搜档网
当前位置:搜档网 › 变压器温度测量

变压器温度测量

变压器温度测量
变压器温度测量

测量装置(包括油位计及油位信号器、油温温度计及温度信号器、测温电阻、绕组温度信号器、变送器等);

1 、变压器油温监测

变压器油温应采用铂热电阻(Pt100)三线制测量方式测量,变压器油温保护及监测由铂热电阻和数字式温度显示调节仪联合组成。数字式温度显示调节仪应输出一路4~20mA模拟量至全厂计算机监控系统;另外,应分别输出一对温度过高信号接点和一对油温升高信号接点至变压器保护系统。数字式温度显示调节仪的安装位置应便于观察。

2 、变压器线圈温度监测

变压器线圈温度保护仪应输出一路4~20mA模拟量至全厂计算机监控系统;另外,应分别输出一对线圈温度过高信号接点和一对线圈温度升高信号接点至变压器保护系统。

变压器线圈温度测量装置(包括信号源、测量及转换装置等)均应由卖方成套供货,如采用电流测量法,要求高压套管内所配电流互感器精度为0.2级

静电干扰.空间射频干扰

15.耐压试验:AC2500V.50 Hz.60S

BWDK-3207干式变压器温度控制器干式变压器温度控制仪需注意事项:

1如果已经开孔,请注意安装尺寸,以免开孔过大或过小无法安装。

2本温控仪有两部分:主体和传感器。如果是更换旧产品需注意传感器是否配套的问题。一般来说,厂家不同,传感器的接口和协议也不同,无法交叉配套使用。、

3风机电压。通常都是单相风机,即220V电源,特殊一点则是三相风机,电压为380V。4是否需要带通讯接口,一般为两种:RS485接口或4-20mA模拟量输出。

变压器光纤测温装置光纤测温点布置典型示例安装方法示例

附录 A (资料性附录) 变压器光纤测温装置测温点布置典型示例 A.1 概述 光纤温度传感器的安装位置和数量应以尽可能监测到绕组热点温度为目的,并同时对绕组温度分布、顶层油、底层油、铁芯和环境温度实施监测。因此传感器安装位置和数量宜按下述要求执行,也可根据用户具体需求进行安装。 A.2 传感器安装位置和数量要求 按制造方与用户协议,也可以采用不同的布置方式。但由于传感器和光纤均属于易碎器件,因此在确定数量时,要考虑到绕组在工厂制造和在不同运行情况下发生损坏的风险。 光纤温度传感器在110kV(66kV)~330kV(三相三柱式或三相五柱式)油浸变压器上的安装数量见表A.1,分别监测A、B、C三相高低压绕组、铁芯、油的温度。传感器在三相三柱式和三相五柱式变压器的建议安装位置见图A.1和图A.2中的方式。 表A.1 110kV(66kV)~330kV变压器传感器安装数量和监测位置要求

A.1传感器在三相三柱式变压器中的建议安装位置图 传感器在三相五柱式变压器中的建议安装位置图A.2分别监测单相,光纤温度传感器在500kV 及以上单相油浸变压器上的安装数量见表A.2及以上电压等级单相变压器中的500kV高低压绕组、铁芯、油的温度。图A.3为传感器在安装位置。变压器传感器安装数量和监测位置要求表

传感器在单相变压器中的安装方式图A.3 A.3 传感器在绕组热点上的安装绕组高度的区域内的绕组热点位置或者变压器厂商提传感器宜安装在距离绕组顶部1/4 供的绕组热点位置。无特别说明,测点位置不应超出建议的测温区域。相同绕组不同位置的温度测量,可以采用光纤光栅传 感器串的方式实现。 绕组域区置油道布度器垫块高感圈传线组绕: 图A.4 传感器在绕组上的安装位置 A.4 传感器串在绕组轴向温度分布测量上的安装位置 将1串含有8-10个传感器的光纤光栅温度传感器串内置于开好槽的撑条内,传感器在绕组高度上均布以测量绕组轴向上的温度分布,见图A.2或者图A.3中“撑条”标示处。 A.5 传感器在铁芯上的安装位置 铁芯上的光纤光栅温度传感器放置在铁芯顶部,A、B、C绕组上方的对应位置,如图所示,推荐采用光纤光栅传感器串的方式实现。A.5. 铁芯高压绕组 低压绕组传感器 传感器在铁心上的安装位置A.5 图传感器在油中的安装位置A.6 油中传感器的安装位置,可参考《GB 1094.2 电力变压器第2部分温升》。顶层油温安装1-2

变压器主要技术参数及含义

变压器主要技术参数的含义 说明:读书时,很多人对变压器、电机很难理解,当你有工作经验后,再来看下这些知识,你会有更深的理解。 (1)额定容量SN:指变压器在铭牌规定条件下,以额定电压、额定电流连续运行时所输送的单相或三相总视在功率。 (2)容量比:指变压器各侧额定容量之间的比值。 (3)额定电压UN.指变压器长时间运行,设计条件所规定的电压值(线电压)。 (4)电压比(变比):指变压器各侧额定电压之间的比值。 (5)额定电流IN:指变压器在额定容量、额定电压下运行时通过的线电流。 (6)相数:单相或三相。 (7)连接组别:表明变压器两侧线电压的相位关系。 (8)空载损耗(铁损)Po:指变压器一个绕组加上额定电压,其余绕组开路时,变压器所消耗的功率。变压器的空载电流很小,它所产生的铜损可忽略不计,所以空载损耗可认为是变压器的铁损。铁损包括励磁损耗和涡流损耗。空载损耗一般与温度无关,而与运行电压的高低有关,当变压器接有负荷后,变压器的实际铁芯损耗小于此值。 (9)空载电流Io%:指变压器在额定电压下空载运行时,一次侧通过的电流。不是指刚合闸瞬间的励磁涌流峰值,而是指合闸后

的稳态电流。空载电流常用其与额定电流比值的百分数表示,即 Io%=Io/I

N×100% (10)负荷损耗Pk(短路损耗或铜损):指变压器当一侧加电压而另一侧短接,使电流为额电流时(对三绕组变压器,第三个绕组应开路),变压器从电源吸取的有功功率。按规定,负荷损耗是折算到参考温庋(75℃)下的数值。因测量时实为短路状态,所以又称为短路损耗。短路状态下,使短路电流达额定值的电压很低,表明铁芯中的磁通量很少,铁损很小,可忽略不计,故可认为短路损耗就是变压组(绕组)中的损耗。 对三绕组变压器,有三个负荷损耗,其中最大一个值作为该变压器的额定负荷损耗。负荷损耗是考核变压器性能的主要参数之一。实际运行时的变压器负荷损耗并不是上述规定的负荷损耗值,因为负荷损耗不仅取决于负荷电流的大小,而且还与周围环境温度有关。 负荷损耗与一、二次电流的平方成正比。 (11)百分比阻抗(短路电压):指变压器二次绕组短路,使一次侧电压逐渐升高,当二次绕组的短路电流达到额定值时,此时一次侧电压与额定电压的比值(百分数)。 变压器的容量与短路电压的关系是:变压器容量越大,其短路电压越大。 (12)额定频率:变压器设计所依据的运行频率,单位为赫兹(Hz),我国规定为50H。 (13)额定温升TN:指变压器的绕组或上层油面的温度与变

变压器毕业设计

编6 关于配电变压器常见问题对策研究 分院名称: 专业: 班级: 学生姓名: 校内指导教师: 企业指导教师:

目录 摘要 (4) 一、绪论 (4) 1、电压互感器的分类 (4) 2、电压互感器预防性试验项目 (4) 二、电磁型电压互感器的预防性试验 (4) (一)绝缘电阻试验 (5) 1、绝缘电阻的试验目的 (5) 2、绝缘电阻的试验设备 (5) 3、绝缘电阻的试验方法 (5) 4、绝缘电阻的试验结果 (6) 5、绝缘电阻的试验结果分析 (6) (二)介质损失角正切值测量 (6) 1、介质损失角正切值测量的试验目的 (6) 2、介质损失角正切值测量的试验设备 (6) 3、介质损失角正切值测量的试验方法及试验结果 (6) 4、介质损失角正切值测量的试验结果分析 (7) (三)直流电阻试验 (9) 1、直流电阻试验的试验目的 (9) 2、直流电阻试验的试验设备 (9) 3、直流电阻试验的试验方法及试验结果 (9) 4、直流电阻试验结果分析 (10) (四)伏安特性试验 (10) 1、伏安特性试验的试验目的 (10) 2、伏安特性试验的试验设备 (10) 3、伏安特性试验的试验方法 (10) 4、伏安特性试验的试验结果 (10) 5、伏安特性试验的试验结果分析 (10) (五) 极性和变比试验 (11) 1、极性和变比试验的试验目的 (11)

2、极性和变比试验的试验设备 (11) 3、极性和变比试验的试验方法 (11) 4、极性和变比试验的试验结果 (12) 5、极性和变比试验的试验结果分析 (12) (六) 互感器交流耐压试验 (12) 1、互感器交流耐压试验的试验目的 (12) 2、互感器交流耐压试验的试验方法及结果判断 (12) 三、电容式电压互感器 (12) 1、电容分压器介损正切值测量的试验接线 (12) 2、电容分压器介损正切值测量的试验结果 (13) 3、电容分压器介损正切值测量的试验结果分析 (13) 总结 (14) 致谢 (14) 参考文献 (15)

变压器绕组温度计说明书

BWR(WTYK)-04 WINDING TEMPERATURE INDICATOR 一、概述 绕组温度计是一种适用热模拟测量技术测量电力变压器绕组最热点温度的专用监测(控制)仪表。所谓热模拟测量技术是在易测量的变压器顶层油温T O 基础上,再施加一个变压器负荷电流变化的附加温升△T,由此二者之和T=T O+△T即可模拟变压器最热点温度。 本公司研制生产的新型BWR(WTYK)-04绕组温度计有信号报警、冷却器控制和事故跳闸等多项功能,用户可根据实际需要选择使用。该仪表具有良好的防护性能,抗干扰性强,可靠性高,接线安装方便,在户外条件下能正常工作。同时能将变压器绕组温度计信号远传至控制中心,通过XMT(XST)数显仪或计算机系统,实现同步显示、控制变压器绕组温度,确保变压器正常运作。 二、型号说明: B W R - 04 TH 适用于湿热带 开关数目 绕组 温度计 变压器类产品用 输出信号: 1. 直接输出DC(4-20)mA电流信号,也可通过XMT数显仪显示其相应温度同时输出DC(4-20)mA电流信号及DC(0-5)V电压信号; 2. 直接输出端为DC(4-20)mA电流信号,也可通过XST数显仪显示其相应温度同时输出RS-485计算机接口。

BWR(WTYK)-04 WINDING TEMPERATURE INDICATOR 三、产品成套性: 绕组温度计组成有二部分: 1、现场一只嵌装电热元件及BL型电流匹配器的温度控制BWR(WTYK)-04, 如图1所示; 2、中心机房一台遥测控制仪XMT、(XST)。 四、工作原理: 当变压器带上负荷后,如图2所示,通过变压器电流互感器取出与负荷成正比的电流,经电流匹配器调整后,通过嵌装在弹性元件内的电热元件产生热量,使弹性元件的位移量增大。因此当变压器带上负荷后,弹性元件的位移量是由变压器顶层油温和变压器负荷电流二者所决定。则BWR(WTYK)-04指示的温度是变压器顶层油温与绕组对油的温升之和,反映了被测变压器绕组的最热部位平均温度。

变压器油温测量及检查处理

关于变压器的油温测量及检查处理法则 曾振华 华东交通大学电气与电子工程学院南昌330013 摘要:变压器的绝缘老化,主要是由于温度、湿度、氧化和油中分解的劣化物质的影响所致。但老化的速度主要由温度决定,绝缘的工作温度愈高,化学反应进行的愈快,绝缘的机械强度和电气强度丧失的愈快,绝缘老化速度愈快,变压器使用年限也愈短。实际上绕组温度受负荷波动和气温变化的影响,变化范围很大。为保证变压器的连续安全供电,变压器必须保证在一定温度下进行因此,对变压器的温度进行实时采集及检查处理,使其维持在一定的范围内,对变压器的寿命有重要的意义。 关键字:变压器温度铂电阻检查处理 1 变压器散热原理分析 变压器在运行时产生的损耗以热的形式通过油、油箱壁和散热器散发到周围的空气中。热量的散发通过导热、对流和辐射三种形式。从绕组和铁心的内部到其表面热量主要靠导热形式散发,从绕组和铁心表面到变压器油中热量主要靠对流的形式散发。散发到变压器油中的热量使油箱中的变压器油温度上升、密度下降、产生热浮力,而变压器油在热浮力的推动下,从油箱上部进人连接油管,通过油管进人散热器。变压器油在散热器中经过和外面空气的热交换,使散热器中的变压器油温度降低,从油箱下部进人连接油管,通过油管重新进入变压器油箱,形成自然循环。变压器的散热量可由式(1)确定: 式中,Ql为单位热负荷;Q为变压器的损耗;F变压器的总散热面积;C1与变压器性本身参数有关的常数;ty即变压器温升。 2 系统硬件设计 电力变压器运行中,对其油温的测量是维护电力变压器安全运行的基础和关键。电力变压器冷却系统的投退和超温报警等都由其安装的温度控制器来实现。 本变压器油温测量系统以MSP430F449为主控制器件,它是TI公司生产的16位超低功耗特性的功能强大的单片机。MSP430单片机内部具有高、中、低速多个时钟源,可以灵活的配置给各模块使用以及工作于多种低功耗模式,大大降低控制电路的功耗提高整体效率。首先,电力变压器油温经过传感器和信号调理电路采集放大为适合A/D转换的电压值。A /D转换器对模拟信号进行采样并转换位数字信号后经MSP430作预处理。借助MSP430 单片机和主机(上位机)之间的串行通信完成人机交互监测,系统框图如图1

单相变压器毕业设计

单相变压器毕业设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录 单相变压器的设计 摘要:本次设计的课题是单相变压器,基本要求是输入电压范围在24V到60V,功率为100W的单相升压变压器。首先要了解变压器的工作原理、结构和分类,

其次是变压器的设计步骤包括额定容量的确定;铁芯尺寸的选定;绕组的匝数与导线直径;绕组(线圈)排列及铁芯尺寸的确定。 关键词:变压器基本原理设计步骤 前言 随着科学技术进步,电工电子新技术的不断发展,新型电气设备不断涌现,人们使用电的频率越来越高,人与电的关系也日益紧密,对于电性能和电气产品的了解,已成为人们必需的生活常识。 变压器是一种静止的电气设备,它是利用电磁感应原理把一种电压的交流电能转变成同频率的另一种电压的交流电能,以满足不同负载的需要。在电力系统中,变压器是一个重要的电气设备,它对电能的经济传输,灵活分配和安全使用具有重要的作用,此外,也使人们能够方便地解决输电和用电这一矛盾。 输电线路将几万伏或几十万伏高电压的电能输送到负荷区后,由于用电设备绝缘及安全的限制,必需经过降压变压器将高电压降低到适合于用电设备使用的低电压。当输送一定功率的电能时,电压越低,则电流越大,电能有可能大部分消耗在输电线路的电阻上。为此需采用高压输电,即用升压变压器把电压升高输电电压,这样能经济的传输电能。 它的种类很多,容量小的只有几伏安,大的可达到数十万千伏安;电压低的只有几伏,高的可达几十万伏。如果按变压器的用途来分类,几种应用最广泛的变压器为:电力变压器、仪用互感器和其他特殊用途的变压器;如果按相数可以分为单相和三相变压器。不管如何进行分类,其工作原理及性能都是一样的。变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合

变压器绕组温度计

一、概述 绕组温度计是一种适用热模拟测量技术测量电力变压器绕组最热点温度的专用监测(控制)仪表。所谓热模拟测量技术是在易测量的变压器顶层油温T O 基础上,再施加一个变压器负荷电流变化的附加温升△T ,由此二者之和T=T O +△T 即可模拟变压器最热点温度。 本公司研制生产的新型BWR (WTYK )-04绕组温度计有信号报警、冷却器控制和事故跳闸等多项功能,用户可根据实际需要选择使用。该仪表具有良好的防护性能,抗干扰性强,可靠性高,接线安装方便,在户外条件下能正常工作。同时能将变压器绕组温度计信号远传至控制中心,通过XMT-288数显仪或计算机系统,实现同步显示,控制变压器,确保变压器正常运作。 二、型号说明: a)输出信号 A —直接输出DC (4-20)mA 电流信号,也可通过XMT-288数显仪显示其相应温度同时输出DC (4-20)mA 电流信号及DC (0-5)V 电压信号; V —直接输出DC (0-5)电压信号; RS —直接输出端为DC (4-20)mA 电流信号,也可通过XMT-288数显仪显示其相应温度同时输出RS-485计算机接口。 三、产品成套性: 绕组温度计组成有三部分: 1、现场一只嵌装电热元件的温度计BWR (WTYK )-04,如图1所示; B W R - -□ □ TH 适用于湿热带 输出信号a) 开关数目 绕组 温度计 变压器类产品用

2、现场一只BL型电流匹配器,如图1所示; 3、中心机房一台遥测控制仪(XMT-288)。 四、工作原理: 当变压器带上负荷后,如图2所示,通过变压器电流互感器取出与负荷成正比的电流,经电流匹配器调整后,通过嵌装在弹性元件内的电热元件产生热量,使弹性元件的位移量增大。因此当变压器带上负荷后,弹性元件的位移量是由变压器顶层油温和变压器负荷电流二者所决定。则BWR(WTYK)-04指示的温度是变压器顶层油温与绕组对油的温升之和,反映了被测变压器绕组的最热部位平均温度。 电流匹配器是一种电流变换装置,它的作用是为BWR(WTYK)-04提供工作电流.从变压器的电流互感器输出的电流经电流匹配器变换后,向BWR(WTYK)-04内部的电热元件提供一个可调电流,从而能够达到模拟变压器绕组最热部位温度。 XMT-288仪表具有遥测变压器绕组温度及超温报警等功能。通过BWR

变压器光纤测温装置常见故障及原因分析

变压器光纤测温装置常见故障及原因分析 发表时间:2018-09-04T14:33:32.047Z 来源:《建筑学研究前沿》2018年第11期作者:程自宽 [导读] 电力系统中,维护电力变压器的正常运行是整个系统可靠供电的基本保证。 特变电工股份有限公司新疆变压器厂新疆昌吉 831100 摘要:变压器绕组温度过高会影响绕组绝缘,并导致变压器绝缘等级下降,减少变压器的运行寿命。光纤测温装置是变压器产品的一种可选配件,可较真实地测量并显示变压器内部测量点的热点温度,为变压器产品的负荷预测、寿命评估和状态评估提供参考数据。变压器是电网一次设备的重要组成部分,变压器的绕组热点温度是决定其绝缘寿命的主要因素。近些年,由于光纤温度传感器具有耐高电压、耐高温、抗强电磁场等优良特性,越来越多地应用到特殊场合的温度测量中。光纤温度传感器种类繁多,其中基于半导体吸收原理的光纤温度传感器由于结构简单、可靠性高、成本较低等特点在近年来的研究中越来越受重视。 关键词:变压器;光纤测温装置;故障;原因 引言 电力系统中,维护电力变压器的正常运行是整个系统可靠供电的基本保证.近年来,我国用电需求快速增长,电力系统发展方向为超高压、大容量.因此,变压器的故障率也随之增加.据相关资料统计,110kV及以上变压器的平均事故率在0.69%以上.尤其是近年来,变压器因过载运行,导致绝缘老化、变压器绕组击穿、烧毁事故率高达75%以上.高压油浸电力变压器的寿命主要取决于固体绝缘(纤维纸)的寿命,温度、水分和氧气是促使其绝缘老化的主要因素.热效应为变压器老化的决定性因素,热点温度的高低决定了变压器的使用寿命.随着光电子技术的高速发展,光纤传感器的诞生为变压器温度测量提供了一种新的技术手段.相对于传统的电信号测量传感器,光纤传感器具有体积小、抗腐抗电磁干扰、耐高温、耐高压等诸多优势,能有效监测电力变压器内部的热点温度.当前最为成熟技术为基于荧光光纤的温度传感器,应用最为广泛的是点式光纤测温产品.该技术最开始从国外进行应用,20世纪80年代,著名的变压器制造厂商如ABB、西门子、东芝的产品上均使用过荧光光纤温度传感器。 变压器的内部温度可以通过以下3种方法获得:热模拟测量法、间接计算法和直接测量法.对于热模拟法,就是通过在变压器中安装热模拟法测温仪表,从而换算出变压器的绕组温度.其优点是经济、冷却系统可以被直接启动.但是,该方法准确性差,测量温度有一定的时差性.在法国电网中,该方法已经被停止使用.间接计算法,就是根据假设的变压器热模型,结合各国的实用经验、国际电工委员会的IEC345-1991标准和我国的GB/T15164-1994《油浸式电力变压器负载导则》标准,推导出热点温升计算公式,具有一定的精度,具有经济、简便、实用性强等特点,但是该方法计算复杂,尤其是由经验得出的计算参数,通用性不强,在变压器现场使用时受到限制.且热模法和间接计算法只能求解热点温度值,不能得到热点的具体位置,实际应用过程中具有一定的局限性.直接测量法是在绕组靠近导线部分埋设传感器,然后通过检测仪表获取传感器附近的温度值,它是一种在线检测设备.直接测量法可以实时、准确测量出绕组热点温度;通过及时启动制冷设备,可以避免因变压器绕组过热引发的事故.该方法最典型的应用代表为荧光光纤温度传感器和半导体光纤温度传感器。 1.概述 光纤测温装置主要由内部光纤、贯通板及贯通器、贯通器防护罩、外部光纤、光纤测温主机及主机控制箱等组成,整体安装结构如图1所示。光纤测温装置结构及操作复杂、精细,使用和装配过程中经常发生损坏故障,笔者对我公司近几年来发现的问题进行了汇总。 图1 整体结构图 2故障情况及原因分析 2.1光纤测量不通 (1)发现光纤探头损坏见图2,光纤探头受力开裂,其内部材料已膨胀出来,清晰可见(见图2中标识位置),测量结果显示光纤不

变压器综合保护器毕业设计

動力系發電廠及電力系統專業 畢業設計說明書 變壓器綜合保護器 指導教師:xxx 設計學生:xxx 河北 xx 大學(水電學院) 動力系 二○○八年六月 1

發電廠及電力系統專業畢業設計說明 序言 本說明書是對變壓器綜合保護器的設計介紹。 該保護器可以對超載、短路、漏電、觸電四種情況進行保護,可以有效的保護設備及人身安全,防止事故發生,提高了農業用電的安全性及可靠性。設計結合了《單片機原理介面與應用》,《電路》,《電子技術》等專業課。在這次設計中得到了李臨生老師的大力幫助和指導以及同組同學的幫助,在此表示誠摯的謝意!但由於本人的知識和設計水準有限,設計中肯定有不足和錯誤之處,懇請各位老師多批評指正,以利於我今後的工作和學習。 一、設計題目:變壓器綜合保護器 二、設計目的:我國農村變壓器的數量十分龐大,有專供澆地水泵的, 有用於日常生活的,也有混在一起使用的。這些變壓器在農村的 各方面都起著非常重要的作用,但由於農村條件有限,用戶有時 不守規範,容易造成超載、短路、漏電、觸電事故,針對這種情 況,為了保證農村變壓器能夠長期正常運行而設計了該保護器。 本保護器安裝在變壓器低壓側,當上述四種參考數超過規定值時,可以及時切斷供電,有效的保護人身及設備安全,防止事故發生,提高農業用電的安全性和可靠性。 三、設計思路: 用穿心400安培CT測量變壓器工作電流,用高靈敏度CT測 2

量三相接地的合成漏電流.使用89C51單片機,分別採樣判別變壓器的輸出電流和接地漏電流按照預定值,判斷是否斷電,送電或重合閘。此保護器採用獨特的複位電路以適用應現場惡劣的電磁環境,保證能夠長期可靠的運行,不發生死機現象。使用廉價的A/D轉換模式,把電流採樣數位化,觸電的判別採用鑒相方式,運用三相點合成理論,避免動作死區。 四、主要功能: 1、漏電流保護範圍0~400 mA,分2 檔可調。 2、觸電電流保護範圍15~400 mA,分2檔可調。 3、超載時延時30 s切斷,短路時立即切斷。 4、有自動重合閘功能,間隙30 s。 5、採用廉價的A/D轉化方式。 6、設計複位電路,保證電路運行時永遠不會出現死機現象。 3

变压器油面绕组温度计的基本知识

1、这里着重介绍油面温度计,因为绕组温度计的温度指示并非真实绕组温度体征,而是通过油顶层温度与电流互感器小信号叠加而成的模拟信号。 2、绕组温度计的信号介绍: B W Y -80 4 A J (TH) 湿热带防护 J、机电一体化、输出(4-20)mA A、铂电阻 开关数量 线性刻度 油面 温度计 变压器 BWY-804AJ(TH)油面温度计:仪表内装有四组可调控制开关,可分别用于变压器冷却系统控制及讯号报警。同时能输出与温度值对应的(4-20)mA电流信号和Pt100铂电阻值,供计算机系统和二次仪表使用。 组成:主要由弹性元件、传感导管、感温部件、温度变送器、数字式温度显示仪组成。由弹性元件、传感导管和感温部件构成的密封系统内充满感温介质,当被测温度变化时,感温部件内的感温介质的体积随之变化,这个体积增量通过传感导管传递到仪表内弹性元件,使之产生一个相对应的位移,这个位移经机构放大后便可指示被测温度,并驱动微动开关,输出开、关控制信号以驱动冷却系统,达到控制变压器温升的目的。通过嵌装在一次仪表内的变送器,输出(4-20)m A标准信号,输入计算机系统和二次仪表,实现无人电站管理使用说明: 1、仪表在运行中必须垂直安放。 2温包安装:使用前必须确认温度计座内注满了油且油面能够完全浸没PT100。 3、温包与表头间的软管必须有相应的固定,间距在300mm为宜。弯曲半径不得小于R100mm。多余的软管应按大于直径Φ200mm盘成圆,固定在变压器本体上。(毛细管内为惰性液体) 4、调整温度表必须在专用设备特定温度下进行。 5、切忌用手随意拨动表指针动作。 常见故障: 1、表盘指针不动作且回零---毛细管内液体泄露,该故障为不可修复故障。 2、数显显示异常:极性接反,变送器故障 绕组温度计的工作原理: 变压器绕组温度计的温包插在变压器油箱顶层的油孔内,当变压器负荷为零时,绕组温度计的读数为变压器油的温度。当变压器带上负荷后,通过变压器电流互感器取出的与负荷成正比的电流,经变流器调整后流经嵌装在波纹管内的电热元件。电热元件产生的热量,使弹性元件的位移量增大。因此在变压器带上负荷后,弹性元件的位移量是由变压器顶层油温和变压器负荷电流二者所决定。变压器绕组温度计指示的温度是变压器顶层油温与线圈对油的温升之和,反映了被测变压器线圈的最热部位温度。 绕组温度计的档位选定: 1、选定档位需要的几个参数:变压器一次额定电流、CT变比、铜油温差 2、计算公式:IP=I*/CT变比,得出二次互感器额定电流.根据铜油温差查曲线得到IS

浅谈变压器主变温度计故障的诊断及处理

浅谈变压器主变温度计故障的诊断及处理 摘要:变压器是电力系统中重要而又昂贵的输变电设备,它的工作状态直接关 系到电力系统的安全稳定运行,而变压器温度计(简称温度计)是变电站为掌握变压器运行情况而采用的最经济,使用频率最高的手段。本文作者分析了变压器主变温度计故障原因,并提出处理措施。 关键词:变压器;主变温度计;故障 0、引言 变压器是变电站的核心设备之一,变压器是由铁芯、线圈、油箱、油枕、呼吸器、防爆管、散热器、绝缘套管、分接开关、瓦斯继电器、还有温度计、热虹吸等附件组成。变压器在输配电系统中占有极其重要的地位,它的主要用途是升高电压把电能送到用电地区,再把电压降低为各级使用电压,以满足用电需要。变压器是连接各种电压等级母线的中间环节,一旦发生故障,轻则会造成大面积停电,给工农业生产带来极大的危害,重则会危及整个电力系统的稳定。面对变压器在运行中的各种异常及故障现象,每一个电力运行人员应能作出迅速而正确的判断与处理,尽快消除设备隐患及缺陷,从而保证变压器的安全运行及电力系统的安全稳定。变压器故障以超温为最常见,主变超温往往是变压器各种故障的先兆。我局对主变温度监控非常重视,在每个变电站都建立了主变温度监控档案,以便运行人 员及早发现主变温度异常的问题,同时还结合一些主变超温的处理方法,以防止主 变故障的发生。 1、变压器概述 电力变压器是电力系统中广泛使用的高压电器设备,其在运行的过程中一旦发生故障,极容易影响到整个电力系统的供电质量和稳定性,甚至是可能造成巨大的经济损失。因此在目前的工作中,以充分理解变压器的组成、运行原理并对常见的各种故障出现原因进行分析和诊断十分关键,对保证变压器的正常持续工作有着极为关键和重要的意义。 1.1变压器概念 所谓的变压器就是在工作的过程中利用电磁感应原理来对原有的电流和电压进行改变的一种装置,其在应用的过程中主要的构成有初级线圈、次级线圈以及铁芯等。在变压器的应用中,电压的交换、电流交换以及稳压等功能。 1.2工作原理 变压器是变化交流电压、交流电流的主要器件,当初级线圈中通过有交流电的时候,铁芯或者相关磁芯边会发生反应,产生一定的交流磁通,使得次级线圈在运行中产生感应电压或者电流。变压器通常都是有铁芯和磁芯两个线圈组成,其中还存在着两个或者两个以上的绕组,并通常,人们将其中连接电源的绕组叫做初级线圈、其余的绕组叫做次级线圈。 2、变压器温度计运行原理 变压器温度计有油温表和绕组温度计两种。温度计有两支指针,有实时温度测量的黑色指针,还有指示最高温度的红色指针,红色指针在仪表透镜上与调节钮连接在一起;红色指针为黑色指针走过的历史最高温度。 当温度上升时,黑色指针会推动红色指针,并将其推到最高温度的指示位,当黑色指示针返回的时候红色指针不返回;这样,我们可通过红色指针的读数,得知黑色指针走过的历史最高温度(显示该温度计所达到的最高温度)。 故主变压投运前,应先对指针复位调节时,使红色指针与黑色指针的右侧对

光纤测温

光纤测温 1.概述 光导纤维是一种利用光完全内反射原理而传输光的器件。一般光导纤维用 石英玻璃制成,通常有三层:最里面直径仅有几十微米的细芯称芯子,其折射率 为n;外面有一层外径为10 00~20 00μm的包层,其折射率为n2,通常n略小于 n1;芯子和包层一起叫做心线;心线外面为保护层,其折射率为n3,n3≥n2。这种结构可保证按一定角度入射的光线在芯子和包层的界面发生全反射, 使光线只集中在芯子内向前传输。与温度测量有关的光导纤维的特征参数主要 是数值孔径NA,其表达式为 NA=n0sinθ0=n21-n22(6-32) 式中,n0为空气折射率,其值为1;n1为芯子材料的折射率;n2 为包层材料的折 射率;θ为临界入射角(指保证入射光在芯子和包层界面间发生全反射,从而集 中在芯子内部向前传输的最大入射角)。 NA大,表示可以在较大入射角范围内输入并获得全反射光;它与心线直径 无关,仅与它们材料的折射率有关。一般光学玻璃组成的光纤,其NA约为0.4;而石英玻璃组成的光纤,其NA约为0.25。 2.光纤温度传感器 光纤温度传感器是采用光纤作为敏感元件或能量传输介质而构成的新型测 温传感器,它有接触式和非接触式等多种型式。 光纤传感器由光源激励、光源、光纤(含敏感元件)、光检测器、光电转换及处 理系统和各种连接件等部分构成。光纤传感器可分为功能型和非功能型两种型 式,功能型传感器是利用光纤的各种特性,由光纤本身感受被测量的变化,光纤 既是传输介质,又是敏感元件;非功能型传感器又称传光型,由其他敏感元件感 受被测量的变化,光纤仅作为光信号的传输介质。 (1)功能型光纤温度传感器 功能型光纤温度传感器是由光纤本身感受被测目标物体的温度变化,并引 起传输光的相应变化,然后据此确定被测目标物体的温度高低与发生变化的位 置。这类传感器目前仍处于研究阶段,下面介绍其中两种功能型光纤温度传感 器。 ①黑体辐射型 这种温度传感器与辐射光纤传感器很相似,其工作原理是基于光纤芯线受 热产生黑体辐射现象来测量被测物体内热点的温度。此时,光纤本身成为一个 待测温度的黑体腔,它与辐射温度计的区别在于辐射不是固定在头部,而是光纤 整体。在光纤长度方向上的任何一段,因受热而产生的辐射都在端部收集起来, 并用来确定高温段的位置与温度。因此,它属于接触式温度传感器范畴。这种 传感器是靠被测物体加热光纤,使其热点产生热辐射,所以,它不需要任何外加 敏感元件,可以测量物体内部任何位置的温度。而且,传感器对光纤要求较低, 只要能承受被测温度就可以。 光纤温度传感器的热辐射能量取决于光纤温度、发射率与光谱范围。当一 定长度的光纤受热时,光纤的所有部分都将产生热辐射,但光纤各部分的温度可 能相差很大,所辐射的光谱成分也不同。由于热辐射随物体温度增加而显著增 加,所以,在光纤终端探测到的光谱成分将主要取决于光纤上最高温度,即光纤 中的热点,而与其长度无关。

油浸式变压器技术参数和要求

油浸式变压器技术参数和要求 1.变压器连接组别: 据GB/T 6451-1999《三相油浸式电力变压器技术参数和要求》规定,配电变压器可采用Dyn11联结。 我国新颁布的国家规范《民用建筑电气设计规范》、《工业与民用供配电系统设计规范》、《10KV及以下变电所设计规范》等推荐采用Dyn11联结变压器用作配电变压器。 现在国际上大多数国家的配电变压器均采用Dyn11联结。 2.分接范围: 据GB/T 6451-2008 《油浸式电力变压器技术参数和要求》规定:±5% 。根据需要可以提供分接范围为±2×%的变压器。 3.损耗: 据GB/T 6451-2008 《油浸式电力变压器技术参数和要求》规定: 空载损耗:; 空载电流:%; 负载损耗:; 短路阻抗:4%。 4.短路承受能力: 据GB 《电力变压器第5部分:承受短路的能力》规定: 短路后绕组温度的最大允许值:250℃; 绝缘系统温度最大允许值:105(绝缘耐热等级A)。 (注:当绝缘耐热等级不为A时,可与制造商协商温度的最大限值) 6.绝缘水平: 据GB/T 10237-1988 《电力变压器绝缘水平和绝缘试验外绝缘的空气间隙》规定: 设备的最高电压(有效值):; 额定短时工频耐受电压(有效值):30kV;

额定雷电冲击耐受电压(峰值):75kV; 7.温升限值: 据GB/T 6451-2008 《油浸式电力变压器技术参数和要求》规定:顶层绝缘液体温升限值:60K; 绕组热点温升限值:78K; 绕组平均温升限值:ON及OF冷却方式:65K; OD冷却方式:70K; 8.冷却方式: 内部冷却:ON:矿物油自然对流循环冷却; OF:矿物油强迫对流循环冷却; 外部冷却:AN:空气自然对流冷却; AF:空气强迫对流冷却(风扇); WN:水自然对流冷却; WF:水强迫对流冷却(泵); 9.运行环境条件: 据GB/T 《电力变压器第2部分:液浸式变压器的温升》规定: 空气冷却方式变压器温度不宜超过: 任何时刻: +40℃; 最热月平均温度:30℃; 年平均温度:20℃; 水冷却方式变压器温度: 冷却器冷却水入口处温度任何时候不应高于25℃或者年平均温度不应高于20℃。 10.内层冷却介质的技术参数和要求 内层冷却介质可以是矿物油也可以是合成的油脂。对于油脂的技术要求参见GB/T 《电力变压器第14部分:采用高温绝缘材料的液浸式变压器的设计和应

变压器光纤测温装置光纤测温点布置典型示例、安装方法示例

附录A (资料性附录) 变压器光纤测温装置测温点布置典型示例 A.1 概述 光纤温度传感器的安装位置和数量应以尽可能监测到绕组热点温度为目的,并同时对绕组温度分布、顶层油、底层油、铁芯和环境温度实施监测。因此传感器安装位置和数量宜按下述要求执行,也可根据用户具体需求进行安装。 A.2 传感器安装位置和数量要求 按制造方与用户协议,也可以采用不同的布置方式。但由于传感器和光纤均属于易碎器件,因此在确定数量时,要考虑到绕组在工厂制造和在不同运行情况下发生损坏的风险。 光纤温度传感器在110kV(66kV)~330kV(三相三柱式或三相五柱式)油浸变压器上的安装数量见表A.1,分别监测A、B、C三相高低压绕组、铁芯、油的温度。传感器在三相三柱式和三相五柱式变压器的建议安装位置见图A.1和图A.2中的方式。 表A.1 110kV(66kV)~330kV变压器传感器安装数量和监测位置要求

图A.1传感器在三相三柱式变压器中的建议安装位置 图A.2传感器在三相五柱式变压器中的建议安装位置 光纤温度传感器在500kV及以上单相油浸变压器上的安装数量见表A.2,分别监测单相高低压绕组、铁芯、油的温度。图A.3为传感器在500kV及以上电压等级单相变压器中的安装位置。 表A.2 500kV变压器传感器安装数量和监测位置要求

图A.3传感器在单相变压器中的安装方式 A.3 传感器在绕组热点上的安装 传感器宜安装在距离绕组顶部1/4绕组高度的区域内的绕组热点位置或者变压器厂商提供的绕组热点位置。无特别说明,测点位置不应超出建议的测温区域。 相同绕组不同位置的温度测量,可以采用光纤光栅传感器串的方式实现。 图A.4 传感器在绕组上的安装位置 A.4 传感器串在绕组轴向温度分布测量上的安装位置 将1串含有8-10个传感器的光纤光栅温度传感器串内置于开好槽的撑条内,传感器在绕组高度上均布以测量绕组轴向上的温度分布,见图A.2或者图A.3中“撑条”标示处。 A.5 传感器在铁芯上的安装位置 铁芯上的光纤光栅温度传感器放置在铁芯顶部,A、B、C绕组上方的对应位置,如图A.5所示,推荐采用光纤光栅传感器串的方式实现。

毕业设计变压器外文翻译

摘要 XF 110KV变电所是地区重要变电所,是电力系统110KV电压等级的重要部分。其设计分为电气一次部分和电气二次部分设计。 一次部分由说明书,计算书与电气工程图组成,说明书和计算书包括变电所总体分析;负荷分析与主变选择;电气主接线设计;短路电流计算;电气设备选择;配电装置选择;变电所总平设计及防雷保护设计。 二次部分由说明书,计算书与电气工程图组成。说明书和计算书包括整体概述;线路保护的整定计算;主变压器的保护整定计算;电容器的保护整定计算;母线保护和所用变保护设计。 计算书和电气工程图为附录部分。其中一次部分电气AutoCAD制图六张;二次部分为四张手工制图。 本变电所设计为毕业设计课题,以巩固大学所学知识。通过本次设计,使我对电气工程及其自动化专业的主干课程有一个较为全面,系统的掌握,增强了理论联系实际的能力,提高了工程意识,锻炼了我独立分析和解决电力工程设计问题的能力,为未来的实际工作奠定了必要的基础。 关键词: Ⅰ、变电所Ⅱ、变压器Ⅲ、继电保护

Abstract XF county 110KV substation is an important station in this distract, which is one of the extremely necessary parts of the 110KV network in electric power system. The design of the substation can be separated in two parts: primary part and secondary part of the electric design. The first part consists of specifications, computation book and Electrical engineering drawings about the design. The specifications has several parts which are General analysis of the station, Load analysis, The selection of the main transformer, Layout of configuration, Computation of short circuit; Select of electric devices, Power distribution devices, General design of substation plane and the design of thunderbolt protection. The second part also consists of specifications, computation book and electrical drawings about the design。Specifications and computation book include following section: General, The evaluation and calculate of line protection, Transformer protection, capacitor protection, Bus protection and Self-using transformer protection. Computation book, Electrical engineering drawings and catalogue of drawings are attached in the end。There are nine drawings total, in which four are prepared by hand, others are prepared by computer in which installed the software electrical AutoCAD. From other view, it also can be classified as first part and second part. This is a design of substation for graduation design test. It can strengthen our specified knowledge. Key-words: Ⅰsubstation Ⅱtransformer Ⅲ Relay protection

变压器用绕温度计的误差分析

变压器用绕组温度计的误差分析 一.概述 随着对变压器运行安全要求的不断提高,绕组温度计(以下简称温度计)作为一种运行监护元件已愈来愈广泛地应用在变压器产品上。虽然一般温度计的使用说明中指出:“温度计内电热元件温度的增加正比于绕组与油箱顶部(油面)温度之差的增加”。严格来说,这一说法是不确切的.因为对不同结构的变压器绕组,虽然可使电热元件内流过的电流与统组负载电流成正比,但由于电热元件与绕组的冷却条件不可能完全相同,这就使得相同的电流变化却不一定在统组和电热元件内引起相同的温度变化,换句话说,在某些情况下,温度计显示的温度可能是“虚假”的.因而有必要对温度计应用的实际情况作一分析. 二.绕组温度计的工作原理 统组温度计是利用“热模拟”(thermalimage)原理间接测量统组热点温度的,其主要组成部分如图1所示.温度计的主要组 成部分:温包、测量波纹管及连接二者的毛细管,组成反映变压器顶层油温的测量系统;电流互感器、电流匹配器及电热元件,组成反映绕组负载电流变化的热模拟部分以及用于补偿环境温度的补偿波纹管. 测量系统中注满一种体积随温度变化的液体,将该系统中的温包置于

油箱顶部,以感应变压器顶层油温,顶层油温的变化,引起测量系统中液体的胀缩,导致测量波纹管的位移。 由电流互感器取得的与负载电流成正比的电流Ip经电流匹配器调整后,Ip变化为Is,加到测量波纹管内的电热元件上,该电流在电热元件上所产生的热量,使测量波纹管在原有位移的基础上产生一相应的位移增量,加大后的位移量经机械放大带动指针转动,从而在仪表上显示出对应负载电流的统组温度. 若通过电热元件的电流Is所产生的热量,使测量波纹管位移变化所带来的温度增量近似等于被测绕组热点温度对变压器顶层油温(即温包放置处油温)之差,则绕组温度计所显示的温度就反映了绕组的热点温度. 图2 三.绕组温度计的误差分析 在变压器的热计算完成以后,需要确定温度计的基准工作点,即所谓“整定”,它是以一定的绕组负载电流为基准,选取电流互感器电流

变压器监测装置介绍及在线监测解决方案

目录 1.概述 (3) 2.变压器状态监测系统构架 (3) 3.变压器监测装置 (4) 3.1变压器油中溶解气体组分和水分感知 (4) 3.2变压器铁芯接地泄漏电流感知 (5) 3.3变压器振动与噪声感知 (5) 3.4变压器局部放电感知 (6) 3.5变压器绕组温度监测 (7) 3.6在线电能质量监测 (8) 3.7红外、紫外与可见光图像融合感知 (8) 4.变压器在线监测平台目标 (9)

1.概述 变压器是电力系统中重要的也是昂贵的关键设备,它承担着电压变换,电能分配和转移的重任,变压器的正常运行是电力系统安全、可靠地经济运行和供用电的重要保证,因此,必须最大限度地防止和减少变压嚣故障或事故的发生。但由于变压器在长期运行中,故障和事故是不可能完全避免的。引发变压器故障和事故的原因繁多,如外部的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中留下的设备缺陷等事故隐患,特别是电力变压器长期运行后造成的绝缘老化、材质劣化等等,已成为故障发生的主要因素。 2.变压器状态监测系统构架 正因为变压器故障的不可完全避免,对故障的正确诊断和及早预测,就具有更迫切 的实用性和重要性,重要用电单位对变压器的状态进行实时监测正在逐渐推广普及。

3.变压器监测装置 变压器主要监测参数如下表所示:序号电气设备监测项目 监测指标 监测技术及特点1 变压器/电抗器油中关键气体组分 H2、CO、CO2、CH4、C2H6、 C2H4、C2H2 气相色谱技术、自 产气,无需载气、免维 2油中微水含量溶解水和RH值薄膜电容微水传感器3中性点泄漏电流泄漏电流特定传感器 4绝缘油介电强度耐压值专利耐压测试探头5振动及噪声监测Vpp、加速度g ICP加速度传感器 6局部放电PPS和幅值HFCT、AE传感器 7套管健康状况相对电容和介损专用套管末屏传感器8套管绝缘油状态油中氢气、水分及压力取油口传感器植入 9本体状态瓦斯监测报警、胶囊泄漏 监测、油温、压力报警 干接点输出 10附件系统冷却机组运行状态风机启停及运行电流 11非电量保护系统变压器常规保护量常规非电量保护输出 3.1变压器油中溶解气体组分和水分感知 图2、新型无载气免维护型油中溶解气体在线感知装置 新型变压器油色谱在线感知系统可实现自动定量循环清洗、进油、油气分离、样品

相关主题