搜档网
当前位置:搜档网 › 车架的有限元分析及优化

车架的有限元分析及优化

车架的有限元分析及优化
车架的有限元分析及优化

车架的有限元分析及优化

作者:马迅盛…文章来源:湖北汽车工业学院点击数:1687 更新时间:2008-8-5

有限元法将设计人员丰富的实践经验与计算机高速精确的计算完美地结合在一起,大大提高了设计计算精度,缩短了产品开发时间。

概念设计阶段车架的结构方案

参考某一同类型车架,考虑到车身安装和其他总成的布置,将概念设计阶段的车架大致结构拟定如下:选用框架式平行梯形车架结构,由2根左右分开的纵梁和8根横梁组成,全长6.3m,宽0.8m,轴距3.65m。各梁的大致形状尺寸及板材厚度如表1所示。

除第3、4根横梁外,其他各横梁的尺寸与参考的同类型车架几乎相同。由于参考车架的第3、4根横梁为上下两片形状复杂的钢板组合而成,无法用梁单元模拟,在概念车架中将之改用两根方型截面的等直梁代替。第1、6横梁为非等截面梁,其宽和高分别由两个尺寸表示。参考车架纵梁的前后两段和中间段的连接采用的是线性渐变的截面,在概念车架中用一等直梁来代替,等直梁的高度等于渐变梁的中间高度。纵横梁上所有的孔及连接板都不予以考虑。

车架的有限元模型

为了后续的优化设计,必须对车架进行参数化建模。选择表1中车架纵横梁的截面尺寸为模型参数,先建立左半个车架的几何模型,选用ANSYS中的二节点12自由度梁单元BEAM188号单元采用不同的梁单

元截面形式对其进行网格剖分;再将左边的几何模型和网格模型进行映射得到右边车架模型,最终合并对称面上的节点使左右车架模型“牢固的”“粘结起来”。

在ANSYS中用BEAM188单元实施网格剖分时,为了保证单元的正确方向,应事先定义该单元的方向点并检查所要剖分的线的法向。单元截面形状和偏置量需用命令SECTYPE、SECOFFSET和SECDATA设定。单元总数为312,节点总数为626。网格剖分并映射后车架模型如图1所示。图中显示出了梁单元的截面形状。

图1 车架的有限元模型

边界条件

车架刚度有多种,其中最重要的是车架的弯曲刚度和扭转刚度。参照车架的刚度试验方法确定车架弯扭刚度的边界条件。

1.弯曲工况的边界条件

计算时约束前后桥在车架纵梁上的竖直投影点的垂直位移,让车架形成一简支梁结构,并在前后支承点中点处加一垂直向下的力,让车架产生纯弯曲变形,如图2所示。

图2 车架弯曲刚度计算车架弯曲刚度计算公式为:

其中:CB,弯曲刚度(N m2);

F,集中载荷(N);

A,轴距(m);

f,载荷作用点处的挠度(m)。

图3为车架有限元模型弯曲工况边界条件示意图。

图3 车架垂直弯曲工况的边界条件

2.扭转工况的边界条件

约束前桥在车架左纵梁上的竖直投影点的垂直位移,约束后桥在车架右纵梁上的竖直投影点的垂直位移,在后桥在车架左纵梁上的竖直投影点上施加一垂直向上的载荷,让车架产生纯扭转变形,如图4所示。车架的扭转刚度计算公式为:

其中:CT,扭转刚度(N m/o);

F,载荷(N);

L,力臂(m);

h,挠度(m)

图4 车架扭转刚度计算

图5为车架有限元模型扭转工况边界条件示意图。

图5 前后扭转工况的车架边界条件

求解结果与分析

1.模态的计算结果

用Block Lanczos法提取自由振动时的前5阶固有频率,频率范围0.05~50Hz。车架的前五阶固有频率及振型见表2。相应的振型图如图6~11所示。

图6 一阶固有频率对应振型

图7 二阶固有频率对应振型

图8 三阶固有频率对应振型(俯视)

图9 三阶固有频率对应振型(全视图)

图10 四阶固有频率对应振型

图11 五阶固有频率对应振型

2.弯扭刚度计算结果

在F=1 000N时车架弯曲工况载荷作用点处的挠度为0.4595mm;在F=1 000N时车架扭转工况载荷作用点处的挠度为13.94mm。带入公式①、②中计算得:弯曲刚度为2.2×106N m2,扭转刚度为667.2N m/°。

3.结果分析

该概念车架和其他车架动静刚度的比较如表3所示:

经对比,概念车架的固有频率明显高于其他同类车架。分析车架振型发现:该车架第二横梁和第三横梁之间是薄弱环节,在第三阶固有频率和第五阶固有频率下都会发生明显的局部振动。但在整车中该区域会安装发动机和驾驶室,它们对车架刚度都有显著影响,特别是发动机。当发动机与车架的连接刚度较大且采用四点支撑时,会显著的提高该区域的车架(整体)刚度,尤其是扭转刚度,因而该概念车架的这一不足可以得到部分弥补。

对比参考车架的弯扭刚度,概念车架的值也偏高。

优化设计

取纵、横梁截面的长、宽和高共20个尺寸作为设计变量。以车架总体积最小为目标函数对该车架进行弯曲、扭转刚度和一阶扭转频率等综合性能方面的优化。分别选取车架的弯曲、扭转刚度及一阶扭转频率值为状态变量。优化时,参考同类车架,将概念车架的动静刚度适当的扩大,取弯曲工况下力的作用点最大位移不超过0.6mm,扭转工况的力的作用点最大位移不超过16mm,一阶固有频率的下限取11Hz。

采用ANSYS中的一阶优化方法,对比优化前后的参数变化情况,可以得到以下结论:

1.车架模型经过11次迭代后收敛。优化后,车架的重量减轻了1

2.5%。

2.车架的弯曲刚度和扭转刚度均有降低,其中,弯曲刚度降低29.2%,扭转刚度降低11.3%;车架的一阶固有频率变化仅为2.67%。

3.对弯曲和扭转刚度影响最大的是纵梁前后段的截面尺寸B1和H11。其余各梁的截面尺寸也有不同程度的改变。

结语

本文利用工程分析软件ANSYS计算了某一概念设计阶段车架的静态弯曲刚度、扭转刚度以及自由振动时的前五阶固有频率和相应振型,其动静刚度性能指标均超过同类车架。通过以车架纵、横梁截面尺寸为设计变量进行了优化设计,使该车架减重12.5%。

车架有限元分析

1前言 车架是汽车的主要部件。深人解车架的承载特性是车架结构设计改进和优化的基础。过去汽车设计多用样车作参考,这种方法不仅费用大,试制周于精确解。因此,正确建立结构的力学模型,是分析期长,而且也不可能对多种方案进行评价。现代车架设计已发展到包括有限元法、优化、动态设计等在内的计算机分析、预测和模拟阶段。计算机技术与现代电子测试技术相结合已成为汽车车架研究中十分行之有效的方法。实践证明,有限元法是一种有效的数值计算方法,利用有限元法计算得到的结构位移场、应力场和低阶振动频率可作为结构设计的原始判据或作为结构改进设计的基础。 2车架的静态分析 2.1力学模型的选择 有限元分析的基本思想,是用一组离散化的单元组集,来代替连续体机构进行分析,这种单元组集体称之为结构的力学模型;如果已知各个单元体的力和位移(单元的刚度特性),只需根据节点的变形连续条件与节点的平衡条件,来推导集成结构的特性并研究其性能。有限元的特点是始终以矩阵形式来作为数学表达式,便于程序设计,大量工作是由电子计算机来完成,只要计算机容量足够,单元的剖分可以是任意的,对于任何复杂的几何形状,多样化的载荷和任意的边界条件都能适应。然而,由于有限元是一种数值分析方法,计算结果是近似解,其精度主要取决于离散化误差。如果结构离散化恰当,单元位移函数选取合理,随着单元逐步缩小,近似解将收敛于精确解。因此,正确建立结构的力学模型,是分析工作的第一步目前采用有限元分析模型一般有如下两种:梁单元模型和组合模型等。梁单元模型是将车架结构简化为由一组两节点的梁单元组成的框架结构,以梁单元的截面特性来反映车架的实际结构特性。其优点是:划分的单元数目和节点数目少,计算速度快而且模型前处理工作量不大,适合初选方案。其缺点是:无法仔细分析车架应力集中问题,因而不能为车架纵、横梁连接方案提供实用的帮助。组合单元模型则是既采用梁单元也采用板壳单元进行离散。在实际工程运用中,由于车架是由一系列薄壁件组成的结构,且形状复杂,宜离散为许多板壳单元的组集,其缺点是前处理工作量大,计算时间长,然而随着计算机技术的不断发展,这个问题已得到了较好的解决,而且由于有大型有限元软件支撑,巨大的前处理工作量绝大部分可由计算机完成,也不是制约板壳元模型实际运用的困难了。这种模型使得对车架的分析计算更为精确,能为车架设计提供更为有利的帮助。 2.2车架的计算方法 汽车车架的主要结构形式为边梁式车架,货车车架纵梁截面多为槽形,横梁截面可为槽

车架有限元分析

目录 一结构简介 (1) 二计算载荷工况 (2) 三有限元模型 (5) 四静强度分析结果 (10)

一、结构简介 本次作业以某转向架构架为几何模型,进行静强度分析,下图为本次计算针对的某型转向架几何模型,结构上由侧架、摇枕、转臂座、齿轮箱吊挂、轴箱吊挂、一系减震器座等组成。整个计算主要分为网格划分和静强度计算两个过程。 图1 某型转向架几何模型(a) 图2 某型转向架几何模型(b) 二、计算载荷工况

根据要求,对转向架采取如下的加载方式: 1、约束 图3 约束要求 如下的局部视图中圈出处即为所加的约束之一; 图4 模型中所加约束之一 在此点出建立Z 方向的 位移约束 在此点出建立X 、Z 方 向的位移约束 在此点出建立X 、Y 、Z 方向的位 移约束 在此点出建立Y 、Z 方 向的位移约束

2、载荷 图5 受力要求 模型中加载作用力的局部视图如下(注:图中坐标系中红色为X 轴,绿色为Y 轴,蓝色为Z 轴); 图6 Z 轴正向26.2kN 的力 在此处加26.2KN 的力,力的方向为Z 轴负方向 在此处加26.2KN 的力,力的方向为Z 轴正方向 在此处加45.6KN 的力,力的方向为X 轴正方向中心销半圆内部分(Z 方向距上盖板80mm,距下盖板131mm ,X 方向距离圆心7mm )

图7 Z轴负向26.2kN的力 图8 中心处加载X轴正向45.6kN的力计算工况如下表1所示 表1 工况 工况 横向 (X向) 纵向 (Y 向) 垂向 (Z向) 1 -- -- +

整个模型由两类网格组成:构架采用壳网格单元建立模型,转臂座构件采用六面体网格建立模型;其中壳网格单元以四边形网格为主。有限元模型重量为1422.015kg,结点总数为81382,单元总数为74991。有限元模型如图9~12所示。 图9 壳单元模型(1/4模型) 图10 转臂座实体网格模型

车架有限元分析word版

以ANSYS软件为分析工具对从国外引进的某重型车的车架进行了有限元分析、模态分析和以路面谱为输入的随机振动分析,通过用壳单元离散车架及MPC单元模拟铆打传力建立计算模型,研究该车架静、动态性能,了解该车架的优缺点。 车架是汽车的重要组成部分,在汽车整车设计中占据着重要位置,车架结构设计历来为广大汽车厂商所重视。本文以某汽车公司从欧洲引进的某重型车车架为研究对象,对该车架结构的动、静态特性进行分析计算,消化、吸收欧洲的先进技术并在此基础上进行自主创新设计。分析手段主要是通过建立正确的有限元分析模型,对车架进行典型工况的静态分析、模态分析和路面不平度引起的随机振动分析,以此了解车架的静态和动态特性,了解该车架的优越性能及其不足之处,为新车架的改型设计提供依据。 1 有限元分析模型的建立 该车架为边梁式,由两根位于两边的纵梁和若干根横梁组成,用铆接或焊接方式将纵梁和横梁联接成坚固的刚性结构,纵梁上有鞍座,其结构如图1 所示。由于车架是由一系列薄壁件组成,有限元模型采用壳单元离散能详细分析车架应力集中问题,可以真实反映车架纵、横梁联接情况,是目前常采用的一种模型。该车架是多层结构,纵梁断面为槽形,各层间用螺栓或铆钉联接,这种结构与具有连续横截面的车架不同,其力的传递是不连续的。 该车架长7m,宽约0.9 m,包括双层纵梁、横梁、外包梁、背靠梁、鞍座、飞机板、铸铁加强板、发动机安装板、三角支撑板和后轴等部分。考虑到车架几何模型的复杂性,可在三维CAD软件UG里建立车架的面模型,导人到Hypermesh软件中进行网格划分等前置处理,然后提交到ANSYS解算。车架各层之间的铆钉联接,可以用Hypermesh-connectors中的bar单元来模拟铆钉联接,对应的是ANSYS的MPC单元,因车架各层间既有拉压应力,又有剪应力,故MPC 的类型应选择Rigid Beam方式。由于该车是多轴车,为超静定结构,为了得到车架结构的真实应力分布,必须考虑悬挂系统的变形情况。整个车架结构应力分析的有限元模型由车架有限元模型和悬挂系统等效有限元模型组成,其中纵横梁、加强板等为薄壁结构,以壳单元shell63离散;钢板弹簧、轮胎以弹簧单元模拟;前悬弹赞的模型为在每边纵梁上采用2个弹簧单元,每个弹簧单元通过MPC 与车架联接,后悬弹簧的模型为在每边纵梁上采用1个弹簧单元与车架后轴联接。离散后,壳单元总数为46 770个,MPC单元为1 338个,材料为欧洲高强度材料,屈服极限500 MPa,杨氏模量为200GPa,泊松比0.3。

有限元分析及优化设计

《有限元分析及优化设计》实验指导书 桂林电子科技大学机电工程学院 庄未编 2012年05月

实验一:平面问题的结构分析计算 1.实验目的 ?了解ANSYS软件的基本功能与应用范围; ?熟悉在计算机上运用ANSYS软件的基本步骤和方法; ?结合具体平面问题实例,利用ANSYS软件进行计算分析; ?时间许可,可对上述实例利用有限元方法进行计算,并与ANSYS计算结 果进行分析比较. 2.实验内容 1. 结合具体平面问题实例,利用ANSYS软件进行计算分析; 2. 利用ANSYS软件进行建模,并施加约束和载荷; 3 对计算结果进行比较分析与讨论; 4. 时间许可,可对上述实例利用ANSYS的非交互模式(Batch Mode/命令流 的方式)再进行一次计算,并与用ANSYS交互模式的计算结果进行分 析比较. 3.实验预习报告内容要求 实验预习报告在实验前写好,其主要内容应包括: 复习有限元法基本原理、解题方法与步骤等,建立有限元模型应包含的内容; 提供具体平面问题的结构简图,画出计算模型; 对给定的平面问题实例的结果进行预估,以供计算后进行比较讨论用; 4.上机实践举例 一)如图1所示的6结点4单元平面应力平板问题.各三角形单元的直角边的长度为α=10mm,假设平板的厚度t=5mm,材料均匀,其弹性模量E=200GPa, 泊 松比μ=0.3.今在结点1处,竖直向下作用一个力P=1,若不计平板重量( 即设容重γ=0 ).利用ANSYS软件进行分析。

图1 二)、求解下图所示的平面问题。 图2 实验二:轴对称实体结构静力有限元分析 1. 实验目的 ? 了解ANSYS 软件的基本功能与应用范围; ? 熟悉在计算机上运用ANSYS 软件的基本步骤和方法; ? 结合具体实体问题实例,利用ANSYS 软件进行计算分析; ? 时间许可,可对上述实例利用有限元方法进行计算,并与ANSYS 计算结 果进行分析比较.

汽车车架有限元分析参考文献

[1] 曲昌荣, 郝玉莲,戚洪涛. 汽车车架有限元分析[J].轻型汽车技术,2007,12:54~56 [2] 石常青,丁厚明, 杨胜梅. 货车车架的有限元分析及车厢对其性能的影响[J].汽车技术,2004 ,4:5~8 [3] 郭立群, 潘淑华. 中重型汽车车架结构强度有限元建模与分析方法研究[J].汽车技术,2008,6:4~7 [4] 尹辉俊, 韦志林, 黄昶春等. 面向设计的微型车车架强度分析[M].机械设计,2008,1:62~64+67 [5]历辉,李万琼.货车车架的等效载荷简化[J].汽车工程,1994,5:310~314 [6] 黄金陵.有限元法应用于汽车车架结构分析中的几个问题[J].吉林大学学报,1980,1:76~81+83~88 [7] 于学兵, 许先锋..BJ2027型皮卡车车架的有限元分析[D].大连理工大学,2004,2(17) [8] 张勇, 张力等.重型车车架组合结构的有限元分析[J].机械与电子,2005,2:16~18 [9] 张云, 詹隽青等.基于ANSYS的整装整卸挂车车架有限元分析[D].军事交通学院学报,2007,2:39~42 [10] 尹辉俊, 韦志林, 沈光烈. 货车车架的有限元分析[M].机械设计,2005,11:26~28 [11] 李志勋.LT3242重型自卸车车架结构有限元分析[D].农业机械化工程,2009,2(20). [12] 李德信, 吕江涛, 应锦春.SX360自卸车车架异常断裂原因分析[J].汽车工程,2002,4:348~352 [13] 陈铭年, 庄继德.汽车车架计算方法和结构优化变量综述[J].汽车工程,1996,5:285~289+300 [14] 黄金陵.汽车车架结构元件参数的优选[J].汽车技术,1984,1:17~25 [15] M. Barbato and J.P. Conte.Finite element response sensitivity analysis: a comparison between force-based and displacement-based frame element models [J].2005,4(8):1479~1512 [16] M.H. El Haddad.Finite element analysis of infilled frames considering cracking and separation phenomena [D]2003,2

优化设计有限元分析总结

目录 目录 (1) 1. 优化设计基础 (2) 1.1 优化设计概述 (2) 1.2 优化设计作用 (3) 1.3 优化设计流程 (3) 2. 问题描述 (4) 3. 问题分析 (5) 4. 结构静力学分析 (6) 4.1 创建有限元模型 (6) 4.2 创建仿真模型并修改理想化模型 (7) 4.3 定义约束及载荷 (7) 4.4 求解 (8) 5. 结构优化分析 (9) 5.1 建立优化解算方案 (9) 5.2 优化求解及其结果查看 (11) 6. 结果分析 (13) 7. 案例小结 (14)

1.优化设计基础 1.1优化设计概述 优化设计是将产品/零部件设计问题的物理模型转化为数学模型,运用最优化数学规划理论,采用适当的优化算法,并借助计算机和运用软件求解该数学

模型,从而得出最佳设计方案的一种先进设计方法,有限元被广泛应用于结构设计中,采用这种方法任意复杂工程问题,都可以通过它们的响应进行分析。 如何将实际的工程问题转化为数学模型,这是优化设计首先要解决的关键问题,解决这个问题必须要考虑哪些是设计变量,这些设计变量是否受到约束,这个问题所追求的结果是在优化设计过程要确定目标函数或者设计目标,因此,设计变量、约束条件和目标函数是优化设计的3个基本要素。 因此概括来说,优化设计就是:在满足设计要求的前提下,自动修正被分析模型的有关参数,以到达期望的目标。 1.2优化设计作用 以有限元法为基础的结构优化设计方法在产品设计和开发中的主要作用如下: 1)对结构设计进行改进,包括尺寸优化、形状优化和几何拓扑优化。2)从不合理的设计方案中产生出优化、合理的设计方案,包括静力响应优化、正则模态优化、屈曲响应优化和其他动力响应优化等。 3)进行模型匹配,产生相似的结构响应。 4)对系统参数进行设别,还可以保证分析模型与试验结果相关联。 5)灵敏度分析,求解设计目标对每个设计变量的灵敏度大小。 1.3优化设计流程 不同的优化软件其操作要求及操作步骤大同小异。一般为开始、创建有限元模型、创建仿真模型、定义约束及载荷,然后进行结构分析,判断是否收

EQ1075G车架有限元分析

EQ1075G车架有限元分析 An FEM Analysis of the EQ1075G Frame 蒋光福刘永超耿广锐李智勇刘道勇 (东风汽车公司技术中心) 摘要: 本文对EQ1075G车架进行自由模态和静态应力有限元分析,针对分析结果给出了改进设计建议方案。 主题词:汽车车架模态应力优化设计有限元分析 Abstract This paper has introduced mode and stress FEM analysis for the EQ1075G frame and has put forward improved design structure on this analyzed resolution. Keywords: Automobile Frame Mode Stress Optimization design FEM analysis 一、前言 根据EQ1075G车架产品开发的需要,本文对车架原设计方案进行有限元模态和应力分析,并根据分析结果,提出了改进设计建议方案;同时,对该改进设计建议方案也进行了有限元模态和应力分析,并作出了相应的评价。 二、结构模型化 由于该车架主要是板材结构,因此模型化时主要采用板单元;车架上所有的铆钉连接用梁单元和刚性单元模拟;钢板弹簧用弹簧单元模拟;车架有限元模型如图1所示。 车架有限元模型规模:节点84900个,单元81318个,其中板单元81062个,弹簧元12个,梁单元24个。

图1 车架有限元分析模型 三、计算参数 钢板弹簧的刚度系数: =86.926N/mm 前钢板弹簧的垂直刚度系数:C 前 后钢板弹簧的主簧的垂直刚度系数:C =92.904N/mm 后主 后钢板弹簧的副簧的垂直刚度系数:C =115.15N/mm 后副 EQ1075G车架采用特高强度热轧冷成型钢Domex 700MC材料,该材料的物理性能为:弹性模量E=210000N/mm2,泊松比μ=0.3;该材料的机械性能为:最小屈服强度是700000KPa,最小抗拉强度是750000KPa,最大抗拉强度是950000KPa.。 本文应力分析时,取动荷系数为1.0。 四、边界条件 本文分析车架应力时,施加了作用于车架上的所有载荷,其中重力包括动力总成5855.5N,油箱及托架1117.2N,水箱及中冷器588N,驾驶室及乘员5880N,蓄电池及其框架686N,贮气筒及其框架980N,车厢9310N以及载荷39200N。 本文分析了三种工况下的车架应力分析规律及其最大应力值,各工况定义如下: 工况1:弯曲工况,汽车满载(4000kg)匀速行驶在水平路面上,只约束前后车轮竖直方向的位移。 工况2:扭转工况,汽车满载(4000kg)匀速行驶在有凸台的路面上,一

基于ANSYS的自行车车架结构有限元分析

基于ANSYS的自行车车架结构有限元分析 摘要:采用有限元分析软件ANSYS对自行车车架的两种不同结构进行分析,并确定结构合理的类型,并 对其进行改进优化,并用ANSYS进行验证。 关键词:自行车;车架;结构;ANSYS Finite element analysis for bicycle frame based on ANSYS WANG Shunmin (Faculty of Automotive engineering,WHUT,wuhan 430070,china) Abstract:Using the finite element analysis software ANSYS to analyze two different structure of the bicycle frame, and determine the reasonable one, and according to the analysis results,the sharp optimization was accomplished, with ANSYS for verification. Key words:bicycle;frame;structure;optimization 自行车从诞生到现在已经有200多年的历史,因为其具有结构简单、售价低廉、自重轻、维护容易、不需能源、无污染、无噪声、使用方便灵活等优点而独具特色。随着全球现代化的发展,交通拥堵、空气污染、油价上涨等问题日益严重,自行车作为传统的交通工具,在人们的生活中仍然具有举足轻重的地位。 自行车在日常生活中使用广泛,而自行车车架作为自行车上面主要的承受道路复杂载荷的作用的部分,对其进行结构的强度和刚度分析在自行车的设计分析中占有很大比重。由于自行车受力比较复杂,传统的经验设计有很多的盲目性,不能定量的分析结构强度,很容易造成车架的结构设计不合理以致出现过分的应力集中。采用有限元分析软件ANSYS对自行车车架进行分析,可以在设计初期发现不合力的结构以及可能存在的缺陷。目前市面上最常见的两种车架结构形式如下图1、2所示,分别为“四边形+三角形”和“两三角形”结构的形式,本文通过对这两种车架结构进行分析,确定其中结构合理者,并对其进行改进和优化。 1.自行车车架的有限元模型的建立, 1.1车架线框和实体模型的建立 建立准确、可靠的自行车车架模型是进行有限元分析最重要的步骤之一,首先对自行车的尺寸数据进行测量,本文主要通过对图片尺寸进行测量,然后乘以相应的比例关系,得到实际车架的数据。本文通过CATIA软件强大的测量功能分别得到两个车架的坐标数据。主要得到车架关键点的坐标数据,包括前叉部位、把手、车座、后轮轴部位、脚蹬等部位,以及梁连接点位置,一共包括14个点的坐标值。在ANSYS中进行建模,根据所测得的数据建立模型,得到两个车架结构线框模型分别如图3、4。在建模过程中选择梁单元beam4,指定材料的弹性模量为2.11E11Pa,泊松比为0.3。梁选择圆管类型,内外径分别根据自行车实际尺寸进行设置。 1.2 划分网格,设置单元大小为0.005m,对整个模型进行划分。 1.3 施加边界条件,自行车在实际的使用过程中,道路和行驶状况差异很大,受力等边界条

车架的有限元分析及优化

车架的有限元分析及优化 作者:马迅盛…文章来源:湖北汽车工业学院点击数:1687 更新时间:2008-8-5 有限元法将设计人员丰富的实践经验与计算机高速精确的计算完美地结合在一起,大大提高了设计计算精度,缩短了产品开发时间。 概念设计阶段车架的结构方案 参考某一同类型车架,考虑到车身安装和其他总成的布置,将概念设计阶段的车架大致结构拟定如下:选用框架式平行梯形车架结构,由2根左右分开的纵梁和8根横梁组成,全长6.3m,宽0.8m,轴距3.65m。各梁的大致形状尺寸及板材厚度如表1所示。 除第3、4根横梁外,其他各横梁的尺寸与参考的同类型车架几乎相同。由于参考车架的第3、4根横梁为上下两片形状复杂的钢板组合而成,无法用梁单元模拟,在概念车架中将之改用两根方型截面的等直梁代替。第1、6横梁为非等截面梁,其宽和高分别由两个尺寸表示。参考车架纵梁的前后两段和中间段的连接采用的是线性渐变的截面,在概念车架中用一等直梁来代替,等直梁的高度等于渐变梁的中间高度。纵横梁上所有的孔及连接板都不予以考虑。 车架的有限元模型 为了后续的优化设计,必须对车架进行参数化建模。选择表1中车架纵横梁的截面尺寸为模型参数,先建立左半个车架的几何模型,选用ANSYS中的二节点12自由度梁单元BEAM188号单元采用不同的梁单

元截面形式对其进行网格剖分;再将左边的几何模型和网格模型进行映射得到右边车架模型,最终合并对称面上的节点使左右车架模型“牢固的”“粘结起来”。 在ANSYS中用BEAM188单元实施网格剖分时,为了保证单元的正确方向,应事先定义该单元的方向点并检查所要剖分的线的法向。单元截面形状和偏置量需用命令SECTYPE、SECOFFSET和SECDATA设定。单元总数为312,节点总数为626。网格剖分并映射后车架模型如图1所示。图中显示出了梁单元的截面形状。 图1 车架的有限元模型 边界条件 车架刚度有多种,其中最重要的是车架的弯曲刚度和扭转刚度。参照车架的刚度试验方法确定车架弯扭刚度的边界条件。 1.弯曲工况的边界条件 计算时约束前后桥在车架纵梁上的竖直投影点的垂直位移,让车架形成一简支梁结构,并在前后支承点中点处加一垂直向下的力,让车架产生纯弯曲变形,如图2所示。

[有限元,运输车,车架]基于HyperMesh的运输车车架有限元分析

基于HyperMesh的运输车车架有限元分析 0 引言 车架作为车辆重要的承载部分,运输车中多数零部件如:驾驶室,发动机,变速箱,车桥等通常都直接与车架相连接。在运动过程中,车架还承受各零部件产生的各种力与力矩的影响,承载情况的复杂性要求车架必须有足够的刚度和强度来避免其主体发生变形或者断裂的现象,以保证其安全可靠性及使用寿命。但是,在以往的设计过程中,设计人员大多采用经验公式进行计算,这种方法并不能精准的计算出车架各部件应力和形变。本文采用HyperWorks软件对车架结构进行有限元分析,运用Radioss及OptiStuct求解器分析了车架的应力和位移形变分布状态及自由模态分析,利用分析结果验证该车架设计的合理性,对后续的结构优化提供理论依据。 1 车架的几何模型及有限元模型 本文以某造船厂运输车车架为研究对象,该车架由型钢焊接而成,两根纵梁为矩形截面型钢,总长9440mm,大梁式,前后等宽,纵梁最大断面尺寸为360mm140mm20mm,横梁最大断面尺寸为300mm140mm20mm,前后端横梁为型槽钢,中间横梁为矩形截面型钢,横梁的长度为920mm。 实际中,车架的形状结构复杂,支撑装置和固定装置多种多样,除几何形体不规则外还存在许多倒圆角和圆孔,如果在建模的过程中将这些细微之处全部考虑在内,就会导致网格的密度很大,单元尺寸极小,节点方程的数量庞大,因而增加求解时间,同时局部的网格质量无法保证,容易导致求解失真。因此,有必要对车架的结构进行合理的简化,建立合理有效的模型,从而减少分析过程中的计算量,提高计算效率。 运用Pro/E三维建模软件对简化处理后的车架结构进行实体建模,为了避免部分零件出现几何缺陷或数据丢失的情况,我们通常将Pro/E中建立的模型保存为.iges格式文件,把该格式文件直接导入HyperMesh中进行后续的网格划分。 对实体模型进行网格划分首先需要对网格单元定义属性,其次定义网格的生成控制,最后划分网格。其中网格的单元属性包括网格单元类型,实常数以及材料特性。本文车架的材质选用16Mn,其杨氏模量为2.061011Pa,泊松比为0.28,材料密度为7800kg/m3,屈服应力为345MPa。本文采用HyperMesh中的自动网格划分功能对已建好的实体模型进行单元网格划分,最后得到了车架有限元模型(如图1所示)。使用HyperMesh中的count功能,可以得出其单元网格个数106472,节点个数53268。 2 车架静态工况分析 车架作为重要的承载部分,这就要求其既要有足够的强度,也要有足够的刚度。足够的弯曲刚度,可使车架上的部件在行驶过程中相对位置不发生改变。车架刚度不足,会引起振动和噪声,也会使汽车的乘坐舒适性、操纵稳定性及某些基件的可靠性下降,然而其扭转刚度不易过大,否则汽车的通过性变差。

优化设计有限元分析总结

目录 目录 (1) 1.优化设计基础 (2) 1.1优化设计概述 (2) 1.2优化设计作用 (2) 1.3优化设计流程 (2) 2.问题描述 (3) 3.问题分析 (3) 4.结构静力学分析 (4) 4.1创建有限元模型 (4) 4.2创建仿真模型并修改理想化模型 (5) 4.3定义约束及载荷 (5) 4.4求解 (6) 5.结构优化分析 (7) 5.1建立优化解算方案 (7) 5.2优化求解及其结果查看 (8) 6.结果分析 (11) 7.案例小结 (11)

1. 优化设计基础 1.1 优化设计概述 优化设计是将产品/零部件设计问题的物理模型转化为数学模型,运用最优化数学规划理论,采用适当的优化算法,并借助计算机和运用软件求解该数学模型,从而得出最佳设计方案的一种先进设计方法,有限元被广泛应用于结构设计中,采用这种方法任意复杂工程问题,都可以通过它们的响应进行分析。 如何将实际的工程问题转化为数学模型,这是优化设计首先要解决的关键问题,解决这个问题必须要考虑哪些是设计变量,这些设计变量是否受到约束,这个问题所追求的结果是在优化设计过程要确定目标函数或者设计目标,因此,设计变量、约束条件和目标函数是优化设计的3个基本要素。 因此概括来说,优化设计就是:在满足设计要求的前提下,自动修正被分析模型的有关参数,以到达期望的目标。 1.2 优化设计作用 以有限元法为基础的结构优化设计方法在产品设计和开发中的主要作用如下:1)对结构设计进行改进,包括尺寸优化、形状优化和几何拓扑优化。 2)从不合理的设计方案中产生出优化、合理的设计方案,包括静力响应优化、正则模态优化、屈曲响应优化和其他动力响应优化等。 3)进行模型匹配,产生相似的结构响应。 4)对系统参数进行设别,还可以保证分析模型与试验结果相关联。 5)灵敏度分析,求解设计目标对每个设计变量的灵敏度大小。 1.3 优化设计流程 不同的优化软件其操作要求及操作步骤大同小异。一般为开始、创建有限元模型、创建仿真模型、定义约束及载荷,然后进行结构分析,判断是否收敛,如果是的话,即结束操作;若不是,再进行灵敏度分析、优化求解、优化结果、更新设计变量,重复结构分析。

车架有限元分析英文翻译

附件9: 华南理工大学广州汽车学院 本科生毕业设计(论文)翻译 英文原文名FINITE ELEMENT ANALYSIS AND OPTIMIZATION OF A HEA VY TRUCK FRAME 中文译名重型货车汽车车架的有限元分析及优化设计 系别汽车系 专业班级车辆六班 学生姓名马俊 指导教师李利平 填表日期2012年5月4日 二00 年月

英文原文版出处: 译文成绩:指导教师(导师组)签名: 译文: 重型货车汽车车架的有限元分析及优化设计 摘要 本文针对某重型汽车厂载货汽车车架在实际使用过程中出现的破坏等现象,利用美国大型有限元分析软件ANSYS对其进行静、动态分析,找出车架破坏的主要原因,并提出结构改进方案,通过对各方案的分析对比,提出合理的结构改进,对改进后的结构进行优化设计,最后根据优化结果生产样车,进行试验验证。本文所取得的主要研究成果如下。 对车架及平衡悬架进行有限元仿真。根据车架结构特点,采用壳单元建立车架的有限元模型。采用弹簧单元COMBIN14和刚性杆单元MPC184,利用节点耦合的办法来模拟平衡架与车架的连接,目前有关模拟平衡悬架的报道还不多见。 通过对车架在各种工况下的静态分析,得出载荷作用下车架的四个大应力区,这些区域与车架在实际使用过程中曾发生过破坏的位置相吻合。对车架进行动态特性分析得出车架的各阶段固有频率及振型。确定了路面不平度及发动机的激励频率范围,计算在此激励下车架的响应,得出大应力点在外界激励时其应力响应幅值较大的结论。 在分析车架破坏的主要原因基础上,提出改进车架结构的若干方案,通过对各方案进行分析对比,得出通过增高车架纵梁的高度以及加长车架长度

现代有限元分析和结构优化

现代有限元分析和结构优化 传统设计是一种基于经验的设计方法,不可避免地出现盲目性。设计中实际上采用的是尝试的方法,一种方法不行,再试另外一种方法。随着汽车技术的发展,车身结构趋于轻量化设计。传统上的采用加厚钣金件厚度等提高强度的方法已经被淘汰。这样做不仅费时,也造成了不必要人力和财力的浪费。随着现代有限元技术和设计理念的发展,更多地借助于计算技术来完成相关的设计。本文基于OptiStruct软件,针对某越野车后掀们原设计强度不足的问题,采用OptiStruct进行形貌优化,在不增加重量的前提下,提高结构强度。 2 有限元模型的建立 2.1 有限元网格划分 模型前处理采用Altair HyperMesh软件。针对后掀门为钣金结构的特点,网格划分采用四边形网格,在过渡区域采用适当个数的三角形单元。建立的模型如图所示。模型信息如表所示。 图1原设计结构的有限元模型图2原设计结构有限元分析的边界条件 表1有限元模型规模信息 - NODE NUM ELEM NUM 数量148281 143943

2.2 有限元载荷和边界条件 计算中,在后掀门中间位置上(最为危险的位置)。在相应位置上施加由上述载荷产生的作用力。如图所示,后掀门在安装点通过销结构进行装配。有限元计算分析时,约束四个安装销处的平动自由度。从而建立某越野车后掀门结构的约束系统。 2.3 材料模型 建立有限元模型时,采用MAT1材料模型进行材料建模,材料相关参数如表所示。 表2材料STEEL的参数 3 结构强度计算分析 载荷和边界条件如前所述,原设计结构应变和应力云图分别如图3和图4所示,最大形变位移和最大应力如表3所示。原设计的最大应力达到了 498MPa,而材料的抗拉强度为540MPa~695MPa,这个应力值已经大于材料的屈服极限,接近抗拉强度,可以说结构的设计在某种程度说存在问题。需要修改设计。

连杆的有限元分析及优化

连杆的有限元分析及优化 姓名:周锋 学号: 1151684

目录 目录 (2) 1.优化设计基础 (3) 1.1优化设计概述 (3) 1.2优化设计作用 (3) 1.3优化设计流程 (3) 2.问题描述 (4) 3.问题分析 (4) 4.结构静力学分析 (5) 4.1创建有限元模型 (5) 4.2创建仿真模型并修改理想化模型 (6) 4.3定义约束及载荷 (6) 4.4求解 (7) 5.结构优化分析 (8) 5.1建立优化解算方案 (8) 5.2优化求解及其结果查看 (9) 6.结果分析 (11) 7.案例小结 (11)

1. 优化设计基础 1.1 优化设计概述 优化设计是将产品/零部件设计问题的物理模型转化为数学模型,运用最优化数学规划理论,采用适当的优化算法,并借助计算机和运用软件求解该数学模型,从而得出最佳设计方案的一种先进设计方法,有限元被广泛应用于结构设计中,采用这种方法任意复杂工程问题,都可以通过它们的响应进行分析。 如何将实际的工程问题转化为数学模型,这是优化设计首先要解决的关键问题,解决这个问题必须要考虑哪些是设计变量,这些设计变量是否受到约束,这个问题所追求的结果是在优化设计过程要确定目标函数或者设计目标,因此,设计变量、约束条件和目标函数是优化设计的3个基本要素。 因此概括来说,优化设计就是:在满足设计要求的前提下,自动修正被分析模型的有关参数,以到达期望的目标。 1.2 优化设计作用 以有限元法为基础的结构优化设计方法在产品设计和开发中的主要作用如下:1)对结构设计进行改进,包括尺寸优化、形状优化和几何拓扑优化。 2)从不合理的设计方案中产生出优化、合理的设计方案,包括静力响应优化、正则模态优化、屈曲响应优化和其他动力响应优化等。 3)进行模型匹配,产生相似的结构响应。 4)对系统参数进行设别,还可以保证分析模型与试验结果相关联。 5)灵敏度分析,求解设计目标对每个设计变量的灵敏度大小。 1.3 优化设计流程 不同的优化软件其操作要求及操作步骤大同小异。一般为开始、创建有限元模型、创建仿真模型、定义约束及载荷,然后进行结构分析,判断是否收敛,如果是的话,即结束操作;若不是,再进行灵敏度分析、优化求解、优化结果、更新设计变量,重复结构分析。

压电能量收集装置的有限元分析及优化设计

第31卷第2期 2 0 18年5月 青岛大学学报(自然科学版) JOURNAL OF QINGDAO UNIVERSITY (Natural Science Edition) Vol. 31 No. 2 M ay 2 0 18 文章编号:1006 - 1037(2018)02 -0081 -05 d o t :10.3969$.is s n.1006 - 1037.2018.05.15 压电能量收集装置的有限元分析及优化设计 徐宏凤,张凤生,沈辉,王者胜 (青岛大学机电工程学院,青岛266071) 摘要:研究了典型的线性和非线性压电能量收集装置,应用了基于A N S Y S的有限元分析法 对非线性压电能量收集装置进行建模分析,利用瞬态分析法得到系统输出电压与激励频率 的对应关系,将有限元分析结果与理论模型推算结果对比,证明了该方法的有效性;并将该 方法用于非线性压电能量收集装置的优化分析,通过改变影响系统非线性势函数的磁铁间 距,得出在外部宽带低频随机振动源激励下,非线性装置发生随机共振、响应频带拓宽时较 优的结构参数。 关键词:压电能量收集装置;A N S Y S;瞬态分析;有限元建模 中图分类号:T H741 文献标志码:A 无线微传感器的供电问题是分布式无线网络进一步发展的制约因素之一。各类燃料电池和纽扣电池存 在使用寿命有限、需要经常更换的固有缺陷,不能从根本上解决无线微传感器的长期供电问题[1]。随着微机 电系统(M E M S)技术的快速发展,受环境振动源(例如机械振动、风能、潮汐等)激励的压电能量回收技术可 以为无线传感器和其他各种M E M S提供电能,因此受到国内外学者的广泛关注[2’3]。然而,由于环境振动 源能量分布频带较宽,且主要集中于低频段,使得线性压电能量收集装置的能量收集率很低,无法实际应 用[4]。研究表明,引人励磁激励,将线性能量收集装置转化成为非线性能量收集装置,可拓宽压电能量收集 装置的有效响应频带[5’6]。W u等(7]设计的低高频P V D F悬臂梁之间非接触式磁力耦合效应实现宽频发电,但增加系统阻尼,降低能量输出效率;C h a lla等[8]通过对压电悬臂梁自由端磁铁施加磁力改变其刚度来拓 宽发电装置谐振频带;张国策9采用数学理论方法分析磁铁与悬臂梁的质量比和系统磁力对悬臂梁固有频 率调频关系;杜小振(10]基于非线性磁力调频开发了低宽频振动能采集压电电磁复合发电系统;陈仲生(11]研 究了利用系统非线性来提高悬臂梁压电振子宽带低频振动能量俘获效率的随机共振机理,通过增加一对矩 形永磁铁对传统线性悬臂梁压电振子结构进行了改进。本文利用A N S Y S软件,对非线性装置各部分用对 应的A N S Y S单元建模并且进行瞬态分析,充分模拟磁力对系统的非线性效应,得到了输出电压与激励频率 的对应关系,并应用该方法对非线性压电能量收集装置的结构参数进行优化分析。 1压电能量收集装置及理论模型 线性单稳态压电能量收集装置的基本结构如图1虚线框所示。悬臂梁末端固定一个用以调节谐振频率 的质量块,压电片贴在悬臂梁的根部,随悬臂梁振动产生电能[12’13]。该装置受到外部宽频振动源激励时,有 效响应频率集中于装置的固有频率附近,响应频带窄,而实际振动往往分布在宽频带上。因此,必须拓宽有 效响应频带。目前方法主要有振荡器阵列法、多模态振荡器法、主一被动共振调谐法、非线性法等[5]。励磁 激励法作为一种非线性法,通过在质量块和固定端之间增加磁铁,引人磁力,改变系统刚度,以拓宽装置的有 效响应频带[12],如图1所示。非线性压电能量收集装置如图2所示。本文中,基底悬臂梁选用的材质为铝,压电材料选取的是P Z T5(锆钛酸铅压电陶瓷)。 收稿日期2017-11-21 基金项目:山东省自然科学基金(批准号: ZR2017MEE039)资助。 通讯作者:张凤生,男,博士,教授,主要研究方向为测控技术与智能仪器。

基于ANSYS的东风货车车架仿真和有限元分析

基于ANSYS的东风货车车架仿真和有限元分析 摘要:货车车架是车子的关键受力部分,货车上受到的来自内部和外界的各种载荷最后都要传递给货车车架,所以车架结构强度的大小是货车整体设计的关键因素之一。在汽车设计中,有限元分析法可以对汽车进行动态性能、静态性能和车架结构分析,从而,对车身结构优化,提高整车性能、缩短设计时间。有限元软件ANSYS具有独一无二的分析优化功能和良好的可靠性,在结构动力分析、静力分析和优化设计方面具有出色的表现。 本文以东风货车为研究对象,运用Pro/E和ANSYS软件,先创建货车车架的三维实体建模型,在对其动态分析、静态分析及模态分析研究。以实体为基础进行建立他的简单尺寸来优化,以车架的截面面积作为参数,把他最小的体积作为其最终结果。简单介绍Pro/E三维建模的简化技巧和ANSYS结构优化设计时的基本思想和方法。通过对东风货车车架结构的有限元仿真和有限元分析,积累许多宝贵的经验,得到一些重要数据,在以后货车车架的设计优化中有借鉴和指导作用。 关键词:东风货车车架;ANSYS;Pro/E;静态分析;动态分析;模态分析 Dongfeng truck frame based on ANSYS simulation and finite element analysis Abstract:Truck frame is the car key part of the force, van from internal and external load, the last to be passed on to the truck frame, so the size of frame structure strength is one of the key factors of the overall design of the truck. In the automobile design, the finite element analysis method can be used to analyze the dynamic performance, static performance and frame structure of the vehicle, so as to improve the performance of the vehicle and shorten the design time. Finite element software ANSYS has a unique analysis optimization function and good reliability, and has excellent performance in structural dynamic analysis, static analysis and optimization design. In this paper, Dongfeng truck as the research object, the use of Pro / E and ANSYS software, to create a three-dimensional model of the truck

有限元分析及优化

内支撑有限元分析和优化 有限元试验软件和优化软件为ANSYS。模型为科研项目安全轮胎内支撑结构之一,本文主要对零压续跑下内支撑的强度做静力学分析,并在满足内支撑强度要求的前提下,进行拓扑优化使内支撑最轻。 一.有限元模型的前处理 1模型的建立 模型是由PRO/E软件建立,由于结构比较复杂需要做一定简化,并转换成IGES 格式倒入到ANSYS中。 2单元类型的选择 根据实际情况,分析单元类型选用SOLID45单元。SOLID45单元用于构造三维实体结构.单元通过8个节点来定义,每个节点有3个沿着X、Y、Z方向平动的自由度。 3材料属性的定义 模型的材料为镁合金,材料属性具体数值下表。 表镁合金属性 4施加载荷和约束 在零压续跑下,内支撑分体所承受的载荷与约束有以下几种: 由于存在预紧力,内支撑内圈与轮辋之间的相对运动很小,因此内支撑内圈简化为固定约束。 初始速度:由国外安全轮胎标准知,零压续跑下安全轮胎的角速度标准值为91.63rad/s。将该角速度以初始速度施加到内支撑上。 重力加速度:重力始终作用与内支撑上,以初始惯性力的形式施加重力加速 度。在ANSYS中加速度方向要与重力方向相反,加速度大小为9810 2 s mm。 车体载荷:。取轮胎常压下的标准载荷615kg进行计算,并取内支撑10°包角区域作为接地区域。用车体载荷除以接地面积算出10°包角区域的压强。在ANSYS中以压强的形式施加到10°包角区域。 预紧力:内支撑是分体结构,相互之间用螺栓连接,通过计算得出预紧力为:5123N。该力施加与螺栓孔上,方向沿内支撑切线方向。

经过有限元前处理后,模型如图1所示。 图1前处理模型 二.求解并查看结果 在安全轮胎零压续跑的情况下,内支撑分体的位移与应力分布如图2和图3所示: 由位移分析图可知零压续跑时,内支撑分体变形最大区域主要集中在螺栓连接端,而且在锁紧端出现最大位移0.029977mm,而且位移从两端到中间逐渐减小。 由内支撑应力分布图可以看出应力分布主要集中在两端的螺栓连接处,最大应力出现在锁紧端,并从螺栓空向四周扩散,在离两端较远的位置应力比较小。内支撑的最大应力值108.281MPa。

车架纵梁的有限元分析论文

湖北汽车工业学院 HUBEI UNIVERSITY OF AUTOMOTIVE TECHNOLOGY 课 程 设 计 说 明 书 课程名称 汽车专业课程设计 设计题目 车架纵梁简化模型的有限元分析 班级 T1043-5 专业 热能与动力工程 学生姓名 罗文昭 学号 20100430522 指导教师(签字) 起止日期: 2013 年 12 月 23 日- 2014 年 1月 10 日 2014 年 2 月 24 日- 2014 年 2 月 28 日 汽车工程学院

目录 第一章概论 (2) 第二章分析结果比较 (3) 2.1 静力分析的比较 (3) 2.1.1 一维模型的静力分析 (3) 2.1.2 二维模型的静力分析 (4) 2.1.3 三维模型的静力分析 (6) 2.2 约束模态分析的比较 (7) 2.2.1 一维约束模态分析 (7) 2.2.1 二维约束模态分析 (10) 2.2.1 三维约束模态分析 (12) 第三章车架纵梁的优化 (15) 第四章 ansys经典界面的一维梁分析 (17) 第五章关于车架纵梁的理论计算 (18) 5.1 车架纵梁最大挠度的计算 (18) 5.5 车架纵梁最大应力的计算 (18) 文献阅读 (20) 心得体会 (22) 参考文献 (23)

第一章概论 这次课程设计的任务是: ①对车架纵梁分别采用一维、二维和三维模型计算在图示的载荷和约束下结构的应力、变形与安全系数;比较各模型的计算结果; ②对车架纵梁的三维实体模型计算纵梁简化模型的前四阶约束模态; ③对车架纵梁的一维模型利用载荷步和工况组合功能分别计算各种载荷对纵梁简化模型组合应力、弯曲应力和变形的影响; ④对车架纵梁的三维简化模型进行参数化研究及目标驱动的优化设计。 分析所需要的数据为: ①车架纵梁简化模型的形状、尺寸和约束方式如下图⑴所示; 图⑴车架纵梁的简化模型 ②车架纵梁采用的材料弹性模量为211GPa,泊松比为0.3,密度为:7.8g/cm3; ③均布载荷作用在纵梁中部距离为1000mm范围内,大小为2N/mm;在距离左右两端支撑为500mm的位置上,还受到两个大小为1000N的集中力作用;考虑纵梁的自重。

相关主题