搜档网
当前位置:搜档网 › 电气设备状态监测 (3)

电气设备状态监测 (3)

电气设备状态监测 (3)

(注意:若有主观题目,请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。在线只需提交客观题答

案。)

一、主观题(共12道小题)

1.说明用热老化试验确定绝缘寿命的步骤

参考答案:主观题答案暂不公布,请先自行离线完成。

2.绝缘是如何进行耐热分级的?

参考答案:主观题答案暂不公布,请先自行离线完成。

3.说明电老化的分类

参考答案:主观题答案暂不公布,请先自行离线完成。

4.简述负电性气体的击穿特点。

参考答案:主观题答案暂不公布,请先自行离线完成。

5.绝缘纸和织物浸胶和浸油的目的是什么?

参考答案:主观题答案暂不公布,请先自行离线完成。

6.简述变压器绝缘结构

参考答案:主观题答案暂不公布,请先自行离线完成。

7.简述单芯交联聚乙烯(XLPE)电缆的绝缘结构

参考答案:主观题答案暂不公布,请先自行离线完成。

8.请画出反接法测试高压套管介质损耗的示意图

参考答案:主观题答案暂不公布,请先自行离线完成。

9.变压器油中溶解故障气体的各组分中,电弧放电的特征气体是什么?用油中溶解乙炔判断变压器故障时,110kV变压器的注意值是5uL/L,而500kV变压器的注意值是1uL/L,说明为什么两者存在这么大的差异。

参考答案:主观题答案暂不公布,请先自行离线完成。

10.简要比较说明少油断路器、真空断路器、SF6断路器的优缺点。

参考答案:主观题答案暂不公布,请先自行离线完成。

11.请给出绝缘内部气隙局部放电的等值电路

参考答案:主观题答案暂不公布,请先自行离线完成。

12.给出容性设备在线监测系统的原理图,并简单说明。

参考答案:主观题答案暂不公布,请先自行离线完成。

《电气设备状态监测与故障诊断技术》复习提纲(附答案)

《电气设备状态监测与故障诊断技术》复习提纲 1 预防性试验的不足之处(P4) 答: 1、需停电进行试验,而不少重要电力设备,轻易不能停止运行。 2、停电后设备状态(如作用电压、温度等)与运行中不符,影响判断准确度。 3、由于是周期性定期检查,而不是连续的随时监测,绝缘仍可能在试验间隔期发生故障。 4、由于是定期检查和维修,设备状态即使良好时,按计划也需进行试验和维修,造成人力 物力浪费,甚至可能因拆卸组装过多而造成损坏,即造成所谓过度维修。 2 状态维修的原理(P4) 答:绝缘的劣化、缺陷的发展虽然具有统计性,发展的速度也有快慢,但大多具有一定的发展期。在这期间,会有各种前期征兆,表现为其电气、物理、化学等特性有少量渐进的变化。随着电子、计算机、光电、信号处理和各种传感技术的发展,可以对电力设备进行在线状态监测,及时取得各种即使是很微弱的信息。对这些信息进行处理和综合分析,根据其数值的大小及变化趋势,可对绝缘的可靠性随似乎做出判断并对绝缘的剩余寿命做出预测,从而能早期发现潜伏的故障,必要时可提供预警或规定的操作。 3 老化的定义(P12) 答:电气设备的绝缘在运行中会受到各种因素(如电场、热、机械应力、环境因素等)的作用,部将发生复杂的化学、物理变化,会导致性能逐渐劣化,这种现象称为老化。 4 电气设备的绝缘在运行常会受到哪些类型的老化作用?(P12) 答:有热老化、电老化、机械老化、环境老化、多应力老化等。 5 热老化的定义(P12) 答:由于在热的长期作用下发生的老化称为热老化。 6 什么是8℃规则?(P13) 答:根据V.M.Montsinger提出的绝缘寿命与温度间的经验关系式可知,lnL和t呈线性关系,并且温度每升高8℃,绝缘寿命大约减少一半,此即所谓8℃规则。 7 可靠性、失效与故障的定义(P21) 答:可靠性:产品在规定条件下和规定的时间区间完成规定功能的能力。 失效:产品终止完成规定功能的能力这样的事件。 故障:产品不能执行规定功能的状态。 8 典型的不可修复元件,其失效率曲线呈什么形状?有哪些组成部分?(P22) 答:典型的不可修复元件,一般为电子器件,其失效率曲线呈浴盆状,可分为三个部分:早期失效期、恒定失效期和耗损失效期。 9 寿命试验的目的和方式(26)

电气设备状态监测与故障诊断

电气设备状态监测与故障诊断 发表时间:2018-07-05T16:32:13.820Z 来源:《电力设备》2018年第9期作者:官韵[导读] 摘要:我国经济的快速发展离不开电力行业的大力支持,同时经济的发展带动电力行业的不断进步。 (国网重庆市电力公司江津区供电分公司 402260)摘要:我国经济的快速发展离不开电力行业的大力支持,同时经济的发展带动电力行业的不断进步。在电力工程中,输变电设备是电网的重要组成部分,输变电设备的可用性与稳定性直接影响到电网的安全运行。及时发现并排除输变电设备的潜伏性故障是电网企业关注的一项重要课题。随着我国电力工业的发展,一方面,电网规模不断发展,输变电设备数量激增,用户对供电可靠性要求不断提高;另一 方面,设备的信息化程度越来越高,设备状态监测技术日益成熟,设备运行数据与测试数据激增,基于大数据的电气设备在线监测与故障诊断技术地发展已经逐渐成为焦点,借助信息技术对设备进行故障诊断势在必行。 关键词:电气设备;状态监测;故障诊断引言 电力行业的快速发展和技术水平的提升在我国经济建设上发挥很大的作用。在电力行业中,电气设备就是电力系统中电力线路、变压器、发电机、断路器等的统称。依据不同测量方式和传感器来反映设备实际运行状态的化学量和物理量的一种方式就是设备状态监测,主要就是为了能够检测是否具备正常运行的设备状态。这种电气设备的状态监测与故障诊断技术属于新型的交叉科学,实际应用的时候还是处于初级研究阶段,由于不断发展科学技术,逐渐运用信号技术、数据仓库技术、计算机网络技术、电子技术、传感技术等,从而一定程度上提高了电气设备的状态监测与故障诊断技术的整体水平。 1电气设备状态监测与故障诊断系统功能 1.1数据浏览功能 在系统的状态监测与故障诊断系统中,需要通过网络技术来实现数据的浏览,用户在监控系统过程中,可以通过联网计算机实现对设备运行相关数据的查询和分析。其主要是由于在设备的运用过程中,通过传感器可以将设备运行的状态发送到计算机中,通过处理器的分析功能,可以实现对数据的整理和反馈,从而可以实现对设备运行状态的监控和诊断。 1.2信号变送和评估诊断 电器设备在线运行参数采用各种传感器进行采集,例如电压、电流、湿度、温度、压力等,将各项参数转换为电信号送入到后续单元,是在线监测系统是否准确的前提;对采集的信号通过先进的评估算法对设备运行状态进行评估,给出评估结果,为制定检修策略提供依据。 1.3智能诊断功能 在电气设备运行中,通过系统可以实现对设备的数据收集,而用户将专家系统、神经网络以及人工智能等手段应用于设备的监控中,可以实现对设备运行状态的综合诊断,降低了人力资源的使用率,同时提升了设备诊断的质量和效率。 2电气设备状态监测与故障诊断技术的方法 2.1电气设备在线状态监测与故障诊断技术 第一,局部放电监测技术。局部放电监测技术、超声波监测法及电容器祸合监测法、电容器祸合监测法。第二,油色谱监测技术。现阶段比较常用的UI中设备绝缘检测方式就是油中气体分析法。第三,介损监测技术。这种技术主要应用在电容型设备中,电容型设备实际上就是部分或者全部绝缘,依据电容式设计设备绝缘结构,主要目的就是用来检测设备介电特性。合理应用测量方式能够在一定程度上克服上述问题,也就是说在相同变电站中安装容性设备,并且对比分析容性设备绝缘情况,可以及时获得出现大变化容性设备。在对比分析相同电容型设备电容量比值和介损值的时候,需要合理利用介损差值变化量来对设备绝缘情况进行判断。 2.2发电机状态监测与故障诊断 发电机状态监测与故障诊断在实际应用的时候主要作用就是检测设备初始阶段的问题和缺陷,以便于能够有计划的对设备进行维修,最大限度降低设备停机概率。在设备运行使用的过程中尽可能缩短发电机维修时间以及延长无故障时间,可以在一定程度上降低维修发电机的费用,从而增加设备可用性。现阶段发电机就是在运行中利用发电机射频监视仪、发电机状态监视器以及发电机光纤测漏仪进行状态检测,上述系统可以监测和报警发电机内部故障,引导相关操作人员能够及时了解以及重视设备实际运行情况,为操作人员进一步调整负荷进行指导以及检测是否出现停机问题。国内现阶段也开始研究氢冷发电机,依据化学量分析方式来诊断氢气中杂质成分,以此来判断设备故障。发电机设备状态检测以及系统故障诊断的时候需要采集和观测很多机械、电气、物理、化学特征和数据,形成相应的数据处理系统,为监测提供正确的缺陷和异常数据信息。利用早期故障预报来判断和分析计算机故障情况,并且提供相对合理的检修方案。诊断发电机故障的时候主要包括以下几方面:定子类故障:绕组振动故障、引出线套管故障、绝缘故障、铁心故障;转子类故障:绕组故障、本体及护环故障、绝缘故障以及油系统故障、氢系统故障、水系统故障。 2.3真空断路器控制回路电气特性的在线监测 真空断路器控制回路电气特性的在线监测主要是针对断路器控制回路电流、电压的监测。如果真空断路器的分间速度过高,那么在触头接触时整个机构就会承受过大的冲击力与机械应力,严重时会对真空断路器的一些部件产生损坏,大大缩短真空断路器的使用寿命;真空断路器的机械特性参数对真空断路器的使用乃至整个电力系统的稳定运行都有至关重要的意义。电磁铁是触发断路器完成开关动作的关键元件,因此对控制回路电流、电压信号的监测中,最直观有效的方法就是对分、合闸电磁铁线圏电流、电压进行监测。分、合闸电磁铁作为真空断路器动作过程中的第一级控制元件,是操动机构中最重要的部件。它主要传递执行断路器发出的动作命令,以电磁力的形式触发断路器的机械传动机构,从而完成分、合闸动作。然而,断路器如果长期运行,分、合闸电磁铁随着动作时间和频率的增大就会出现各种故障,例如铁芯卡涩、匝间短路、接触不良等故障,甚至会进一步发展成严重的断路器拒合、拒分、误合、误分等故障,严重影响断路器的动作性能。在断路器的分、合闸动作过程中,操动机构任何运行状态或者健康状况的变化都有可能引起电磁铁线圈电流的变化,因此,线圈电流信号中包含着丰富的操动机构状态信息。这些信息能准确反映电磁铁本身以及操动机构其他运动部件的工作状况,如铁芯有无卡滞、脱扣、传动机构的变动情况、阻间短路或者接触不良等等,从而为在线监测和故障的针对性诊断提供了重要依据。 2.4系统的发展与展望

电力设备状态监测及故障诊断系统原理 黄宏宏

电力设备状态监测及故障诊断系统原理黄宏宏 发表时间:2017-01-18T14:38:24.293Z 来源:《电力设备》2016年第24期作者:黄宏宏1 徐晓明2 [导读] 通过合理的技术或者方法,科学诊断电力设备故障情况,提高电力设备故障监测和诊断的准确性和科学性。 (1集瑞联合重工股份有限公司安徽省芜湖市 241000; 2明光浩淼安防科技股份公司安徽省明光市 239400) 摘要:现阶段,电力设备故障诊断技术越来越趋于信息化和数字化,一般使用网络来传输诊断信息,实现了远距离诊断、传输的目标。有些诊断系统还开发了诊断和报警客户端,可以随时随地监控电力设备的运营状态。 关键词:电力设备;状态监测;故障诊断 一、电力设备的状态监测技术 当前,电力设备故障监测和检修缺少合理、科学、明确的规范要求,这主要是由于各个地区存在较大的电气差别,根据电力设备运行状态,采用科学合理的故障状态检修方法,但是电力设备故障监测和检修主要依赖长期积累的实践经验,存在较大的主观性和随意性,但是实效性、规范性、客观性和科学性不足,而且电力设备故障监测和检修手段比较滞后。所以电力设备运行过程中,应做好状态监测,详细记录电力设备运行状态,做好评估和分类,为故障诊断和维修提供重要参考意见。电力设备状态监测包括以下内容:其一,为电力设备运行积累数据和资料,构建电力设备运行档案;其二,科学判断电力设备的运行状态,分析其处于异常或者正常状态,结合电力设备的故障征兆或者特征、运行状态等级、历史档案等,判断电力设备的故障程度和性质;其三,科学评估电力设备运行状态,合理分类,形成一定标准后,为电力设备状态检修提供重要参考依据,对电力设备故障或者异常状态进行有效估计,全面预测电力设备未来变化状态。对于电力设备的运行状态监测,要采取有效的方法和技术。 1、信号采集 结合当前我国电力系统建设发展现状,通过电力设备在线监测系统,持续检查和分析电力设备运行状态,利用各种运行状态量,分析电力设备运行状态,全面采集电力设备状态信息,包括磁力线密度、局部放电量、频率、电力、电压等信号,结合电力设备的各种状态量,采用合适的信号采集方法:其一,定时采样,按照电力系统运行状态,做好电力设备的定时采样;其二,一次性采样,每次采集一次合适长度的数据处理信号样本;其三,根据电力设备故障突变信号,实现自动化的信息采样;其四,结合电力设备故障诊断要求,采用峰值采样、转速跟踪采样等特殊方式。结合电力设备运行状态,采用合适的状态监测方法,对于断路器,采用振动监测法、跳闸轮廓法等,采集断路器运行状态信息;对于交流旋转电机,通过小波分析、神经网络等方法监测点击运行状态;电力系统变压器运行过程中其内部会发生绝缘老化,导致变压器发生运行故障,结合变压器的电气特性和机械性能,采用电压恢复法、极化波谱、振动分析、油气分析、局部放电等方法,全面监测变压器的运行状态。 2、数据传送 信号处理系统一般距离被检测设备比较远,长距离传输过程中,信号非常容易受到影响因素的干扰,数据信息容易出现一定程度的损失,相移基本上不可能保持一致。为此,首先需要进行模数转换,将数据信息转化为数字量,然后进行预处理,并压缩打包,再通过通信传输通道将数据信息传输到数据处理中心。光导纤维具备较强的抗干扰能力,出现的信号错乱和信号数据损失的情况较少,可以有效保证信号传输质量。 3、数据处理 通过不同方法对电力设备状态数据进行解包处理,例如,利用人工智能、小波分析,在时域利用不同信号的相关性,分析和处理另一个信号数据。把电力设备运行信号进行频谱分析转换为不同频域的频率信号。 4、故障信号特征量的选取 一般情况下,运营设备出现的故障现象,都是由多个故障体征量引起,所以提取有效的故障信息量是诊断故障工作中的重点。对处于运动状态中的设备开展故障识别工作时,经常会因为选取的特征量不同,而出现不同的结果,选取的特征量不恰当,就会出现漏诊或者误诊的情况。出现误判的主要原因是设备在故障状态下和正常状态下的特征参数有重复,即正常状态和故障状态不能很好地被区分,有一定程度的模糊性。所以在监测过程中,应当提取出具有代表性的故障特征参量。 二、诊断故障 (1)通过信息融合和多传感技术来诊断。多传感技术主要是从多个侧面、不同角度来对同一个物体进行检测,即针对同一个故障的不同表现形式,可以从时间、空间、频域的角度着手,多个领域、多个层次地收集故障特征量。为了保证故障特征量的代表性,应选取故障反应速度较快的故障状态信息量。信息融合技术是将多传感的数据按照一定的标准排列整合,并进行综合性分析。同一故障设备在不同的环境中,会反映出不同的故障特征量,运用信息融合技术可以实现“求同除异”的目标。对不同的故障状态特征量进行融合,可以提高电力设备状态监测的准确度和故障诊断的可靠性。但信息融合技术基本理论并不完善,所以信息融合技术诊断方法还需进一步研究。(2)基于特征空间的矢量故障诊断手段,其最大的优势在于具有很强的适应能力,适用范围广,最适合延时性和变化性电力设备。(3)电力设备的在线监测状态和固有特性信息量不足,会导致监测出来的结果存在偏差和变化,针对此问题,可以使用模糊理论中最大隶属原则。这种诊断原则可以迅速找出电气故障原因,并且可以判断电气的故障类型。将模糊理论中最大隶属原则和状态信号相结合,可以分析电气故障的模糊性和变化性。常用的模糊方程为Y=XR,X代表故障征兆,Y代表故障原因,R为模糊关系矩阵。(4)使用人工智能方式,包括神经网络、专家系统等。 三、电力设备故障诊断系统应用 1、采集故障信号 从复杂错综的电力设备故障信号中提取有用信号,做好电力设备故障信号处理,通过采集精细的设备运行信息,准确地进行电力设备故障诊断。电力设备的一种故障可能反映出多种故障特征量,若故障特征量选取不合理,在诊断电力设备故障状态过程中会产生漏诊或者误诊,不利于电力设备故障的正确判断,因此在针对电力设备故障,应选择合适的特征参量。 2、故障诊断信息和分析技术 近年来,我国科学技术快速发展,对于电力设备故障情况,在诊断故障过程中运用信息技术,推动电力设备故障诊断的网络化、数字

物联网技术在电力设备状态监测系统中的应用

物联网技术在电力设备状态监测系统中的应用 北极星电力信息化网 2013-11-1 11:05:33 我要投稿 关键词: 在线监测避雷器电力设备 北极星电力软件网讯:摘要:避雷器作为电力设备的过电压保护装置,其性能的优劣对电力设备安全运行起着很大作用。提出了一种基于无线传感技术的避雷器状态监测系统,并利用基波分析法来诊断避雷器运行状态,并取得较好效果。 0 引言 金属氧化物避雷器已在电力系统中得到了广泛的应用,其作为电力设备的过电压保护装置,对电力设备安全运行起着很大的作用。避雷器在运行电压作用下产生泄漏电流,包括容性电流和阻性电流,其中容性电流的大小仅对电压分布有意义,并不影响发热,而阻性电流则是造成金属氧化物电阻片发热的真正原因。当避雷器内部出现异常时,主要是阀片严重劣化和内壁受潮等阻性分量将明显增大,并可能导致热稳定破坏,造成避雷器损坏。但这个持续电流阻性分量的增大一般是经过一个过程的,因此运行中监测金属氧化物避雷器的持续电流的阻性分量,是保证安全运行的有效措施。 目前开展避雷器带电测试方式有全泄漏电流在线测试技术和利用便携式测试仪定期带电检测阻性电流。这二种测试方式均存在不足之处,其中前者只能观测全泄漏电 流无法区分容性电流和阻性电流,由于采用模拟测试技术结果易受空间电磁场干扰、精度差、准确度差;而后者无法实现实时监测,虽然能较为准确地测量阻性电流分量,但试验接线较繁琐,大型变电所引线布置复杂难以满足测试要求,雷雨季节前后各变电所普遍开展测试工作量大,此外测试过程中需要在运行设备上进行接线对工作人员及试验设备都有一定安全风险。因此,研究一种新型的避雷器状态监测系统已迫在眉睫。 1 以前避雷器在线监测存在的不足 以往有过避雷器泄漏电流在线监控实验性产品,主要采用RS-485,CAN组成监控网络。其安全保证主要是光电隔离,然而这类避雷器泄漏电流在线监控方案的安全性是有疑问的。由于避雷器在动作时要承受巨大的雷击能量,避雷器泄漏电流监视器同样也要承受这个能量,如果采用这类在线监视技术不可避免的需要布设供电和通讯线缆,电源线只能采用铜缆,这会带来巨大风险,如果装置出现问题很可能将雷击能量引入控制室,导致故障扩散到变电站主控设备而使得整个变电站崩溃。由于安全风险巨大,采用此类在线监测方案的产品几乎没有得到变电站采用。

高压电气设备状态检测的国内外研究现状

高压电气设备状态检测的国内外研究现状 1 引言 在电力系统和各种用户系统中,高压电器和开关设备均具有重要的地位和作用,各种高压和开关设备的工作原理和功能各不相同,构成供变电工程的各个组成部分。随着电力系统的发展,对发、输、供和用电的可靠性要求越来越高。对高压电气设备的状态检测显得尤为重要。目前国内外对高压电气设备状态检测主要是针对断路器、容性设备避雷器、变压器等设备进行检测。断路器中应用最多的是SF6封闭式组合电器,它主要指将断路器、隔离开关、母线和互感器等都是浸泡在高性能绝缘材料中,如真空、SF6气体等,,称为“气体绝缘开关设备”( GIS,Gas Insulated Switchgear) 。对高压电器状态检测主要指的是对各种开关设备和电器进行检测,其对整个电力系统的运行起至关重要的作用。 2. 高压电器状态检测的国内外研究现状 2.1断路器状态监测的国内外现状 高压断路器实时状态监测技术在国内发展的时间不超过10年, 由于断路器状态的好坏, 对电力系统的安全、可靠运行有着直接的影响。因此, 对断路器的状态监测也是十分必要的。目前用于评估断路器状态主要采用两种方法: 一是跳闸线圈轮廓法(TCP) , 一是振动监测法。振动监测法是通用的方法,而TCP 法则是通过考察断路器动作时, 流过跳闸/闭合线圈里的电流波形来获得断路器的状态信息。因为当断路器处于不同状态时, 会产生不同的电流波形。 2.1.1 GIS中SF6断路器状态的在线检测 GIS(Gas Insulated Switchgear)装置是20世纪60年代中期出现的一种新型开关装置。GIS具有占地面积小、故障率低等优点,已成为高压开关设备的主要发展方向。GIS技术的应用,使得其核心电力元件——SF6断路器的检修更加困难,所以必须对其中的断路器进行在线状态监测才能做到维修量最小和维护费用最低。 随着技术的不断发展,SF6开关设备运行状态在线检测手段也日益进步,激光检漏和超声局放等新技术的出现,可以在设备不停电的情况下对开关设备状态进行综合在线检测,并对故障点进行精确定位,为现场SF6 开关状态的在线检测提供了新的方法。激光成像技术是利用SF6 对红外光谱的吸收特性,使肉眼不能观察到的SF6 泄漏气体在红外视频上清晰可见,由图像快速地确认泄漏源,为检测人员提供了一种快速识别泄漏源的技术。当GIS、罐式断路器内部有局部放电发生时,其释放的能量使SF6 气体周围的温度升高,从而产生瞬时的局部过压,形成的扰动以声波的形式传播,传播到金属外壳时会在外壳上传播。在外壳上用特制的声探头可检测到传播波,这样就可以间接发现设备内部存在的局部放电。而如果在设备内部有金属微粒存在,微粒在电场力与重力作用下会在内部跳动,碰撞金属外壳,从而产生一定频率的声波,这同样可以用声探头进行检测。 2.1.2 GIS中局部放电在线监测技术 GIS以结构紧凑、可靠性高等优点逐渐成为超高压电力系统中的主流设备,但由于制造运输现场装配等多种原因不可避免地存在绝缘缺陷而影响其长期可靠性。鉴于绝缘介质在发生击穿前都会产生局部放电,因此对GIS进行局部放电监测可以发现绝缘的早期故障。。通过对GIS局部放电在线监测,可以监测到GIS 的绝缘状况,预先发现GIS 内部存在的绝缘缺陷,避免绝缘事故的发生。因此,开展GIS 在线监测技术的研究具有越来越重要的意义。GIS 的局部放电检测技术主要有:超声波检测法、化学检测法、脉冲电流法、超高频法等。

电气设备状态监测与故障诊断

电气设备状态监测与故障诊断 1前言 1.1状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,状态监测”是特征量的收集过程,而故障诊断”是特征量收集后的分析判断过程。 广义而言,诊断”的含义概括了状态监测”和故障诊断”:前者是诊”;后者是断”。 1.2状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所

浅谈电力设备状态监测技术

浅谈电力设备状态监测技术 发表时间:2009-02-11T13:31:11.420Z 来源:《黑龙江科技信息》2008年9月下供稿作者:贾洪海 [导读] 介绍了电力设备状态监测技术发展及现状,论述了状态监测将向着智能型、系统型的状态智能管理系统发展 摘要:介绍了电力设备状态监测技术发展及现状,论述了状态监测将向着智能型、系统型的状态智能管理系统发展,介绍了该系统的组成及功能,指出了先进的传感器技术和智能信息处理技术在发展新型的状态监测系统方面的巨大作用。 关键词:电力设备;状态监测;状态智能管理;智能信息处理 引言 状态监测(condition-based moni-toing)是利用传感技术和微电子技术对运行中的设备进行监测,获取反映运行状态的各种物理量,并对其进行分析处理,预测运行状况,必要时提供报警和故障诊断信息,避免因故障的进一步扩大而导致事故的发生,指导设备最佳的维修时机,为状态检修提供实时数据。 20世纪80年代以来,随着科学技术的发展,状态监测技术在我国逐渐开展起来,设备维修策列也从“计划维修”逐步向“状态维修”转换。纵观该技术的应用,还不够成熟,总体来看,投入产出比,性能价格比都很不理想。随着网络、通信、信息技术的进一步发展,设备状态监测将向着系统化集成化方向发展,形成以状态监测为基础的设备智能管理系统,新型传感器技术、智能信息处理技术将更多的应用于系统中,能对在线和离线数据进行分析处理,对设备进行实时监测、故障诊断,针对诊断结果提供相应的维修策略,并对设备进行状态分析,评估设备的当前健康水平。 1 状态智能管理系统 状态监测技术的研究将从局部探讨进入系统研究阶段,建立在状态监测基础上的状态智能管理系统将成为发展趋势,该系统具有对设备进行状态量监测、故障预警、故障诊断、状态评估等功能,并且能对状态维修提供智能化决策。该状态监测系统是实行电气设备状态检修体制的前提和基础,系统将由下列几部分组成: (1)传感器(Sensor)。 将电量、物理量、化学量,转换成适合于数据采集装置处理的电信号。其选择依赖于状态监测采用的方法和被监测设备的故障产生机理。通常考虑适用于在线监测,有较高的灵敏度、价廉、非侵入性、抗干扰等特点。 (2)数据限集(Data acquisition)。 采集传感器输出信号,对信号进行去噪、选取、滤波、模/数转换等处理以及对传感器补偿和校正等。 (3)故障检测(Fault detection)。 首要目的是明确被检测设备是否出现初期故障征兆,为故障报警以及进一步的故障分惜提供依据。故障检测一般包括参考模型和故障特征提取两种方法。 (4)诊断与决策(Diagnosis)。 测到的异常信号进行处理、分析,制定维修策略。目前的研究方向倾向于由计算机采用先进的数字信号处理、人工智能技术进行在线自动分析处理,从而给出设备的故障类型、故障定位和维修决策等信息。 (5)评估(Assessment)。 对影响设备状态各种因素进行分析,涉及到这些因素的定义(即状态参量)、检测和综合分析,最终对设备的状态进行评估,为设备的使用和维护提供依据。 简要概括一下状态监测系统的任务,工作过程和相关技术理论。新型传感器技术、数字信号处理、智能信息处理等技术以其强大的数字处理能力在设备的状态监测领域得到了广泛应用。自动分析处理功能和在线故障诊断是实行状态监测的显著特征,状态监测将向着快速计算、智能分析的系统化方向发展。 智能管理系统的软件部分将是高性能的信息融合软件系统,具有规范的接口和通信标准。能实现各种状态信息,各种故障诊断方法,各种信息处理方法的有机融合,提高状态监测的可靠性和实用性,其系统分析数据能够远程传输,实现数据共享。该软件是信息处理的中枢,能够对多源信息进行融合处理,对在线、离线数据进行自动分析,根据故障征兆进行分析诊断,及时发现潜伏性故障,并且对设备状态进行分析,对设备进行状态评估,根据评估的情况,如正常级别、缺陷级别、障碍级别、事故级别,确定合适的检修方案。 2 新技术的应用 2.1智能传感器 传感器是设备状态信息获取的源头,将直接影响到监测系统的性能。传统的传感器有易受干扰、寿命低、灵敏度不高、成本高、稳定性差等缺点,科学技术的发展促进了测量技术的进步,新型传感器的出现解决了信息采集可得性问题,新工艺、新测量原理的传感器对提升系统性能起到了关键作用。目前,新型数字式传感器,基于MEMS技术的传感器已大量采用,特别是MEMS传感器,具有体积小,可靠性高,技术附加值高等特点,已成为全世界传感器市场增长最快的产品之一。建立在新工艺、新测量原理上的智能传感器,能提高数据采集的精度,并且有自校正、自补偿功能,将智能传感器用于设备数据采集,能解决数据不稳定,存在严重干扰,测量数据精确度不高等问题,也为系统诊断分析打好了基础。 2.2智能信息处理 智能信息处理技术就是将不完全、不可靠、不精确、不一致和不确定的知识和信息逐步改变为完全、可靠、精确、一致和确定的知识和信息的过程和方法。就是利用对不精确性、不确定性的容忍来达到问题的可处理性和鲁棒性。处理方法有神经网络、模糊系统、粗糙集、信息融合等。 设备的诊断、分析、评估、决策都存在信息处理的问题,拿故障诊断来说,设备故障类型繁多,故障的征兆也很多,故障因果关系复杂,其故障机理无法以固定的规则来表示,这种特殊性决定了其监测信息中存在不确定信息,传统方法只能处理确定性信息,智能信息处理技术能对不确定信息进行处理。在设备状态智能管理系统中,可获得的信息有在线的、离线预防性实验、历史数据等,如何对信息进行分析处理,提取与设备诊断相关的特征信息,从而得出对设备运行状态进行可靠评定,为状态维修提供可靠决策,是该系统的关键。在智

电力设备带电检测技术规范

电力设备带电检测技术规范 国家电网公司 2010年1月

目录 前言 ...................................................................... I 1 范围 (1) 2 规范性引用文件 (1) 3 定义 (1) 5 变压器检测项目、周期和标准 (4) 6 套管检测项目、周期和标准 (5) 7 电流互感器检测项目、周期和标准 (6) 8 电压互感器、耦合电容器检测项目、周期和标准 (8) 9 避雷器检测项目、周期和标准 (9) 10 GIS本体检测项目、周期和标准 (10) 11 开关柜检测项目、周期和标准 (12) 12 敞开式SF6断路器检测项目、周期和标准 (12) 13 高压电缆带电检测项目、周期和标准 (13) 附录A 高频局部放电检测标准 (17) 附录B 高频局部放电检测典型图谱 (18) 附录C GIS超高频局部放电检测典型图谱 (21) 附录D 高压电缆局部放电典型图谱 (29) 附录E 编制说明 (30)

。 前言 电力设备带电检测是发现设备潜伏性运行隐患的有效手段,是电力设备安全、稳定运行的重要保障。为规范和有效开展电力设备带电检测工作,参考国内外有关标准,结合实际情况,制订本规范。 本标准附录A为规范性附录,附录B、附录C、附录D为资料性附录。 本标准由国家电网公司生产技术部提出。 本标准由国家电网公司科技部归口。 本标准主要起草单位:北京市电力公司、中国电力科学研究院、国网电力科学研究院 本标准参加起草单位:江苏省电力公司、福建省电力公司、湖北省电力公司 本标准的主要起草人:刘庆时、张国强、丁屹峰、韩晓昆、黄鹤鸣、杨清华、赵颖、闫春雨、毛光辉、彭江、牛进仓、孙白、王承玉 本标准由国家电网公司生产部负责解释。 本标准自发布之日起实施。

设备状态监测

1)设备状态监测的概念对运转中的设备整体或其零部件的技术状态进行检查鉴定,以判断其运转是否正常,有无异常与劣化征兆,或对异常情况进行追踪,预测其劣化趋势,确定其劣化及磨损程度等,这种活动就称为状态监测(Condition Monitoring)。 状态检测的目的在于掌握设备发生故障之前的异常征兆与劣化信息,以便事前采取针对性措施控制和防止故障地发生,从而减少故障停机时间与停机损失,降低维修费用和提高设备有效利用率。 对于在使用状态下的设备进行不停机或在线监测,能够确切掌握设备的实际特性有助于判定需要修复或更换的零部件和元器件,充分利用设备和零件的潜力,避免过剩维修,节约维修费用,减少停机损失。 特别是对自动线、程式、流水式生产线或复杂的关键设备来说,意义更为突出。 (2)设备状态监测与定期检查的区别设备的定期检查是针对实施预防维修的生产设备在一定时期内所进行的较为全面的一般性检查,间隔时间较长(多在半年以上),检查方法多靠主观感觉与经验,目的在于保持设备的规定性能和正常运转。 而状态监测是以关键的重要的设备(如生产联动线、精密、大型、稀有设备,动力设备等)为主要对象,检测范围较定期检查小,要使用专门的检测仪器针对事先确定的监测点进行间断或连续的监测检查,目的在于定量地掌握设备的异常征兆和劣化的动态参数,判断设备的技术状态及损伤部位和原因,以决定相应的维修措施。 设备状态监测是设备诊断技术的具体实施,是一种掌握设备动态特性的检查技术。 它包括了各种主要的非破坏性检查技术,如振动理论,噪音控制,振动监测,应力监测,腐蚀监测,泄漏监测,温度监测,磨粒测试(铁谱技术),光谱分析及其他各种物理监测技术等。

西南交通大学电气设备状态监测期末复习

第一章 1、电介质的定义 电介质是指在电场作用能产生极化的一切物质。广义上说来,电介质不仅包括绝缘材料,而且包括各种功能材料,如压电、热释电、光电、铁电等材料。 2、电介质的分类方法 (1)根据正负电荷在分子中的分布特性,可把电介质分为三类:?非极性电介质?极性电介质?离子型。(2)根据实际应用情况,按照电介质的凝聚形态,可将其分为四种基本类型:固体电介质、液体电介质、气体电介质、真空绝缘 3、不同类型电介质在绝缘特性上的差异 4、常用的气体、液体、固体电介质的特点及其适用场合 液体电介质又称绝缘油,在常温下为液态,在电气设备中起绝缘、传热、浸渍及填充作用,(特点):流动性,击穿后有自愈性,电气强度比气体的高,用液体电介质制造的高压电气设备体积小,节省材料,液体电介质可燃,易氧化变质,产生水分、酸、油泥等导致电气性能变坏。(适用场合):主要用在变压器、油断路器、电容器和电缆等电气设备中。 气体电介质应具有绝缘强度高、化学及热稳定性好、对结构材料的腐蚀作用很小、不燃、不爆、液化温度低、热导率高、在电弧条件下耐分解、不产生有毒及腐蚀性分子等特性。?此外,还要求成本低,净化维护方便。 真空绝缘(特点):采用真空作为开关灭弧介质,成本低、维修费用低、无爆炸危险,另外,由于灭弧室具有高真空度,空气分子十分稀薄,真空间隙的绝缘强度比常温下的空气和SF6高得多。(适用场合):主要应用于中压开关设备上,具有优良的绝缘性能和灭弧性能。5、SF6气体在电气绝缘领域的应用及其优缺点 SF6气体综合性能优异,具有很高的绝缘强度和灭弧性能,广泛应用于高压断路器、电容器、电缆、变压器及气体绝缘变电站(GIS)放电后的分解对含Si02的瓷和玻璃等无机材料有强的腐蚀性;密度大,在检修充SF6电气设备时易引起工作人员窒息;价格较贵。 6、电气设备对不同电介质的具体要求 液体介质的要求:(1)电气性能好,例如绝缘强度高、电阻率高、介质 损耗及介电常数小(电容器则要求介电常数高)(2)散热及流动性好,即粘度低、导热好、物理及化学性质稳定、不易燃、无毒及其它一些特殊要求. 对气体电介质的要求应具有绝缘强度高、化学及热稳定性好、对结构材料的腐蚀作用很小、不燃、不爆、液化温度低、热导率高、在电弧条件下耐分解、不产生有毒及腐蚀性分子等特性。此外,还要求成本低,净化维护方便。 7、为什么要用组合绝缘结构8、典型的电气设备组合绝缘有那些

简述电力系统设备状态监测及其发展情况

简述电力系统设备状态监测及其发展情况 发表时间:2019-07-31T11:54:32.950Z 来源:《科学与技术》2019年第05期作者:熊西林[导读] 电力系统状态监测随着电力企业受到电力设备故障带来的生产问题,而越来越受到重视。云南电网有限责任公司迪庆供电局 674400 摘要:电力系统状态监测随着电力企业受到电力设备故障带来的生产问题,而越来越受到重视。随着科学技术的发展,状态监测也经历了人工故障检修、人工定期隐患排查、智能化状态监测、基于计算机大数据技术的设备状态监测四个发展阶段,让电气设备运行过程中存在的故障发现、问题维修越来越科学化和合理化,有效降低了运行成本,提高了企业综合实力。 关键词:电力系统;设备状态;电力设备;监测技术 电力设备在经过日常运营中会出现机器上的磨损,性能上的衰退,导致因设备机能出现问题而产生运行故障,进而引发重大生产事故,导致电力能源不能持续稳定地为社会生产生活服务,带来了巨大的经济损失。基于这样的现实需求,电力系统设备监测的概念由此产生,它是建立在计算机信息处理技术、传感器技术以、物联网技术、人工智能技术的成熟发展而来的,它通过传感器获取设备在运行过程中的特定参数,传输到电脑大数据处理系统中,来分析其设备特性的变化与发展趋势,进而评估设备的“健康”状态[1]。随着现代技术的发展,电力设备监测已经越来越趋于智能化和自动化,人工干预的程度越来越小,全天候的自动监测能够让设备处于监测的常态之中,让监测无死角,无漏洞。 一、电力系统设备状态监测内容分析 (一)电力变压器的状态监测 电力变压器的常见的故障为有载调节器和绕组。因此,加强对有载调节器、绕组和变压器油/纸损耗老化、超负荷运行状态的参数监控十分必要。 有载调节器故障主要表现为抽成、转抽和驱动机构由于长时间的磨损产生的机械故障,以及触点烧损、转换电阻和绝缘问题产生的电气故障。其中绕阻绝缘和主绝缘是造成变压器运行故障的最大因素。一般是通过温度、油中气体分析、局部放电等监测参数来分析运行状态。监测技术一般是通过附在变压器箱体上的压电传感器来获取相应的数据参数。 (二)发电机的状态监测 发电机故障是多类型故障的综合,主要表现在定子绕组故障、转子体故障、转子绕组故障、定子铁心故障这四个方面。其中钉子绕组绝缘劣化是发电机故障的主要原因,而PD监测是目前通用方法之一。在监测过程中要注意利用信号处理技术来抑制噪音,防止信号传输受到电气干扰使得测量数据有误。同时还要做好PD行为解释,已达到判定需要定子绕组维护获得机器,从而找出故障位置和原因。 (三)高压断路器状态监测 断路器的工作状态直接关系着电力系统运行的稳定性和安全性。常见的断路器故障主要为拒动、误动、绝缘、载流这四点,其监测方法包含以下三方面内容: 首先是信号的采集。高压断路器是机电一体化的开关设备,在运行过程中必然存在多种性质的物理量,这就需要传感器来对其数据进行精确的探测,以上传到云端服务器中。 其次要通过信号特征量的选取进行分析。信号特征量的选取是其监测的主要内容,通过特征量与规定参数的比较,来确定断路器的工作状态是否存在故障隐患,一旦发现故障要确定其类型,并建立断路器故障诊断的专家系统。 最后根据故障数据的处理结果,在专家系统的分析下,给出对策和措施,帮助检修人员提高维修效率。 二、电力系统设备状态监测发展现状介绍 由于国民经济与社会生产生活的不断前进,电力能源的需求量越来越大,导致电力建设规模不断扩大。电力设备数量的增多带来的是管理技术与管理水平的不断升级,方可实现设备生产价值的最大化。而设备在运行中的监测技术的应用已经成为电力企业最基本的管理行为,是提前发现安全隐患和生产故障的有效保证。 电力设备的监测与维修是随着技术的革新不断变迁的过程。在电力行业发展早期,主要是人工进行故障检修模式为主,出现了问题才去解决问题,而不是提前发现问题隐患将其消灭于萌芽阶段。到了20世纪中、后期,主要是人工定期计算检修为主,通过定时检修来排查隐患,但是由于电力设备数量的不断增多以及人工检修受到时间和精力的影响,投入成本大,实现的效果低。 随着计算机技术在电力系统应用的逐渐成熟,通过智能监测硬件与软件结合的方式来实现电力设备24小时全天候在线监测的技术已得到普及。基于智能化和自动化的设备状态监测,以科学的监测标准,通过数据分析的形式进行电力设备进行准确的、全面的、立体的综合管控,能够降低人工监测与检修的工作量,提高监测质量与检修水平。根据研究表明,在电力系统中实施状态监测与检修可以将设备的利用率提高至10%左右,检修费用节省30%左右,设备使用寿命延长率达到15%左右[2]。 由于我国的电力系统跨越区域广阔,电力设备运行的环境复杂,各种自然灾害频发,需要将计算机网络技术、传感监测技术、通信技术与电网设备设施进行高度的集中融合,实现数据的互联互通,监测的精细请准,并根据上述各项技术的不断升级而加强监测系统的改造,让电力设备状态监测做到提前发现隐患,及时进行故障预警,科学合理的制定维修方案。 三、电力系统设备状态监测发展趋势分析 当前,诸多电力企业已经认识到状态监测技术对发电设备的重要性,因为其关系到电气输送的持续性和稳定性,这对电气企业在用户心中的形象和口碑具有重要的参考价值。未来随着科学技术的发展,状态监控技术的发展将表现在以下几个方面:一是随着监测数据量的爆发增长,对于数据的处理需要更加智能科学,那么,就需要基于神经网络技术、知识系统、模糊逻辑与大数据分析等相应技术的不断进步,让状态监测的数据能够在去伪存真、去粗取精中实现数据价值更高效的利用。 二是实现状态监测办公移动化,事故处理自动化。移动应用在企业的运营管理中已经越来越普及,对于安全监控管理来说,需要监测人员随时随地进行设备的在线监测管理。而借助手机APP和移动端设备就能够实现这一工作需要,打破了时间、空间的限制,首先能够实现记录、拍照、定位等工作记录,其次能够通过APP或移动端设备帮助工作人员快速定位设备故障点,缩短发现故障设备时间,并通过监测系统的统一调度,自动进行事故设备源头的断电,防止二次事故的发生。

电气设备状态检测

电气设备状态检测期末复习 1. 答:①相对介电常数是反映电解质极化的物理量,而电介质在导电或者交变场中的极化弛豫所引起的能量损耗陈伟介质损耗,而介电常数通过影响介质损耗角的正切值来影响介质损耗。②主要是由聚乙烯和聚氯乙烯的介电常数所决定。如聚氯乙烯在20℃时的相对介电常数在3.0~3.5之间,而聚乙烯的介电常数仅为2.3。因此两者在介电常数上的差异将对电容器的介质损耗产生影响。 2 答:油纸绝缘结构中的水分会降低绝缘系统的击穿电压和增加绝缘系统的介质损耗。这主要是由于水是强极性液体,比纸和油的介电常数高很多,因此水的含量越高,便会增加绝缘系统的介质损耗。 3. 答:①电介质是指在电场作用下能产生极化的一切物质。电介质主要分成三类:非极性电介质、极性电介质和离子型电介质。非极性电介质的电偶极矩为零,其主要应用于绝缘的有机材料,如聚乙烯、聚四氟乙烯等。极性电介质具有电偶极矩,其主要应用于聚氯乙烯、纤维等材料。离子型电介质主要是由正负粒子组成,其介电常数较大,具有较高的机械性能,其主要应用于石英、云母等材料。②不善于导电的材料均可以称为绝缘体,因此电介质包含的范围更广,电介质包含绝缘体。绝缘体一定是电介质,但是电介质不一定是绝缘体。 4. 。答:极性液体电介质的介质损耗与液体的黏度有关。极性分子在黏性媒介中做热运动,在交变电场的作用下,电场力矩将使极性分子做趋向于外场方向的转动。在转动的过程中,由于摩擦发热将会引起能量的损耗。松香复合剂是一种极性液体介质,其中的矿物油是稀释剂,因此矿物油的成分增加时,复合剂的黏度将会减小,所以松弛时间减小。因此,对应于一定频率下出现的tanδ最大值的温度就会向低温移动。 5. 答:①通过化学反应动力学原理可以得到:Lnτ=a+(b/T)。其中τ为材料的绝缘寿命,T 为温度,a、b为常数。因此可以知道材料的绝缘寿命的对数值和温度的倒数呈线性关系。 ②这个关系是有一定的局限性的,主要体现在:这个关系是根据单一的一级反应得出的,而

电气设备状态监测与故障诊断技术

电气设备状态监测与故障诊断技术 1 前言 1.1 状态监测与故障诊断技术的含义 电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。 “监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。 广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。 1.2 状态监测与故障诊断技术的意义 电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。但这样会导致制造成本增加。此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。 早期是对设备使用直到发生故障,然后维修,称为事故维修。但是,如前所述,对于大型设备,突发性事故将造成巨大损失。 其后,发展成定期试验和维修,即预防性维修。现在,定期预防性试验和维修已在电力部门形成制度,对减少和防止事故的发生起到了很好的作用。但预防性试验是离线进行的,有很多不足之处: 1) 离线试验需停电进行,而不少重要电力设备轻易不能停止运行。 2) 停电后设备状态(如作用电压、温度等)和运行中不符,影响判断准确度。 3) 由于是周期性定期检查,而不是连续地随时监测,设备仍可能在试验间隔期间发生故障,即造成维修不足。 4) 由于是定期检查和维修,设备状态即使良好时,按计划仍需进行试验和维修,造成人力物力浪费,甚至可能因拆卸组装过多而造成损坏,即造成所谓维修过度。 因此,目前正在发展以状态监测(通常是在线监测)和故障诊断为基础的状态维修。其基本

相关主题