搜档网
当前位置:搜档网 › 序列二次规划算法

序列二次规划算法

序列二次规划算法
序列二次规划算法

序列二次规划法

求解一般线性优化问题:

12min (x)

h (x)0,i E {1,...,m }s.t.(x)0,i {1,...,m }

i i f g I =∈=??

≥∈=? (1.1) 基本思想:在每次迭代中通过求解一个二次规划子问题来确定一个下降方向,通过减少价值函数来获取当前迭代点的移动步长,重复这些步骤直到得到原问题的解。

1.1等式约束优化问题的Lagrange-Newton 法

考虑等式约束优化问题

min (x)

s.t.h (x)0,E {1,...,m}

j f j =∈=

(1.2)

其中:,n f R R →:()n i h R R i E →∈都为二阶连续可微的实函数. 记1()((),...,())T m h x h x h x =. 则(1.3)的Lagrange 函数为: 1(,)()*()()*()m

T i i i L x u f x u h x f x u h x ==-=-∑

(1.3)

其中12(,,...,)T m u u u u =为拉格朗日乘子向量。

约束函数()h x 的Jacobi 矩阵为:1()()((),...,())T T m A x h x h x h x =?=??.

对(1.3)求导数,可以得到下列方程组:

(,)()A()*(,)0(,)()T x u L x u f x x u L x u L x u h x ???

???-?===????

?-????

(1.4)

现在考虑用牛顿法求解非线性方程(1.4).

(,)L x u ?的Jacobi 矩阵为:

(,)()(,)()

0T W x u A x N x u A x ??-= ?-??

(1.5)

其中2

2

1

(,)L(,)()*()m

xx i

i

i W x u x u f x u h x ==?=?-?∑是拉格朗日函数L(,)x u 关于x 的

Hessen 矩阵.

(,)N x u 也称为K-T 矩阵。对于给定的点(,)k k k z x u =,牛顿法的迭代格式为:

1k k k z z z +=+?. 其中k k (d ,v )k z ?=是线性方程组

k k k k (,)()(x )A(x )u *()0(x )k k k k T T k k d W x u A x f A x v h ??-??

-?+??= ? ? ? ?-???

???

(1.6)

的解。

注意:只要k A(x )行满秩且(,)k k W x u 是正定的,那么(1.6)的系数矩阵非奇异,且方程组有唯一解。

引理1:已知矩阵,n n

n m U R

S R ??∈∈,

则对任意满足*0T S x =的非零向量x 都有0T

x Ux >的充要条件是存在常数*0σ>,使得对任意的*

σσ≥都有

*(U *S*S )0,0T T n x x x R σ+>?≠∈.

证明略。

鉴于方程组(1.6)的求解数值不稳定,故考虑将它转化成一个严格凸二次规划问题.转化的条件是(1.4)的解点*

x 处的最优性二阶充分条件成立,即对满足*()*0T

A x d =的任一向

量0d ≠,成立**

*(,)*0T d W x u d >。

再由引理1知:当0τ>充分小时,1

(*,*)(*)(*)2T W x u A x A x τ

+

正定。 考虑(1.6)中的(,)k k W x u 用一个正定矩阵来代替,记

1

(,)(,)()()2k T k k k k k B x u W x u A x A x τ

=+

则当**(,)(,)k k x u x u →时,矩阵*

*

B(,)x u 正定。

(1.6)的第一个展开式为

k (,)*d (x )*(x )(x )*T T k k k k k k k W x u A v f A u -=-?+

将上式变形为:

k 11[(,)()()]*d (x )*[()](x )22k k T T k k k k k k k k W x u A x A x A v u A x d f ττ

+

-++=-? 令~

1:()2k T k k k k u v u A x d τ

=++后得:~k (,)*d (x )*(x )T

k k k k k B x u A u f -=-?. 因此,(1.6)等价于

k ~k (x )(,)()*()0(x )k k k k T k k d f B x u A x A x h u ?????-??

?=- ? ? ? ???????

(1.7)

进一步,可以把方程(1.7)转换成如下严格凸二次规划:

k k k k k 1

min (d)(x ,u )d f(x )2

..(x )A(x )d 0

T T k q d B d

s t h =+?+=

(1.8)

方程(1.7)和(1.8)具有同解的。

1.2一般形式的约束优化问题

将1.1节中构造二次规划子问题求解等式约束优化问题的思想推广到一般形式的约束优化问题(1.5)。在给定点k k (x ,u ,)k k z λ=后,将约束函数线性化,并对拉格朗日函数进行二次多项式近似,得到下列二次规划子问题:

k k k k k k k 1

min (x ,u )d f(x )2

(x )(x )d 0,i E ..(x )(x )d 0,i T T T

i i T

i i d W d

h h s t g g I

+??+?=∈??+?=∈??

(1.9)

其中2

12k k k k k k {1,...,m },I {1,...m },W W(x ,u ,)(x ,u ,)k xx E L λλ====?,

拉格朗日函数为12

1

1

(,)()*()*g ()m m i i i i i i L x u f x u h x x λ===--∑∑.

于是,迭代点k x 的校正步k d 以及新的拉格朗日乘子估计量11,k k u λ++可以分别定义为问题

的一个K-T 点*x 和相应的拉格朗日乘子向量*,*u λ。

定理1:给定约束优化问题(1.1)的最优解*d 和相应的拉格朗日乘子*,*0u λ≥.假定在*x 处,下面的条件成立:

(1) 有效约束的Jacobi 矩阵(x*)S J 行满秩,其中(*)E (*)S x I x = ;

(2) 严格互补松弛条件成立,即******(x )0,0,(x )0,(x )0;i i i i i i g g g λλλ≥≥=+>

(3) 二阶最优性充分条件成立,即对满足*()*0T

A x d =的任一向量0d ≠,成立

****(,,)*0T d W x u d λ>.

那么若k k k (x ,u ,)λ充分靠近***(x ,u ,)λ,则二次规划问题(1.9)存在一个局部极小点*

d ,使得其对应的有效约束指标集*

()S d 与原问题在*

x 处的有效指标集*

()S x 是相同的。

注意:在构造二次规划子问题时,需要计算拉格朗日函数在迭代点k x 处的Hessen 矩阵,计算量过大。为了克服这个缺陷,韩世平基于牛顿-拉格朗日法提出了一种利用对称正定矩阵k B 来代替拉格朗日矩阵k W 的序列二次规划法。

对于一般约束优化问题(1.1),在迭代点k k k k z (x ,u ,)λ=,构造下列形式的二次规划子问题:

k k k k k k k 1

min (x ,u )d f(x )2

(x )(x )d 0,i E ..(x )(x )d 0,i T T T

i i T

i i d B d

h h s t g g I

+??+?=∈??+?=∈?? (1.10)

并且用(1.10)的解k d 作为原问题变量x 在第k 次迭代过程中的搜索方向。其中k d 有一个好的性质是它许多罚函数(价值函数)的下降方向。例如,对于L1精确罚函数:

1

(x,)f(x)[|h (x)||[g (x)]_|]i i i E

i I

P σσ

∈∈=+

+∑∑

其中0σ>为罚参数,g (x)]_max{0,g (x)}i i =-。

为了保证SQR 方法的全局收敛性,通常借助价值函数来确定搜索步长。用来衡量一维

搜索的好坏。

算法(一般约束优化问题的SQP 方法) Step0:

给定初始点12000(,u ,)R R R ,m

m

n

x λ∈??对称正定矩阵0n B R ∈.

计算

0(x )E

T

A h =?,0

0(x )I T

A g =?,000E I A A A ??

=?????

?.

选择参数1(0,),(0,1),2

ηρ∈∈容许误差120,1,εε 令:0.k =

Step 1: 求解子问题(1.10)得最优解k d .

Step 2: 若k 11||d ||ε≤且k 1k 12||||||()_||h g ε+≤,stop,得到(1.1)的一个近似KT 点,,k k k x u λ()

. Step 3: 对于某种价值函数(,)x σΦ,选择罚参数k σ,使得k d 是该函数在k x 处的下降方向。 Step 4: Armijo 搜索. 令k m 是使下列不等式成立的最小非负整数m :

m m 'k k k k k k k k (d ,)(,)(,;d ),x x x ρσσηρσΦ+-Φ≤Φ

令k

m 1:,:.k k k k k a x x a d ρ+==+

Step5:

计算

11

11

111(),(),E k E

T

I T

k k k k k I k A A

h x A

h x A A +++++++??

=?=?=??????

以及最小二乘乘子

1

111111k T k k k k k u A A A f λ-++++++????=???????

Step 6: 校正矩阵k B 为1k B +.令

11111,(,,)(,,)k k k k x k k k x k k k s a d y L x u L x u λλ+++++==?-?

1T T

k k k k k k

k k T T k k k k k

B s s B z z B B s B s s z +=-+

其中

(1)B s k k k k k k z y θθ=+-

参数k θ定义为

k k k k ..........1...........,s y 0.2s 0.8s ,s y 0.2s s T

k k k

T

k T k k k

k k k T T k k k k k

B s B s B s B s s y θ?≥?

=?

利用K-T 条件,问题(1.10)等价于

1k 2k k k (,,)B (A )(A )()0,(,,)()A 0,

0,g()A 0,[g()A ]0.

E T I T

k k k E k I I k k H d u d u f x H d u h x d x d x d λλλλλ=--+?==+=≥+≥+= (1.11)

第三式是2m 维互补问题,定义光滑函数

(,,)a b a b εΦ=+ 其中0ε>为光滑参数.令

21(,,)((,,),...,(,,))T m a b a b a b εεεΦ=ΦΦ,

其中k (,,)[g ()(A )]I i i i k i a b x d ελΦ=++其中(A )I k i 表示A I

k

的第i 行.记12

(,,,)R R R R m

m n z d u ελ+=∈???,那么(1.11)问题等价

1

2(,,)(z):(,,,)0(,,)(,,)H d u H H d u H d u d ελελλελ??

??

??===????Φ??

则(z)H 的Jacobi 矩阵为

'211

000

0()()(z)000(z)0

(z)E T

I T k

k k E k I k

B A A H A v D A D ????--??=

??

????

其中21(,,)(,...,)T m v d v v εελ=?Φ=,i v 由下式确定:

i v =

而221121(z)diag((z),...,(z)),(z)diag((z),...,(z))m m D a a D b b ==,其中(z),(z)i i a b 由下式确定:

11i I i a b ==-

给定参数(0,1)γ∈,定义非负函数

(z)||(z)||min{1,||(z)||}.H H βγ=

(step 3)中选择价值函数

111

(,)()[||()||||()_||]x f x h x g x σσ

Φ=+

+

可令max{||u ||,||||}k k τλ=,g (x)_max{0,g (x)}i i =- 任意选择一个0δ>,定义罚参数的修正规则为

1

1111

1,(2),k k k k σστδστδστδ

------?≥+?=?+<+?? (step 6)因为BFGS 修正公式需要满足曲率条件,即0T

k k s y >,而k y 可能不满足这一条件,

为此有必要对k y 进行修正。

参考文献

[1]马昌凤.最优化方法及其matlab 程序设计.科学出版社.2010.

基于序列二次规划算法的再入轨迹优化研究

航 天 控 制Aer os pace Contr ol Dec 12009Vol 127,No .6 基于序列二次规划算法的再入轨迹优化研究 3 郑总准1  吴  浩2  王永骥 1 1.华中科技大学控制科学与工程系,武汉430074 2.北京航天自动控制研究所,北京100854 摘 要 介绍了序列二次规划算法在飞行器再入轨迹优化问题中的应用。首先 引入了能量替代变量对无量纲运动方程进行推导,使得运动方程和优化问题易于处理,考虑严格的过程约束和终端约束,以攻角和倾侧角为控制变量,总加热量最小为性能指标;然后通过直接配点法将最优控制问题转化为非线性规划问题,选取各节点的状态量和控制量作为优化参数;最后应用序列二次规划算法对非线性规划问题进行求解。针对多约束的再入飞行器的轨迹优化时对初值敏感的问题,提出一种参考轨迹快速规划算法,提高了优化速度。仿真结果表明提出的方法能够较快地搜索到最优轨迹,满足所有约束且落点精度高。关键词 轨迹优化;非线性规划;配点法;序列二次优化;参考轨迹中图分类号:V412 文献标识码:A 文章编号:100623242(2009)0620008206 3国家自然科学基金(60674105);教育部科研培育项目(20081383)和航天支撑基金(2008)资助 收稿日期:2008212212 作者简介:郑总准(1983-),男,福建福州人,博士研究生,研究方向为飞行器轨迹优化、制导与控制;吴 浩(1980-),男,湖北武汉人,博士,研究方向为飞行器制导与控制;王永骥(1955-),男,江西吉安人,教授,博士生导师,研究方向为网络控制、飞行器制导与控制。 Reen try Tra jectory O pti m i za ti on Usi n g Sequen ti a l Quadra ti c Programm i n g Z HE NG Z ongzhun 1  WU Hao 2  WANG Yongji 1 1.Huazhong University of Science and Technol ogy,W uhan 430074,China 2.Beijing Aer os pace Aut omati on Contr ol I nstitute,Beijing 100854,China Abstract Sequen tial quadratic programm ing for trajectory opti m iza tion of reentry vehicle is proposed . F irstly,Equations of m otion a re nor m a lized and an independen t variable is introduced to reduce the difficul 2ty of iterative co m putation .W ith the angle of a ttack and the bank ang le as control variables,the opti m al control proble m is set to m ini m ize hea t index,considering strict process and ter m inal constraints .A nd then,by choosing states and controls of discrete nodes as param eters,the opti m al control proble m is transfor m ed into a nonlinear programm ing proble m using direct colloca tion m ethod .F inally,sequential quadratic pro 2gramm ing is presented for solving the non linea r programm ing proble m.A ccord ing to the sensitivity to initial value in trajectory opti m ization for reen try vehicles w ith m ulti 2constraint,this paper develops a rapid refer 2ence trajectory prog ramm ing strategy .S i m ulation results sho w that the opti m al trajectory can consistently a 2chieve the desired target conditions w ithin allo w able tolerances and satisfy all the other constraints effectively . Key words Tra jectory opti m ization;N onlinear prog ramm ing;D irect colloca tion m ethod;Sequential ? 8?

二次规划问题

序列二次规划法 求解一般线性优化问题: 12min (x) h (x)0,i E {1,...,m }s.t.(x)0,i {1,...,m } i i f g I =∈=?? ≥∈=? (1.1) 基本思想:在每次迭代中通过求解一个二次规划子问题来确定一个下降方向,通过减少价值函数来获取当前迭代点的移动步长,重复这些步骤直到得到原问题的解。 1.1等式约束优化问题的Lagrange-Newton 法 考虑等式约束优化问题 min (x) s.t.h (x)0,E {1,...,m} j f j =∈= (1.2) 其中:,n f R R →:()n i h R R i E →∈都为二阶连续可微的实函数. 记1()((),...,())T m h x h x h x =. 则(1.3)的Lagrange 函数为: 1(,)()*()()*()m T i i i L x u f x u h x f x u h x ==-=-∑ (1.3) 其中12(,,...,)T m u u u u =为拉格朗日乘子向量。 约束函数()h x 的Jacobi 矩阵为:1()()((),...,())T T m A x h x h x h x =?=??. 对(1.3)求导数,可以得到下列方程组: (,)()A()*(,)0(,)()T x u L x u f x x u L x u L x u h x ??? ???-?===?????-???? (1.4) 现在考虑用牛顿法求解非线性方程(1.4). (,)L x u ?的Jacobi 矩阵为: (,)()(,)() 0T W x u A x N x u A x ?? -= ?-??

二次规划起作用集方法

《非线性规划》课程设计 题目:二次规划起作用集方法院系:数理学院应用数学系 专业:数学与应用数学 姓名学号:119084112 数112 指导教师: 日期:2014年6月19日

摘要 二次规划(QP)是指目标函数为决策变量x的二次函数,而约束函数是线性函数的非线性规划.二次规划规划问题是最简单的一类非线性约束优化问题,并且某些非线性规划可以转化为求解一系列二次规划问题,因此二次规划的求解方法也是求解非线性规划的基础之一. 关键词:二次规划;起作用集;乘子向量 Abstract Quadratic programming (QP) refers to the objective function for the quadratic function of the decision variables x, and the constraint function is a linear function of nonlinear programming, quadratic programming problem is the simplest nonlinear constraint optimization problems, and some nonlinear programming can be transformed into solving a series of quadratic programming problem, so the solving methods of quadratic programming is also one of the basis of solving nonlinear programming. Keywords: Quadratic programming; Work set; Multiplier vector

二次规划解法

2、对于二次规划模型求解: 问题1: 先求出ij c ,结果如下表: 330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302 370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347 385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287 420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257 410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242 415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178 435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162 由于二次规划模型中约束条件151 {0}[500,],1,2,7,ij i j X s i =∈=∑的存 在,必须加以处理。引进0-1变量15,...2,1,=i n i ,则 151{0}[500,],1,2,7,ij i j X s i =∈=∑可以等价转换为下面的三个约束条件: i j ij s X ≤∑=151 i j ij Mn X ≤∑=151 i j ij n X *500151≥∑= 其中M 为一个很大数。 这样就可以得到下面的lingo 程序: sets : s/1..7/:sx; a/1..15/:z,y,n,t; links(s,a):c,x; endsets

基于序列二次规划算法的发动机性能寻优控制

收稿日期:2004-10-24;修订日期:2005-03-07基金项目:航空科学基金资助(04C 52019) 作者简介:孙丰诚(1979-) 男 山东泰安人 南京航空航天大学能源与动力学院博士 主要从事发动机数字控制方面研究. 第20卷第5期2005年10月 航空动力学报 Journal of Aerospace Power Vol.20No.5 : :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::Oct.2005 文章编号:1000-8055(2005)05-0862-06 基于序列二次规划算法的发动机 性能寻优控制 孙丰诚 孙健国 (南京航空航天大学能源与动力学院 江苏南京210016) 摘要:提出用非线性序列二次规划(SOP Seguential Ouadratic Programming )算法解决发动机性能寻优控制问题,分析了线性规划(LP Linear Programming )算法用于发动机性能寻优的固有缺陷以及SOP 算法的优点,给出了SOP 算法与LP 算法用于最大推力模式和最小油耗模式仿真结果对比曲线,数字仿真实验的结果表明 SOP 算法具有比LP 算法更好的优化效果 在工程实际中有很大的应用潜力,关 键 词:航空~航天推进系统;序列二次规划;线性规划;涡扇发动机;性能优化;最大推力模式; 最小油耗模式 中图分类号:V 231 文献标识码:A Aero -Engine Perf ormance Seeking control Based on Seguential Ouadratic Programming Algorithm SUN Feng -cheng SUN Jian -guo (College of energy and Power engineering Nanjing University of Aeronautics and Astronautics Beijing 210016 China )Abstract :A methodology based on the nonlinear algorithm of Seguential Ouadratic Programming (SOP )in aero -engine performance seeking control was presented .This article is aimed at analyzing the inherent limitation of Linear Programming used for aero -engine performance seeking control and to solve the problem of aero -engine performance optimization using nonlinear SOP method .The results of numerical simulations of maximum thrust mode and minimum fuel consumption mode using SOP and LP respectively show that SOP algorithm has better optimization result than LP algorithm .SOP algorithm has great application potential in engineering . Ke !words :aerospace propulsion system ; Seguential Ouadratic Programming (SOP )algorithm ;Linear Programming (LP )algorithm ;turbofan engine ;performance optimization ;maximum thrust mode ;minimum fuel consumption mode 推进系统性能优化是飞"推综合控制#1$ 研究 中非常重要的一个方面 系统性能优化可以在保 证发动机安全稳定工作的同时 最大限度地提高发动机的工作潜力,在不同飞行任务段 有不同的

求解二次规划问题的拉格朗日及有效集方法

求解二次规划问题的拉格朗日及有效集方法 ——最优化方法课程实验报告 学院:数学与统计学院 班级:硕2041班 姓名:王彭 学号:3112054028 指导教师:阮小娥 同组人:钱东东

求解二次规划问题的拉格朗日及有效集方法 求解二次规划问题的拉格朗日 及有效集方法 摘要 二次规划师非线性优化中的一种特殊情形,它的目标函数是二次实函数,约束函数都是线性函数。由于二次规划比较简单,便于求解(仅次于线性规划),并且一些非线性优化问题可以转化为求解一些列的二次规划问题,因此二次规划的求解方法较早引起人们的重视,称为求解非线性优化的一个重要途径。二次规划的算法较多,本文仅介绍求解等式约束凸二尺规划的拉格朗日方法以及求解一般约束凸二次规划的有效集方法。 关键字:二次规划,拉格朗日方法,有效集方法。 - 1 -

《最优化方法》课程实验报告 - 2 - 【目录】 摘要........................................................................................................................... - 1 -1 等式约束凸二次规划的解法............................................................................... - 3 - 1.1 问题描述.................................................................................................... - 3 - 1.2 拉格朗日方法求解等式约束二次规划问题............................................ - 3 - 1.2.1 拉格朗日方法的推导...................................................................... - 3 - 1.2.2 拉格朗日方法的应用...................................................................... - 4 - 2 一般凸二次规划问题的解法............................................................................... - 5 - 2.1 问题描述.................................................................................................... - 5 - 2.2 有效集法求解一般凸二次规划问题........................................................ - 6 - 2.2.1 有效集方法的理论推导.................................................................. - 6 - 2.2.2 有效集方法的算法步骤.................................................................. - 9 - 2.2.3 有效集方法的应用........................................................................ - 10 - 3 总结与体会......................................................................................................... - 11 - 4 附录..................................................................................................................... - 11 - 4.1 拉格朗日方法的matlab程序................................................................. - 11 - 4.2 有效集方法的Matlab程序 .................................................................... - 11 -

0-1二次规划的全局最优性条件及算法

0-1二次规划的全局最优性条件及算法 全局优化问题广泛见于工程、国防、经济等诸多重要领域,是数学规划理论的一个重要研究领域。本文首先讨论一类特殊结构的全局优化问题:二次规划的全局优化问题。我们给出了0-1二次规划的全局最优性条件,并讨论了其相应的算法。 然后,对于一般结构的全局优化问题,我们给出了一个新的无参数的填充函数方法。本论文的第一章介绍全局优化理论的一些研究成果。第二章讨论无约束0-1二次规划的全局最优性条件。 在第二节得到一个充分条件和一个必要条件的基础上,我们希望能够得到一些充要条件。为此,我们首先在第三节中给出在线性约束条件下,(?)成为一个凸的二次函数的全局极大点的充分必要条件。从这个结论出发,在第四节,我们得到了无约束0-1二次问题全局最优的充分必要条件及其等价形式。 在第五节,我们将注意力放在全局最优的必要条件上。我们得到的必要条件都不含对偶变量,仅用到原问题的数据。这样,这些条件在实际中都是可以被检验的。 进一步,为了使必要条件在实际中易被检验、易操作,我们降低了必要条件中的维数,在比原问题维数更低的空间中,给出一些简洁的必要条件,以达到方便检验的目的。在第三章,我们进一步研究有约束的0-1二次规划的全局最优条件。对于带有线性不等式约束的0-1二次问题,我们在第一节中得到了它全局最优的充分条件和必要条件。 必要条件也不含对偶变量。当系数矩阵正定时,我们建立了原0-1问题的解与松弛问题的解之间的联系。对于带有线性等式约束的0-1二次问题,我们在第

二节证明了一个带有线性等式约束的0-1二次规划问题,它的全局最优解集和其相应的罚问题的全局最优解集是相等的。 这样,带有线性等式约束的0-1二次问题的解,可以通过无约束0-1二次规划问题的解得到。第三章的另一个内容是讨论0-1二次规划问题的实际应用。将我们得到的一些结论运用于极大团问题和二次分派问题,我们得出了一些相关的结论。 将全局最优条件发展成为可实现的算法,是全局优化研究中的重要的工作。本文的第四章讨论无约束0-1二次规划问题的算法。首先我们将原0-1问题化为一个等价的半正定的0-1二次问题。 在得到这个半正定二次问题的松弛解x之后,取与x“最接近的”0-1解y,在一定的条件之下,y就是原0-1问题的全局最优解。由于松弛后的问题是凸的二次规划问题,可以在多项式时间内求解,所以,我们的算法是可实现的。为了确定y是否是原问题的最优解,我们设计了三种算法。 在研究了第二章所给。

改进求解凸二次规划中的Lemke算法.

改进求解凸二次规划中的Lemke 算法 张璐 辽宁工程技术大学理学院,辽宁阜新(123000 E-mail:zhanglu85517@https://www.sodocs.net/doc/442856316.html, 摘要:通过对经典的Lemke 互补转轴算法求解凸二次规划问题的分析,找到了Lemke 算法的局限性。本文在Lemke 算法求解线性互补问题的基础上修正了经典的Lemke 算法的迭代过程,提出了一种改进的Lemke 算法,通过算例证明了算法能有效克服解的局限性,减少了凸二次规划问题的迭代过程,提高了算法的效率。 关键词:非线性规划;凸二次规划;线性互补问题;Lemke 算法 1.引言 二次规划问题是最简单而又最基本的非线性规划问题,其目标函数是二次函数,约束是线性等式或不等式。对于二次规划问题,可行域是凸集,所以当目标函数是凸函数时,任何K-T 点都是二次规划问题的极小点。研究二次规划问题的算法不仅仅是为了解决二次规划问题本身,同时也是为了更好的求解其他非线性规划问题。因为大多数最优化方法是从二次函数模型导出的,这种类型的方法在实际中常常是有效的,其主要是因为一般函数的极小点附近常可用二次函数很好地进行近似。由于二次规划是特殊的非线性规划,因此求解非线性规划问题的方法均可用于二次规划问题的求解。同时,由于二次规划本身的特殊性,对它的求解可以采用一些更有效的方法[1]。因此,不论从数学角度还是应用角度来看,二次规划问题的研究都具有重要意义。到目前为止,已经出现了很多求解二次规划问题的算法,并且现在仍有很多学者在从事这方面的研究工作。所以,需要我们对现存的有效的求解二次规划问题的算法进行改进,得到新的求解算法来克服某些算法的缺点,并且给出具体的实例显示该算法的有效性。本文主要研究凸二次规划的求解算法,以及线性互补问题的性质等相关问题。对Lemke 算法进行进一步研究,对它可能出现退化的原因和迭代过程以及局限性进一步分析。本文通过分析经典的Lemke 互补转轴算法求解含有等式

实验3二次规划Lemke方法

实验报告实验课程名称最优化方法 实验项目名称二次规划Lemke方法 年级 专业 学生姓名 学号 理学院

学生实验室守则 一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。 二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。 三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。 四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。 五、实验中要节约水、电、气及其它消耗材料。 六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。 七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。仪器设备发生故障和损坏,应立即停止实验,并主动向指导教师报告,不得自行拆卸查看和拼装。 八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。 九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。 十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。 十一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。

求解二次规划问题的拉格朗日及有效集方法样本

求解二次规划问题的拉格朗 日及有效集方法——最优化方法课程实验报告 学院: 数学与统计学院 班级: 硕2041班 姓名: 王彭 学号: 指导教师: 阮小娥 同组人: 钱东东

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 求解二次规划问题的拉格朗日 及有效集方法 摘要 二次规划师非线性优化中的一种特殊情形, 它的目标函数是二次实函数, 约束函数都是线性函数。由于二次规划比较简单, 便于求解( 仅次于线性规划) , 而且一些非线性优化问题能够转化为求解一些列的二次规划问题, 因此二次规划的求解方法较早引起人们的重视, 称为求解非线性优化的一个重要途径。二次规划的算法较多, 本文仅介绍求解等式约束凸二尺规划的拉格朗日方法以及求解一般约束凸二次规划的有效集方法。 关键字: 二次规划, 拉格朗日方法, 有效集方法。

【目录】 摘要................................................ 错误!未定义书签。 1 等式约束凸二次规划的解法.......................... 错误!未定义书签。 1.1 问题描述.................................... 错误!未定义书签。 1.2 拉格朗日方法求解等式约束二次规划问题........ 错误!未定义书签。 1.2.1 拉格朗日方法的推导.................... 错误!未定义书签。 1.2.2 拉格朗日方法的应用.................... 错误!未定义书签。 2 一般凸二次规划问题的解法.......................... 错误!未定义书签。 2.1 问题描述.................................... 错误!未定义书签。 2.2 有效集法求解一般凸二次规划问题.............. 错误!未定义书签。 2.2.1 有效集方法的理论推导.................. 错误!未定义书签。 2.2.2 有效集方法的算法步骤.................. 错误!未定义书签。 2.2.3 有效集方法的应用...................... 错误!未定义书签。 3 总结与体会........................................ 错误!未定义书签。 4 附录.............................................. 错误!未定义书签。 4.1 拉格朗日方法的matlab程序................... 错误!未定义书签。 4.2 有效集方法的Matlab程序..................... 错误!未定义书签。

相关主题