6~0.7T,经特别处理的磁心,Bm可达到0.9T。在本设计中,由于工作频率、绝缘耐压、使用环境的原因,把最大工作磁感应强度Bm定在0.6T,而磁心结构则定为不切口的矩形磁心。这种结构的磁心与环形磁心相比具有线圈绕制方便、分布参数影响小、磁心窗口利用率高、散热性好、系统绝缘可靠、但电磁兼容性较差。 3变压器主要参数的计算 3.1变压器的计算功率 半桥式变换器的输出电路为桥式整流时,其开关电源变压器的计算功率为: Pt=UoIo(1+1/η)(1) 将Uo=2100V,Io=0.08A,η=80%代入式(1),可得Pt=378W。 3.2变压器的设计输出能力 变压器的设计输出能力为: Ap=(Pt·104/4BmfKWKJ)1.16(2) 式中:工作频率f为30kHz,工作磁感应强度Bm取0.6T,磁心的窗口占空系数KW取0.2,矩形磁心的电流密度(温升为50℃时)KJ取468。经计算,变压器的设计输出能力AP=0.511cm4。 3.3变压器的实际输出能力 铁基超微晶铁心及超微晶软磁合金通过省级技术鉴定 1999年10月24日,由江西省科委等机关委托主持的对江西大有科技有限公司研制的新产品DY-ON型铁基超微晶磁铁心和超微晶软磁合金通过了省级技术鉴定,获得与会专家学者的高度评价,一致认为这两项产品性能稳定,各项技术指标分别达到美国UL94-P标准和国标GBm292-89技术要求,在国内同类产品中具有特色。 非晶态(超微晶)软磁合金,是90年代世界六大高科技新型材料之一,它具有优异的特点,目前国内市场供不应求,前景广阔。 联系人:江西省宜春市东风大街62号宜春地区粮食局(336000)方华平

高频开关电源的设计与制作(论文)

高频开关电源的设计与制作(论文) 《高频开关电源的设计与制作》论文版本,是提取了重点来简单论述的。这也是在毕业设计最后学校要求进行缩减后拿去参评校级优秀毕业设计的,当然这是获奖的啦!欢迎下载 参考!高频开关电源的设计与制作洛阳理工学院电气工程与自动化系黄贝利指导老师杨文方2011摘要:开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。我们设计了以MOSFET作为功率开关器件采用脉宽调制(PWM)技术,输 出实时采样电压反馈信号,来控制输出电压变化的。本文具体介绍了其系统构成,工作原理,基本控制器结构、功能和特点。关键词:高频开关电源变换器SG3525 过流保护0. 前言随着电力电子技术的高速发展,开关电源不断向高频、高可靠、低耗、低噪声、抗干扰和模块化方向发展。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。现在迫切需要物美价廉,能满足多种不同工况要求的多规格、多品种、系列化的高质量、高性能的高频高压开关电源。虽国内已有少数厂家生产高频高压开关电源,但价格昂贵。因此设计开发价格低廉的高频高压开关电压是大势所趋,具有良好的市场。[1] [2]1. 系统设计原理及其框图开关电源采用功率半导体器件作为开关器件,通过

周期性间断工作,控制开关器件的占空比来调整输出电压。其中DC/DC变换器进行功率转换,它是开关电源的核心部分,此外还有起动、过流与过压保护、噪声滤波等电路。输出采样电路检测输出电压变化,与基准电压研比较,误差电压经过放大及脉宽调制(PWM)电路,再经过驱动电路控制功率器件的占空比,从而达到调整输出电压大小的目的。开关电源结构框图如图1所示:图1 开关电源结构框图2. 高频开关电源的电路设计2.1 电源输入滤波及桥式整流电源输 入滤波又称电磁干扰(EMI),主要用于抑制电气噪声和消除电磁干扰。经滤波后送入桥式整流电路,将其整流得到所需的300V高压直流电,然后再送入功率变换器。图2 输入滤波电路图3桥式整流电路 《高频开关电源的设计与制作》论文版本,是提取了重点来简单论述的。这也是在毕业设计最后学校要求进行缩减后拿去参评校级优秀毕业设计的,当然这是获奖的啦!欢迎下载参考! 2.2 软启动电路 软启动电路是防止在开机瞬间产生浪涌电 流对电路个器件造成损坏而设置的。图4为采用 继电器K1和限流电阻R2构成。通过限流电阻R 2来对电容器充电,为了不使该限流电阻消耗过

基于UC3875的高频开关电源的设计

基于UC3875的高频开关电源的设计 (2011-10-13 16:42) 分类:开关电源 引言 近年来,随着电子技术的发展,邮电通信、交通设施、仪器仪表、工业设施、家用电器等越来越多地应用开关电源,随着科学技术的不断进步,对大功率电源的需求也就越来越大。与此同时大量集成电路、超大规模集成电路等电子通信设备日益增多,要求电源的发展趋势是小型化、轻量化。通常滤波电感、电容和变压器的体积和重量比较大,因此主要是靠减少它们的体积来实现小型化、轻量化。 我们可以通过减少变压器的绕组匝数和金减小铁心尺寸来提高工作频率,但在提高开关频率的同时,开关损耗会随之增加,电路效率会严重下降。针对这些问题出现了软开关技术,它利用以谐振为主的辅助换流手段,解决了电路中的开关损耗和开关噪声问题,使开关电源能高频高效地运行,从20世纪70年代以来国内外就开始不断研究高频软开关技术,目前已比较成熟,下面以2KW的电源为例进行设计。 1.设计内容和方法 1.1主电路型式的选择 变换电路的型式主要根据负载要求和给定电源电压等技术条件进行选择。在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。 传统的全桥变换电路开关元件在电压很高或电流很大的条件下,在门极的控制下开通或关断,开关过程中电压、电流均不为零,出现重叠,导致了开关损耗。开关损耗随开关频率增加而急剧上升,使电路效率下降,阻碍了开关频率的提高。在移相控制技术的基础上,利用功率管的输出电容和输出变压器的漏电感作为谐振元件,使全桥变换器四个开关管依次在零电压下导通,实现恒频软开关。由于减少了开关过程损耗,变换效率可达80%-90%,并且不会发生开关应力过大。所以选用移相控制全桥型零电压开关脉宽调制(PSC FB ZVS-PWM)变换电路。 移相控制全桥变换电路是目前应用最为广泛的软开关电路之一,它的特点是电路简单,与传统的硬开关电路相比,并没有增加辅助开关等元件。原理如图1所示,主要由四个相同的功率管和一个高频变压器压器组成。E为输入直流电压,T1~T4 为开关管, D1~D4 为体内二极管,C1 ~C4 为开关的输出电容。以第一个桥臂为例介绍,利用变压器漏感和功率输出电容C1 谐振,漏感储能向电容C1释放过程中,使电容上的电压逐步下降到零,体内二极管D1开通,创造了T1 的ZVS条件。

大功率高频开关电源的设计要点

大功率高频开关电源的设计要点 摘要开关电源设计需要综合分析电力电子、电磁学、微电子技术、热力学等多门学科,具有较强的综合性。同时电源为电力设备正常运行的核心,尤其是现在资源需求与环保节能理念下,需要在原有基础上,对开关电源设计方法进行更为深入的研究。本文重点分析了大功率高频开关电源设计要点。 【关键词】大功率高频开关电源系统设计 开关电源即交互式电源,为高频化电能转换装置,可以利用不同形似架构,将一个准电压转换成用户端需要的电压或电流。大功率高频开关电源现在已经被广泛的应用到军工设备、LED照明、通讯设备、科研设备、电力设备等领域,具有功耗小、效率高的优点。在对其进行设计时,需要结合其运行原理,确定系统各环节设计要点,对各节点功能进行优化。 1 大功率高频开关电源 1.1 开关电源特点 电气设备容量持续增大,为满足实际应用需求,市场上逐渐出现更多的大功率高频开关电源,同时与传统开关电源相比,还可以有效降低对电网的影响,更符合节能环保发展

理念。另外,开关电源的高频化设计,可以进一步减小其体积大小,并可根据实际需求来灵活控制电容、电感容量,将生产成本控制到最低。因此,在对大功率高频开关电源进行设计时,需要充分发挥出其所具有的优点,便于更好的满足实际发展需求。 1.2 开关电源原理 基于线性开关,开关电源开关管工作处于开关状态,将基础降压电路作为例子进行分析,确定开关电源工作过程与所处状态。如图1所示,当开关处于闭合状态时,持续电压将会对电感LO两端产生作用,电感电流将呈直线上升趋势,可用公式表达:iL(on)=(Vin-V out)ton/L。当开关处于开通状态时,电能将被存储在电感中,来满足关断时间内对负载的输出需求,其中存储能量可用公式表示:Estored=1/2Lo (I2pk-I2min)。开关断开后,电感Lo输入端电压会降为零,电感上能量需要通过续流二极管D维持负载,整个区间内电感电流可以用公式描述:iL(off)=(V out-VD)toff/L。通过伏秒平衡来表示输出电压与输入电压关系:V out=D?Vin,其中D表示开关占空比,取值ton/T。在开关电源再次开通后,结束整个运行过程。 2 大功率高频开关电源设计要点 2.1 拓扑结构选择 开关电源功率拓扑主要负责DC/DC高频逆变的实现,

开关电源设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 引言 (1) 1设计意义及要求 (2) 1.1设计意义 (2) 1.2开关电源的组成部分 (2) 1.3开关电源的工作过程 (2) 1.4开关电源的工作方式 (3) 1.5脉宽调制器的基本原理 (3) 2方案设计 (5) 2.1设计要求 (5) 2.2方案选择 (5) 2.3整流滤波部分 (6) 2.4降压斩波电路 (7) 2.5脉宽调制电路 (8) 2.6MOSFET管的驱动电路 (9) 2.7总电路图 (11) 3主电路参数设定 (12) 3.1变压器、二极管、MOSFET管选择 (12) 3.2反馈回路的设计 (13) 3.3MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16) 附录一 (17)

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

用SG3525来设计的半桥高频开关电源

毕业论文 题目基于SG3525的半桥高频 开关电源设计 专业 班级 学生姓名 指导教师 答辩日期

学院毕业论文任务书 系:机电工程系专业:电气自动化技术班学号:姓名: 指导教师:教研室主任:

目录 第1章绪论 (1) 1.1 课题背景 (1) 1.1.1开关电源原理 (1) 一、开关电源的电路组成: (1) 二、输入电路的原理及常见电路: (2) 2、 DC输入滤波电路原理: (3) 第2章 SG3525芯片的工作原理 (4) 2.1 本章PWM控制芯片SG3525功能简介: (4) 2.1.1 SG3525引脚功能及特点简介: (4) 2.1.2 SG3525的工作原理 (6) 第3章电源系统介绍 (7) 3.1 主电路结构及其工作原理 (7) 3.2 控制电路 (8) 第4章高频变压器的设计 (9) 4.1 原副边电压比n (9) 4.2 磁芯的选取及变压器的结构 (9) 4.3 变压器初、次级匝数 (9) 4.4 确定绕组的导线线径和导线股数 (10) 结论 (10) 致谢: (13) 参考文献: (14)

第1章绪论 1.1 课题背景 随着PWM技术的不断发展和完善,开关电源具有体积小、效率高等一系列 优点,在各类电子产品中得到广泛的应用。但由于开关电源的控制电路比较复杂、输出纹波电压较高,所以开关电源的应用也受到一定的限制。 电子装置小型轻量化的关键是供电电源的小型化,因此需要尽可能地降低电源电路中的损耗。开关电源中的调整管工作于开关状态,必然存在开关损耗,而且损耗的大小随开关频率的提高而增加。另一方面,开关电源中的变压器、电抗器等磁性元件及电容元件的损耗,也随频率的提高而增加。 目前市场上开关电源中功率管多采用双极型晶体管,开关频率可达几十kHz;采用MOSFET的开关电源转换频率可达几百kHz。为提高开关频率必须 采用高速开关器件。对于兆赫以上开关频率的电源可利用谐振电路,这种工作方式称为谐振开关方式。它可以极大地提高开关速度,原理上开关损耗为零,噪声也很小,这是提高开关电源工作频率的一种方式。采用谐振开关方式的兆赫级变换器已经实用化。 开关电源的集成化与小型化已成为现实。然而,把功率开关管与控制电路都集成在同一芯片上,必须解决电隔离和热绝缘的问题。 开关电源以其高的性价比得到了广泛的应用。开关电源的电路拓扑结构很多, 常用的电路拓扑有推挽、全桥、半桥、单端正激和单端反激等形式。其中, 在半桥电路中, 变压器初级在整个周期中都流过电流, 磁芯利用充分,且没有偏磁的问题,所使用的功率开关管耐压要求较低,开关管的饱和压降减少到了最小,对输入滤波电容使用电压要求也较低。由于以上诸多原因, 半桥式变换器在高频开关电源设计中得到广泛的应用。 1.1.1开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

高频开关电源的设计[1]

学校代码10126学号00812032分类号密级 本科学期论文(设计) 学院、系电子信息工程学院电子工程系 专业名称电子信息科学与技术 年级2008级 学生姓名孙哲琦 指导教师窦海峰 2010年9 月28 日

高频开关电源的设计 摘要: 通信电源是电信网的能源,其供电质量的好坏直接关系到整个电信网的畅通,本课题首先分析了近年来国内外高频通信开关电源的发展状况,在理论分析和电路实验的基础上,开发出了一种新型的高频通信开关电源(交流配电模块、直流配电模块、4只高频开关整流模块和监控模块置于同一机架内),该电源优化了电路的主要参数,设计了相移脉宽调制零电压开关谐振(PS-ZVS PWM)全桥变换器电路和以集成控制器UC3875芯片为核心的控制电路,实现了功率开关管的零电压开通和近似零电压关断,研制出高效率(达93%)、高稳定度(±0.5%)、高可靠性、低电磁干扰的高频开关整流模块。同时文中还提到了以MCS-51单片机电路为核心的的电源监控模块与监控设计思路。保证了整机能够安全可靠工作。 关键词:高频开关电源,相移脉宽调制,模块

High Frequency Switching Power Supply's Design Author: Sun zhe qi Tutor: Dou hai feng ABSTRACT: The correspondence power switch is the telecommunication network energy, its power supply quality relates directly to the entire telecommunication network unimpededness, this topic has first analyzed the recent years domestic and foreign communications switching power supply development condition, tests in the theoretical analysis and the electric circuit in the foundation, developed one kind of new communication switching power supply (alternating-current distribution module, direct current power distribution module, 4 high frequency switches rectification module and monitoring module puts in identical rack), this power source optimized the electric circuit main parameter, has designed the phase-shift pulse-duration modulation zero potential switch resonance (PS-ZVS PWM) the entire bridge converter electric circuit and take integrates the controller UC3875 chip as the core control circuit, Realized the power switching valve zero potential to clear with the approximate zero potential shuts off, develops the high efficiency (to reach 93%), the high stability (±0.5%), redundant reliable, the low electronmagetic interference high frequency switch rectification module. At the same time in the article also proposed based on MCS-51 is the core power source monitoring module and monitoring design mentality. It has guaranteed entire machine safe reliable work. Keywords: High frequency switching power, Phase-Shifting PWM ZVS, Modules

相关主题