搜档网
当前位置:搜档网 › 射频(RF)基础知识

射频(RF)基础知识

射频(RF)基础知识
射频(RF)基础知识

●什么是RF?

答:RF 即Radio frequency 射频,主要包括无线收发信机。

2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)?

答:EGSM RX: 925-960MHz, TX:880-915MHz;

CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。

3. 从事手机Rf工作没多久的新手,应怎样提高?

答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。

● 4. RF仿真软件在手机设计调试中的作用是什么?

答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。

5. 在设计手机的PCB时的基本原则是什么?

答:基本原则是使EMC最小化。

6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代

表何意?

答:ABB是Analog BaseBand,

DBB是Ditital Baseband,MCU往往包括在DBB芯片中。

PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。

7. DSP和MCU各自主要完成什么样的功能?二者有何区别?

答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。

8. 刚开始从事RF前段设计的新手要注意些什么?

答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。

9. 推荐RF仿真软件及其特点?

答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。

详情可查看Agilent网站。

10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以

及由此对硬件的性能要求等内容?

答:可以看看https://www.sodocs.net/doc/641537707.html,和https://www.sodocs.net/doc/641537707.html,,或许有所帮助。关于TI的wireless solution,可以看看https://www.sodocs.net/doc/641537707.html,中的wireless communications.

11. 为什么GSM使用GMSK调制,而W-CDMA采用HPSK调制?

答:主要是由于GSM和WCDMA标准所定。有兴趣的话,可以看一些有关数字调制的书,了解使用不同数字调制技术的利与弊。

12. 如何解决LCD model对RF的干扰?

答:PCB设计过程中,可以在单个层中进行LCD布线。

13. 手机设计过程中,在新增加的功能里,基带芯片发射数据时对FM产生噪声干扰,如何解决这个问题?

答:检查PCB设计,找到干扰源并加强隔离。

14. 在做手机RF收发部分设计时,如何解决RF干扰问题?

答:GSM 手机是TDMA工作方式,RF收发并不是同时进行的,减少RF干扰的基本原则是一定要加强匹配和隔离。在设计时要考虑到发射机处于大功率发射状态,与接收机相比更容易造成干扰,所以一定要特别保证PA的匹配。另外RF前端filter的隔离也是一个重要的指标。PCB板一般是6层或8层,必须要有足够的ground plane 以减少RF干扰。

15. 如何消除GSM突发干扰?

答:在PCB布线时,要把数字和射频部分很好的隔离开,必须保证好的ground plane。一些电源和信号线必须进行有效的电容滤波。

16. 如何解决RF的电源干扰?

答:必须确保RF电源已经很好地滤波。如有必要,可以对不同的RF线路使用单独的电源。

17. 有RF应用电路,在RF部分不工作的时候CPU及其它相关外设工作正常;可是当RF启动工作时候,CPU与RF无关的端口也受到了类似于尖脉冲的干扰。请问,是什么原因造成的?怎样克服这样的干扰?

答:可能是RF部分没有很好地与CPU部分隔离,请检查PCB版图。

18. 选择手机射频芯片时,主要考虑哪些问题?

答:在选择射频芯片时主要考虑以下几点:

①射频性能,包括可靠性。

②集成度高,需要少的外围原器件。

③成本因素。

19. 如何利用手机射频芯片减少外围芯片的数量?

答:手机射频芯片集成度越高,所需要的外围元启件就越少。

20. 射频芯片对于外围芯片会不会产生电磁干扰,应该怎么消除?

答:应该说是射频系统会对其他DBB,ABB产生电磁干扰,而不仅是射频芯片。加强射频屏蔽是一个有效的措施。

21. 在无线通信系统中,基带的时域均衡,是否应该位于基带解调并进行位同步抽去后,

对每一个位抽取的结果,经过时域均衡,再进行门限判决?

答:是的。需要先经过均衡,再进行门限判决。

22. 相同的发射功率,在频率不一样时,是否频率高的(如900MHz)传输距离远,频率

低(如30MHz)传输距离短(在开阔地带)?

答:应该考虑到波长因素。频率越高,波长越短,在开阔地带,传输损耗越大,因此传输

距离较短。

23. 用定时器1来产生波形,其程序如下:

LDP #232

SPLK #0Ah,T1PR

SPLK #05h,T1CMPR

SPLK #0000h,T1CNT

SPLK #0042h,GPTCON

SPLK #0D542h,T1CON

为什么在T1PWM/T1CMP引脚上没有波形输出?

答:可以使用仿真工具进入代码来调试这个问题。

24. “手机接收机前端滤波器带宽根据接收频率的带宽来决定,必须保证带内信号以最小的插损通过,不被滤除掉。”在满足能有效接收信号的情况下,对前端滤波器,如果滤波器带宽比较宽,那么滤波器的插损就小(对SAW不知是不是也是这样),但带内噪声就增加,反之相反。那么在给定接收信号频率范围的情况下,应该如何来考虑滤波器的带宽,

使带内信号以最小的插损通过?

答:应该从系统设计的角度考虑这个问题,包括频率范围(frequency range,sensitivity)和感度(selectivity)等。可以在插损(insertion loss)、带宽(bandwidth)和带外抑制(out of band rejection)之间取得折衷, 只要选择的值符合系统需求,就可以了。

25. 一般来说PA、SWITH有一定抑制杂散辐射的能力,但有一定的限制,如何增加其它

的方法来更好的解决?

答:准确的说法应该是PA的匹配滤波有一定抑制杂散辐射的能力,另外可以选择好的前

端Filter 以加强带外抑制。

26. 如何选用RF的LDO?

答:选用LDO时,应考虑其自身所具备的某些特性,如driving current、输出噪声和纹波

抑制(ripple rejection)等。

27. 用什么方法可以降低射频系统在待机时的功耗?

答:可以在手机听网络paging信息间隙把射频系统关掉。

28. TI推出的TRF6151芯片采用直接变频技术,会不会导致其他问题?

答:TI推出的TRF6151芯片是单芯片GSM tranceiver,采用零中频接收机结构。直接变频技术现在已经很成熟了,不存在技术问题,而且还是目前的主流方案。

29. TI提供的手机方案在软件方面与Symbian公司有什么关系?

答:TI的无线PDA方案及OMAP支持包括Symbian的EPOC在内的多种操作系统。

30. 在手机RF电路中,信号传输线路上一般会串联一个33pF的电容,这是为什么?

答:一般而言,串联一个33pF的电容目的是隔直和耦合。

31. 据报道TI已开发出单芯片手机,请问在单芯片中如何实现BB与RF的隔离,与传统

分立模块设计的要求有何不同?

答:TI 计划于2004年推出单芯片手机方案。传统分立模块设计可以通过选择更好性能的外围器件,以及通过好的PCB布线来加强BB与RF的隔离,有很大的灵活性。而单芯片方案中BB与RF的有效隔离是由IC设计技术来保证的,TI在这方面已经积累了丰富的经

验。

32. 手机设计时,如何减少传导杂散发射和辐射杂散发射?

答:要减少杂散发射,应该从线路设计和PCB设计这两个方面考虑。

33. 可否采用屏蔽罩来阻止辐射杂散发射?

答:可以。

34. 手机与基站通信中产生的TDMA噪声Burst Noise对于射频部分有影响。在选择射频

芯片的时候,单从技术的角度出发,主要是看那些方面的指标?

答:首先对于接收机而言,应注意的指标包括:接收灵敏度、选择性、阻塞、交调等。对于发射机而言,包括输出功率、频谱特性、杂散、频率相位误差等。TDMA 噪声主要影响手机的音频部分。要避免这种噪声,应该注意PCB设计,如音频部分布线。

35. 3阶截点和1db增益压缩点是越大越好吗?如果不是,大概应该在一个什么样的值才比

较合适?

答;对于3阶截点和1db增益压缩点,并不是越大越好,而是足够满足设计要求即可,因为必须考虑成本因素,越大就意味着芯片的价格越高。GSM900 IIP3 在-17dBm应该足够

满足要求。

36. 在整体设计手机系统时,怎样考虑射频芯片的电磁兼容性能?

答:考虑射频芯片的电磁兼容性能,必须加强射频屏蔽。

37. 在RFIC中,DC Offset Cancellation是怎样的原理?

答:DC偏移电压会影响直接转换接收机中的BER性能。DC偏移电压出自LO自混频等,

因此必须在接收信号之前消除它。

38. GSM手机使用非线性功放,而W-CDMA必须使用线性功放,这是为什么?

答:这主要是由调制技术决定的。GSM采用GMSK调制,可以使用非线性功放,提高效率。而W-CDMA采用HPSK调制,则必须使用线性功放,减少失真。

39. 手机接收机前端滤波器带宽是如何确定的?

答:手机接收机前端滤波器带宽根据接收频率的带宽来决定,必须保证带内信号以最小的插

损通过,不被滤除掉。例如,GSM900接收机频率范围为880-915MHz。

40. 手机接收前端放大需考虑什么因素来设计,要求至少放大多少dB,TI公司相对应的器

件如何找到?

答:需要考虑手机接收前端LNA的gain,P1dB,IP3,NF,frequency range 等,在TI方案中,

gain 在17dB 左右。TI有Superheterodyne,zero-IF方案。你可以登录https://www.sodocs.net/doc/641537707.html,查看

GSM transceiver

41. 手机待机时间的长短如果在电池容量一定的情况下主要可从哪几方面使待机时间增加?

答:从以下两个方面:

①工作模式下RX、DBB和ABB的功耗,对于这些模块而言,功耗因解决方案而异。

②解决方案的电源管理机制,一个好的解决方案应该做到在待机模式中尽可能关闭更多的功能块。

42. 准备设计一个新款手机,即能登陆公网,又能在小范围内独立组网,该怎么做?

答:可以设计一种双模手机,一个模式使用GSM或CDMA技术接入公众网,另一个模式使用私有网络技术。

43. 在设计一款CDMA 1X手机时,测试过程中,发现天线无线灵敏度指标不是很理想(-103db),而天线有线灵敏度指标还可以(-108db),能否通过更改PCB设计(RF GND)进行改良或者在天线端重新进行匹配?

答:可按以下程序进行检查:

①检查天线性能是否完好。

②如果天线没有问题,将天线匹配调至最佳。

如有需要,可以修改PCB布线以提高匹配性能。

44. 如何为适当的锁定时间选择LPF值?

答:首先根据设定的锁定时间,估计LPF带宽,然后计算LPF R、C值。

45. 如果未锁定PLL,如何调整PLL以稳定锁相回路?

答:如果PLL处于解锁状态,请使用开路分析(open loop analysis)检查环路(loop)稳定性。

46. 如果相位边限(phase margin)改变,杂散(spurious)会不会改变?

答:如果相位边限改变了,很可能LPF带宽也会改变,那么杂散也将改变。

47. 在校准AGC参数时,如何更好地兼顾不同信道的增益平坦度?

答:首先应考虑前端部分的带内平坦度,在此基础上,可以将整个RX频带划分成若干子带以补偿带内波动。

48. 为什么RITA要用内部和外部两套参考源?有什么区别?哪个更好?可否改为13MHz参考源?

答:使用Rita系统,可以有两种选择:使用内部VCXO电路,或者使用外部VCXO模块。两种方法都可以,只是成本不同。不管用哪一种方法,都应该使用26MHz参考时钟。

49. 目前零中频接收机的技术已经成熟了吗?

答:目前零中频接收机的技术已经成熟,已经有大量的手机在市场上销售。

50. 现在基带处理好多用零中频,什么是零中频技术?

答:零中频(Zero-IF)是目前接收器设计中最常用的技术,采用这种技术则无须使用IF LO,并可将射频直接转换为BB信号。这种技术可以说是一种高成本效益且灵活的解决方案,可在同一RF设计中适应不同通信标准。

附:英文回答原文如下:

Zero-IF is the most common technology currently used in receiver design which eliminates the IF LO and converts directly the RF to BB signal. It's a cost effective and flexible solution which can accommodate different communication standards in the same RF design.

51. 在零中频接收机中,直流电压失调一般是如何解决的?

答:直流电压失调已经不在是阻碍零中频商用的原因,可以被校准掉。

52. 什么方法可以测试手机互调?

答:可以使用两个信号发生器同时生成目标信号和干扰信号来进行测试。

53. 协议规定的手机静态灵敏度为-102dBm,但有些厂家号称可以做到-106dBm或更高,请问TI的解决方案中,假设采用普通的前端和混频、中放等电路,可以做到多少?

答:采用TI的解决方案,EGSM下可以做到-108dBm。

54. 有什么更好的系统设计方法可以提高静态灵敏度?

答:要提高灵敏度,必须减少系统NF,可以提高前端匹配并选择低插损组件。

55. 在点测时,PHASE PEAK、RMS指标合格,但在场测时(耦合测试)上述指标不合格,在GSM与DCS都存在上述问题!怎么办?

答:应该检查一下设计,TX部分的某些关键电路可能没有足够的设计余量(design margin),它对外部干扰非常敏感。

56. 在RITA上,有一个bandgap voltage output管脚,推荐线路用电容接地,请问什么含义?在手机整个线路中有什么可以扩展的作用或功能?

答:电容起滤波作用,抑制bandgap的噪声输出。该管脚输出在Rita内部用于LDO电压参考,不应联接到其他外部电路,用于其他用途。

57. What is the requirement for phase noise at 1k offset, 10kHz offset, and 100kHz offset for GSM handset? GSM手机的相位噪声为1k、10kHz和100kHz的情况下,需要满足什么条件?

答:For GSM handset RX it has several architectures to implement: Superheterodyne,near

zero-IF,zero-IF,different architecture may have different

LOs requirement and frequency plan,also it's related to the design of filters.

对于GSM手机RX,需要实现:超外差接近于零中频(zero-IF)。不同架构的零中频不同。Los要求以及频率规划(frequency plan),这与滤波器的设计有关。

58. 接受机在接受灵敏度很高的情况下静态音质量很好,而在一定移动时却不好,可能是什么原因?

答:可能是fading的影响。

59. 决定一个射频电路设计是否能够量产的关键因素有哪些?

答:在大量生产时要求射频性能一致、可靠、稳定,没有离散性,并且满足生产工艺的要求。

60. 请问在TI的解决方案中, DSP软件是否与MCU软件共用同一操作系统?

答:在TI的解决方案中,以至于所有的解决方案中,DSP软件都不能和MCU软件共用一个操作系统。它们虽然集成在一个芯片上,但是属于独立的模块,相当于两个独立的处理器。

61. 如何降低spectrum_switch?

答:如果是闭环功率控制,必须注意PA输出功率检测电路能够满足GSM动态范围。

62. 手机的切换频率很快,以前我们所用的手机一般用两个锁相环来锁频,现在在单芯片系统中,只用一个锁相环,采用N分数锁频技术,请问一般时间控制在多少秒比较合适?

答:锁定时间取决于具体应用,小于250us可以满足gprs class 12 的要求。

63. 在设计初期和后期的pcb调试中应该注意那些问题?

答:需要调整burst ramp up 和ramp down的功率控制。

64. TI可否提供MMI的源代码?

答:一般情况下,TI将MMI源代码与某些驱动器(LCD等)源代码一同提供给用户。包括MMI、协议堆栈和layer1源代码在内的所有源代码将根据业务关系决定是否提供。

65. 怎样解决高频LC振荡电路的二次谐振或者多次谐振?

答:可以改善振荡器反馈网络的频率选择性,或者利用输入匹配电路以削弱谐波。

附:相关英文回答原文:

You can improve the frequency selectivity of oscillator feedback network or take advantage of the output matching circuitry to attenuate the harmonics.

66. RF端口匹配结果好坏直接影响RF链路的信号质量。如何最快最好地调试这些匹配电路?

答:第一步:可以基于电路板设计使用网络分析仪测量实际的S参数,并将其输入到RF仿真SW中,以获得初始的匹配网络。

第二步:可以基于匹配网络的仿真结果,在板上做一些进一步的优化工作。

附:相关英文回答:

Step 1: You can measure the actual S parameters using network analyser based on your board design and input it to the RF simulation SW to get the initial matching network.

step 2: Based on the simulation result of matching network you can do some further optimization work on your board.

67. 手机电路画电路板时,如何解除DC-DC CONVERTER对RF电路的影响?

答:可以增加电容来滤除对直流线路的影响,也可以使用针对RF线路的专用LDO。

68. RF通行的最远能达到1公里或更远吗?

答:这由RF频率、发射功率和天线等因素决定。并非固定距离。

69. 在设计如wireless LAN card 的时候常会使用屏蔽罩用以屏蔽掉RF部分的辐射。这样做会增加成本。

有什么办法可以少用甚至不用屏蔽罩?

答:可将高功率RF信号置于PCB中间层,并确保良好接地以减少散射。但是屏蔽罩仍是保证稳定发射性能的首选。

You can put high power RF signal in the middle layer of PCB and make sure have good grounding to reduce the radiation,but shielding can is still the preferred way to gurantee the stable radiation performance.

70. 10~30mV的有用信号:放大100~120dB后,有用信号达到峰峰值3V~~4V,但噪声信号也达到了300mV左右,但实际要求噪声信号在20mV以下,如何解决?(前级放大问题不明显,矛盾不突出,关键到最后一级放大后,问题就出现了。)

答:首先要确保有用信号有非常好的信噪比,然后才将其输入放大器链,接着计算获得目标信号振幅和噪声水平所需的增益与NF的大小,最后根据这些数据选择合适的器件设计放大器链路。

First please make sure the useful signal has very good SNR before you input it to amplifiers chain,then you can calculate how much gain and NF you need to get the targeted signal amplitude and noise level, based on this you can choose the right components to design amplifiers chain.

71. 在开发WLAN的PCB Layou时候,怎样匹配或计算线路为50ohm.?

答:50ohm匹配由PCB层叠决定。将PCB参数(层厚度、)使用RF仿真工具计算阻抗、line thickness和line width。

You can calculate the impedance using RF simulation tools by setting PCB parameters like layer thickness, line thickness and line width.

72. 如果线路匹配不好,怎样在网络分析仪下计算所匹配的元件(L ,C)?

答:如果线路不匹配,可以使用网络分析仪测量S参数,并借助史密斯圆图使用LC元件来补偿这种不匹配。

If there's mismatching you can use network analyser to measure the S-parameters and use LC conponents to compensate the mismatch using Smith chart.

73. 在网房中测试LNA接收灵敏度,测试点应该选择哪儿点上最佳?

答:通常测试RX灵敏度,而不测试LNA灵敏度。

74. 在射频电路比如放大器的设计中,其管子的信号地与偏置电路的电源地是否分开为好,或者至少在同一层分开?

答:一般不需要分开信号地和电源地。

Normally you don't need to seperate the ground of power supply with the ground of amplifier。

75. 不少射频PCB布板在空域即无元件和走线的地方没有布大面积地,这如何解释?在微波频段是否应不一样?

答:可以在DC线路上加足数的小电器。

you can add enough small capacitors on DC line.

76. 目前有没有置于低温环境中的放大器管子外销?

答:放大器的工作温度范围应该在-10-8℃,可以查看参数表,上面的规定应该也是如此。

For amplifier it should have its working temperature range like -10-85c, you can check the datasheet,it

should have this specification.

77. 手机RF IC处理信号的原理如何?

答:当射频/中频(RF/IF)IC接收信号时,系接受自天线的信号(约800Hz~3GHz)经放大、滤波与合成处理后,将射频信号降频为基带,接着是基带信号处理;而RF/IF IC发射信号时,则是将20KHz以下的基带,进行升频处理,转换为射频频带内的信号再发射出去。

78. 一般手机射频/中频模块由哪些部分组成?

答:一般手机射频/中频模块系由无线接收、信号合成与无线发射三个单元组成,其中无线接收单元系由射频头端、混波器、中频放大器与解调器所组成;信号合成部份包含分配器与锁相回路;无线发射单元则由功率放大器、AGC放大器与调变器组成。

79. 手机基带处理器的组成和主要功能是什么?

答:常见手机基带处理器则负责数据处理与储存,主要组件为DSP、微控制器、内存(如SRAM、Flash)等单元,主要功能为基带编码/译码、声音编码及语音编码等。

80. 如何理解手机的射频、中频和基频?

答:手机内部基本构造依不同频率信号的处理可分成射频(RF)、中频(IF)及基频(BF)三大部分,射频负责接收及发射高频信号,基频则负责信号处理及储存等功能,中频则是射频与基频的中介桥梁,使信号能顺利由高频信号转成基频的信号。

81. 手机最后的发射频率是在890--915Mhz,这是调频波还是调幅波?测使用gmsk调制的gsm手机的射频部分,为何在测试时使用固定的902.4Mhz的固定频率?

答:GMSK调制指高斯最小频移键控,是数字调制,某种程度上可以理解成是调频,但频率的改变以离散的(不连续的)方式进行,而调频纯粹是模拟调制,频率的改变是连续的。

从890MHZ到915MHZ共25MHZ频带宽度,信道间隔为200KHZ(即0.2MHZ),共有125个上行信道,测试时不可能125个信道都测,通常会选3个有代表性的频点(信道),两边两个,中间一个,902.4MHZ 刚好是中间的信道。

82. 手机测试项目:射频载波功率、时间/功率包络、相位误差、接收报告电平的英文表达是什么?

答:射频载波功率:RF Carrier Power;时间/功率包络:Time/Power Template;相位误差:Phase Error;接收报告电平:RSSI。

83. 现在较流行的射频仿真软件有哪些?

答:一般来说生产射频器件的厂商都有这样的软件。如EIC的产品就有这样的软件,只要将设计电路的器件参数输入,即可。目前较流行的射频仿真软件有:HP-ADS、ADS、microwave office、Ansoft等。

84. 手机主要有基带和射频组成,射频现在很多IC厂家都已经有单芯片产品。同时基带也有将DSP和ARM 核集成在一块IC中。TI目前是否有单芯片的基带?

答:目前TI的数字基带芯片中已经把ARM7和DSP集成在一起了。

85.接收灵敏度S = -174 + 10logBi + S/N + Gimp + NF其中:

Bi = 接收机带宽( = 200kHz,对于GSM)

S/N = 基带信号信噪比

Gimp = RF和BB增益

已知给定的基带芯片组能够对接收信号正确解码的最差情况是基带S/N等于9dB,再加上2dB的实现余量,噪声系数一般8。5dB左右。我们可以计算出接收机的灵敏度S = -174 + 10logBi + S/N + Gimp - S

= -174 + 10log(200,000) + 9 + 2 +8。5=-102dBm

86. ASM:即天线开关模组的意思

87. AGC自动增益控制,是对接受机增益的控制,APC自动功率控制,发射机功率控制,AFc自动频率控制,调整频率误差.缺一不可. 楼上说得很对,简单的说agc是保证音频信号的幅度是恒定的,二apc是可以根据你信号的强弱来调整发生信号的强弱,信号好的时候发生功率小,辐射就小了,电池也省电,当你在地下室或山区信号不好的时候,你的电池好点很快,afc是自动频率控制,用于产生相位稳定的频率源,一般用于本振,不懂得话可以去看看书,我知道的也不多

87. GSM手机不论是在研发、生产还是在维修中,有四项RF指标肯定是必须测量的,其中有三项是发射指标,即时是:射频输出功率、频率误差、相位误差,还有一项是接收指标,就是接受灵敏度。相位差(Pe)是一项非常重要的指标,在欧洲GSM的电信标准中规定:Pe的峰值是不能超过20度、RMS值不能超过5度!当Pe指标有问题的时候,轻则会影响话音质量(失真度变大会有咯咯声)、严重时则会使手机脱离GSM 服务网!

Pe的定义是:它是I路(同相)与Q路(正交)之间的相位平衡度(Phase Balance),换句话说即是:I路与Q 路之间的正交性误差。

减小Pe的方法主要有以下这些:

1)采用offset频率方案;

2)选用13MHz晶振;

3)从ABB到Tx的I支路和Q支路的滤波;

4)直流偏置;

5)IQ信号的时延调整,通过软件对Pe进行补偿校正;

6)EMC设计,良好的EMC设计对于保证Pe指标是极其重要的,EMC设计主要采用三项措施:接地、滤波和屏蔽。

7)PA电路的设计,在PA电路的设计中有时候会出现这样的现象:小功率输出时,Pe指标正常;但是当大功率输出时,Pe指标则超标。出现这种情况的主要原因在于:a)在大信号工作的条件下,PA的线性动态范围不够;b)当输出功率加大的时候,电源线上的电流也随之变大,若PCB布线或电源去耦不良的话,会造成此种故障;c)PA的输出匹配电路设计有问题,从而造成VSWR变大;d)EMC方案设计不佳,屏蔽材料、屏蔽结构、屏蔽方式选择不当!目前手机手机发射部分的方案主要有两类:一种是上边频方法,一种是offset 方案。这两种方案的差别在于RF已调信号的形成方法:前一种是通过传统的由IF到RF的频谱搬迁,而后者是通过增加一个IF的PLL,用其输出来控制一个专用的发射VCO,从而达到实现RF调制信号的目的,所以后者的频率误差和相位差自然就要比前者小了!

θ=ω.t,所以,dθ=t.dω+ω.dt,ω=2πf,从该式可以看出,在频率误差dω相同的情况下,降低频率有利于减小dθ,从而减小Pe。而手机中的参考频率一般采用13MHz或26MHz,从减小Pe的角度来说,选13MHz 好一些!

88

2G以上高频PCB设计的走线、排版应重点注意哪些方面? 射频微带的设计应遵循哪些规则?

2G以上高频PCB设计的走线、排版要注意的地方很多,但以下几方面应重点考虑:

(1) 精心布局。RF设计中的连线一般都比较简单,布局往往比布线更重要,应多花些时间考虑好布局

问题(分区、信号流向等)。

(2) 线应尽可能的短,尤其是不能超过四分之一工作波长。

(3) 应加匹配网络。

(4) 布线应尽可能平滑,避免直角、过孔等阻抗不连续点。

(5) 适当的仿真。

SI的起因

信号完整性定义为信号在电路中能以正确时序和电压作出响应的能力。IC开关速度高、端接元件的布局不正确或高速信号的错误布线都会引起SI问题,从而可能使系统输出不正确的数据、电路工作不正常甚至完全不工作。

当电路中信号能以要求的时序、持续时间和电压幅度到达IC时,该电路就有很好的信号完整性。当信号不能正常响应时,就出现了信号完整性问题。象误触发、阻尼振荡、过冲、欠冲等信号完整性问题会造成时钟间歇振荡和数据出错。为了正确识别和处理数据,IC要求数据在时钟边沿前后处于稳定状态,这个稳定状态的持续时间称为建立时间和保持时间。如果信号转变为不稳定状态或后来改变了状态,IC就可能误判或丢失部分数据。

信号的变化表现为IC管脚处的电压变化,这个电压的变化使IC的引脚发生状态变化。IC将数据或时钟作为信号送到电路板上的导体或导线上,这些数据或时钟信号必须在要求的时间内以一定的持续时间和电压到达导体或导线。当信号不满足上述条件时,SI问题就会出现,例如,由于导线的传播时延,信号到达导体或导线的过程产生了延时。当信号没有达到规定的电压时,IC状态不会改变。

由于信号欠冲,IC引脚的状态可能不确定。一般不希望信号达到规定电压后出现欠冲现象,它是由IC开关速度以及信号在导线上传输引起的。

电路板上的导线具有电阻、电容和电感等电气特性。在高频电路设计中,电路板线路上的电容和电感会使导线等效于一条传输线。传输线是所有导体及其接地回路的总和。传输线上的线路阻抗与外接负载不匹配会导致信号反射现象,从而引起信号完整性问题。电路的阻抗会使信号达不到规定的电压幅度从而影响信号完整性。

当信号压降太大时,信号电压可能不足以达到IC的开关门限,这时IC的状态就不会变化。此外,IC 可能无法以恰当的时序识别输入数据或时钟。每个IC都有一个电压门限,超过这个电压门限就可判

断IC管脚是高或低。对于IC的输入时钟来说,该状态可决定IC的输入管脚是否已做好接收数据的准备。如果IC无法处理时钟数据,则IC输入管脚在某一状态可能为“不确定”状态。

电子系统要求IC须按规定时序并在规定时间内接收数据,但传输线上的电容和电感会在驱动器高低切换和接收器高低切换之间产生时延,这种时延会影响IC的建立时间和保持时间,从而无法正确判断数据。对于依赖时序激活IC输入和输出的电路,延时问题会导致IC在错误的时钟周期内接收数据,这时就会引起间歇故障或错误的数据输出。

对于优良的SI设计来说,传输线路阻抗需要匹配它的外接负载。如果传输线阻抗和负载不匹配,信号的一部分能量就会反射回来,这种反射会导致信号过冲或欠冲,能量在驱动器与接收器之间不断重复反射时就会造成阻尼振荡。IC中的内部元件可以防止IC出现过压,因此过冲会对这些内部元件造成过压,如果电压太大并且重复作用的话,这些元件就可能损坏,从而造成整个IC失效。

IC的高低电平切换门限指的是信号从一个状态向另一个状态转换所需的电压值。当发生阻尼现象时,信号电平可能会超过IC输入脚的切换门限,从而将IC输入信号变为不确定状态,这会导致时钟出错或数据的错误接收。

上述SI问题还会影响那些本身没有SI问题的信号线。例如耦合可将串扰信号传导到邻近线路上,当耦合或串扰信号足够大时,接收串扰信号的线路就会出现信号完整性问题。串扰影响的不止是一条邻近线路,有时甚至会进而影响到其它相邻线路上的信号。

SI名词解释

1、什么是信号完整性(Singnal Integrity)?

信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。主要的信号完整性问题包括反射、振荡、地弹、串扰等。常见信号完整性问题及解决方法:

问题可能原因解决方法其他解决方法

过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源

直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面

过大的串扰线间耦合过大使用上升时间缓慢的发送驱动器使用能提供更大驱动电流的驱动源时延太大传输线距离太长替换或重新布线, 检查串行端接头使用阻抗匹配的驱动源, 变更布线策略

振荡阻抗不匹配在发送端串接阻尼电阻

2、什么是串扰(crosstalk)?

串扰(crosstalk)是指在两个不同的电性能之间的相互作用。产生串扰(crosstalk)被称为Aggressor,而另一个收到干扰的被称为Victim。通常,一个网络既是Aggressor(入侵者),又是Victim(受害者)。振铃和地弹都属于信号完整性问题中单信号线的现象(伴有地平面回路),串扰则是由同一PCB板上的两条信号线与地平面引起的,故也称为三线系统。串扰是两条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。

3、什么是电磁兼容(EMI)?

电磁干扰(Ectromagnetioc Interference),或者电磁兼容性(EMI),是从一个传输线(transmission line)(例如电缆、导线或封装的管脚)得到的具有天线特性的结果。印制电路板、集成电路和许多电缆发射并影响电磁兼容性(EMI)的问题。FCC定义了对于一定的频率的最大发射的水平(例如应用于飞行控制器领域)。

4、在时域(time domain)和频域(frequency domain)之间又什么不同?

时域(time domain)是一个波形的示波器观察,它通常用于找出管脚到管脚的延时(delays)、偏移(skew)、过冲(overshoot)、下冲(undershoot)以及设置时间(setting times)。频域(frequency domain)是一个波形的频谱分析议的观察,它通常用于波形与频谱分析议的观察、它通常用于波形与FCC和其他EMI控制限制之间的比较。(有一个比喻,它就象收音机――你在时域(time domain)中听见,但是你要找到你喜欢的电台是在频域(frequency domain)内。)

5、什么是传输线(transmission line)?

传输线(transmission line)是一个网络(导线),并且它的电流返回的地和电源。电路板上的导线具有电阻、电容和电感等电气特性。在高频电路设计中,电路板线路上的电容和电感会使导线等效于一条传输线。传输线是所有导体及其接地回路的总和。

6、什么是阻抗(impedance)?

阻抗(Impedance)是传输线(transmission line)上输入电压对输入电流地比率值(Z0=V/I)。当一个源发出一个信号到线上,它将阻碍它驱动,直到2*TD时,源并没有看到它地改变,在这里TD时线的延时(delay)。

7、什么是反射(reflection)?

反射(reflection)就是在传输线(transmission line)上回波(echo)。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射(reflected)了。如果负载和线具有相同的(impedance),发射(Reflections)就不会发生了。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。

8、什么是过冲(overshoot)?

过冲(Overshoot)就是第一个峰值或谷值超过设定电压――对于上升沿是指最高电压而对于下降沿是指最低电压。下冲(Undershoot)是指下一个谷值或峰值。过分的过冲(overshoot)能够引起保护二级管工作,导致过早地失效。

9、什么是下冲(undershoot)(ringback)?

过冲(Overshoot)是第二个峰值或谷值超过设定电压――对于上升沿过度地谷值或对于下降沿太大地峰值。过分地下冲(undershoot)能够引起假的时钟或数据错误(误操作)。

10、什么是振荡(ringing)?

振荡(ringing)就是在反复出现过冲(overshoots)和下冲(undershoots)。信号的振铃(ringing)和环绕振荡(rounding)由线上过度的电感和电容引起,振铃属于欠阻尼状态而环绕振荡属于过阻尼状态。信号完整性问题通常发生在周期信号中,如时钟等,振荡和环绕振荡同反射一样也是由多种因素引起的,振荡可以通过适当的端接予以减小,但是不可能完全消除。

11、什么是设置时间(settling time)?

设置时间(settling time)就是对于一个振荡的信号稳定到指定的最终值所需的时间。

12、什么是管脚到管脚(pin-to-pin)的延时(delay)

管脚到管脚(pin-to-pin)的延时(delay)是指在驱动器状态的改变到接收器状态的改变之间的时

间。这些改变通常发生在给定电压的50%,最小延时发生在当输出第一个越过给定的阀值(threshold),最大延时发生在当输出最后一个越过电压阀值(threshold),测量所有这些情况。

13、什么是偏差(skew)?

信号的偏移(skew)是对于同一个网络到达不同的接收器端之间的时间偏差。偏移(skew)还被用于在逻辑门上时钟和数据达到的时间偏差。

14、什么是斜率(slew rate)?

Slew rate就是边沿斜率(-个信号的电压有关的时间改变的比率)。I/O的技术规范(如PCI)状态在两个电压之间,这就是斜率(slew rate),它是可以测量的。

15、什么是静态线(quiescent line)?

在当前的时钟周期内它不出现切换。另外也被称为“stuck-at”线或static线。串扰(crosstalk)能够引起一个静态线在时钟周期内出现切换。

16、什么是假时钟(false clocking)?

假时钟是指时钟越过阀值(threshold)无意识的改变了状态(有时在VIL或VIH之间)。通常由过分的下冲(undershoot)或串扰(crostalk)引起。

17、什么是IBIS?

IBIS是描述一个输入/输出(I/O)的EIA/ANSI标准。它包括DC(V/I)特性曲线,也包括瞬态(transient)(V/T)特性曲线curves as tables of points。HyperLynx的网页(Web site)上有连接到IBIS的主页,另外还有许多供应商的IBIS模型网页。

18、什么是IC 的高低电平切换门限?

IC 的高低电平切换门限指的是信号从一个状态向另一个状态转换所需的电压值。当发生阻尼现象时,信号电平可能会超过IC 输入脚的切换门限,从而将IC 输入信号变为不确定状态,这会导致时钟出错或数据的错误接收。

19、什么是地电平面反弹噪声和回流噪声?

在电路中有大的电流涌动时会引起地平面反弹噪声(简称为地弹),如大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面(0V)上产生电压的波动和变化,这个噪声会影响其它元器件的动作。

负载电容的增大、负载电阻的减小、地电感的增大、同时开关器件数目的增加均会导致地弹的增大。由于地电平面(包括电源和地)分割,例如地层被分割为数字地、模拟地、屏蔽地等,当数字信号走到模拟地线区域时,就会产生地平面回流噪声。同样电源层也可能会被分割为2.5V,3.3V,5V等。所以在多电压PCB设计中,地电平面的反弹噪声和回流噪声需要特别关心。

20、高频电路的定义在数字电路中,是否是高频电路取决于信号的上升沿和下降沿,而不是信号的频率。F=1/(Tr*л),Tr为上升/下降延时时间,当F>100MH他(Tr<3.183ns)时就应该按照高频电路进行考虑,下列情况必须按照高频规则进行设计:

l 系统时钟超过50Hz

l 采用了上升/下降时间少于5ns的器件

l 数字/模拟混合电路

高频电路是取决于信号的上升沿和下降沿,而不是信号的频率,但是不是Tr>100MHz时才考虑高频规则进行设计,还要看传输介质而定。通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。信号的传递发生在信号状态改变的瞬间,如上升或下降时间。信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。反之,反射信号将在信号改变状态之后到达驱动端。如果反射信号很强,叠加的波形就有可能会改变逻辑状态。

21、什么是长线高速系统中的长线(Electrically Long Trace)定义可以从频域和时域两个角度来定义:

1、频域定义当线的物理长度和相应频率的波长具有可比性的时候(一般的说法是大于1/20波长),这样的trace就叫做Electrically Long Trace,或者transmission line(传输线)。

2、时域定义

当信号线的传输延迟(propagation delay)大于1/4信号上升时间(rise time)的时候,该信号线就应视为传输线。

22、什么是微带线和带状线

1.微带线参考平面(reference plane)只有一个。有些朋友认为微带线就是位于PCB表层的传输线。这种看法不全面。设想一种情形:一个多层板的第一和第二层都是信号层,而第三层为地平面,那么

在第一和第二层上的传输线都叫微带线。位于第二层的微带线也叫做掩埋式微带线(embedded microstrip)。微带线的阻抗与它的线宽、频率和它到参考平面的垂直距离有关。

2.带状线位于两个参考平面之间,所以它有两个参考平面,阻抗的计算公式与微带线的也不一样。当然,带状线肯定是位于PCB的内层。保证信号完整性的匹配方法

1)并行端接

并行端接主要是在尽量靠近负载端的位置加上拉和/或下拉阻抗以实现终端的阻抗匹配,根据不同的应用环境,并行端接又可分为以下几种类型:

(I)简单的并行端接

这种端接方式是简单地在负载端加入一下拉到GROUND的电阻RT(RT=Z0)来实现匹配,如图3所示。采用此端接的条件是驱动端必须能够提供输出高电平时的驱动电流以保证通过端接电阻的高电平电压满足门限电压要求。在输出为高电平状态时,这种并行端接电路消耗的电流过大,对于50Ω的端接负载,维持TTL高电平消耗电流高达48mA,因此一般器件很难可靠地支持这种端接电路

(II)戴维宁(Thevenin)并行端接戴维宁(Thevenin)端接即分压器型端接,如图4示。它采用上拉电阻R1和下拉电阻R2构成端接电阻,通过R1和R2吸收反射。R1和R2阻值的选取由下面的条件决定。R1的最大值由可接受的信号的最大上升时间(是RC充放电时间常数的函数)决定,R1的小值由驱动源的吸电流数值决定。R2的选择应满足当传输线断开时电路逻辑高电平的要求。戴维宁等效阻抗可表示为:这里要求RT等于传输线阻抗Z0以达到最佳匹配。此端接方案虽然降低了对源端器件驱动能力的要求,但却由于在VCC和GROUND之间连接的电阻R1和R2从而一直在从系统电源吸收电流,因此直流功耗较大。

(III)主动并行端接

在此端接策略中,端接电阻RT(RT=Z0)将负载端信号拉至一偏移电压VBIAS,如图5所示。VBIAS 的选择依据是使输出驱动源能够对高低电平信号有汲取电流能力。这种端接方式需要一个具有吸、灌电流能力的独立的电压源来满足输出电压的跳变速度的要求。在此端接方案中,如偏移电压VBIAS 为正电压,输入为逻辑低电平时有DC直流功率损耗,如偏移电压VBIAS为副电压,则输入为逻辑高电平时有直流功率损耗。

(IV)并行AC端接

如图6所示,并行AC端接使用电阻和电容网络(串联RC)作为端接阻抗。端接电阻R要小于等于传输线阻抗Z0,电容C必须大于100pF,推荐使用0.1uF的多层陶瓷电容。电容有阻低频通高频的作用,因此电阻R不是驱动源的直流负载,故这种端接方式无任何直流功耗。

(V)二极管并行端接某些情况可以使用肖特基二极管或快速开关硅管进行传输线端接,条件是二极管的开关速度必须至少比信号上升时间快4倍以上。在面包板和底板等线阻抗不好确定的情况下,使用二极管端接即方便又省时。如果在系统调试时发现振铃问题,可以很容易地加入二极管来消除。典型的二极管端接如图7所示。肖特基二极管的低正向电压降Vf(典型0.3到0.45V)将输入信号钳位到GROUND-Vf和VCC+Vf之间。这样就显著减小了信号的过冲(正尖峰)和下冲(负尖峰)。在某些应用中也可只用一个二极管。

二极管端接的优点在于:二极管替换了需要电阻和电容元件的戴维宁端接或RC端接,通过二极管钳位减小过冲与下冲,不需要进行线的阻抗匹配。尽管二极管的价格要高于电阻,但系统整体的布局布线开销也许会减少,因为不再需要考虑精确控制传输线的阻抗匹配。二极管端接的缺点在于:二极管的开关速度一般很难做到很快,因此对于较高速的系统不适用。

(2)串行端接串行端接是通过在尽量靠近源端的位置串行插入一个电阻RS(典型10Ω到75Ω)到传输线中来实现的,如图8所示。串行端接是匹配信号源的阻抗,所插入的串行电阻阻值加上驱动源的输出阻抗应大于等于传输线阻抗(轻微过阻尼)。即这种策略通过使源端反射系数为零从而抑制从负载反射回来的信号(负载端输入高阻,不吸收能量)再从源端反射回负载端。

串行端接的优点在于:每条线只需要一个端接电阻,无需与电源相连接,消耗功率小。当驱动高容性负载时可提供限流作用,这种限流作用可以帮助减小地弹噪声。串行端接的缺点在于:当信号逻辑转换时,由于RS的分压作用,在源端会出现半波幅度的信号,这种半波幅度的信号沿传输线传播至负载端,又从负载端反射回源端,持续时间为2TD(TD为信号源端到终端的传输延迟),这意味着沿传输线不能加入其它的信号输入端,因为在上述2TD 时间内会出现不正确的逻辑态。并且由于在信号通路上加接了元件,增加了RC时间常数从而减缓了负载端信号的上升时间,因而不适合用于高频信号通路(如高速时钟等)。

89

The History Of 50 W

A lot of people ask, so here's the answer to the eternal question, "How did 50 W get to be the standard RF transmission line impedance?" Here are a few stories. Bird Electronics will send you a printed copy of their version if you ask for it. This from Harmon Banning of W.L. Gore & Associates, Inc. cable:There are probably lots of stories about how 50 Ohms came to be. The one I am most familiar goes like this. In the early days of microwaves - around World War II, impedances were chosen depending on the application. For maximum power handling, somewhere between 30 and 44 Ohms was used. On the other hand, lowest attenuation for an air filled line was around 93 Ohms. In those days, there were no flexible cables, at least for higher frequencies, only rigid tubes with air dielectric. Semi-rigid cable came about in the early 50's, while real microwave flex cable was approximately 10 years later.Somewhere along the way it was decided to standardize on a given impedance so that economy and convenience could be brought into the equation. In the US, 50 Ohms was chosen as a compromise. There was a group known as JAN, which stood for Joint Army and Navy who took on these matters. They later became DESC, for Defense Electronic Supply Center, where the MIL specs evolved. Europe chose 60 Ohms. In reality, in the US, since most of the "tubes" were actually existing materials consisting of standard rods and water pipes, 51.5 Ohms was quite common. It was amazing to see and use adapter/converters to go from 50 to 51.5 Ohms. Eventually, 50 won out, and special tubing was created (or maybe the plumbers allowed their pipes to change dimension slightly).Further along, the Europeans were forced to change because of the influence of companies such as Hewlett-Packard which dominated the world scene. 75 Ohms is the telecommunications standard, because in a dielectric filled line, somewhere around 77 Ohms gives the lowest loss. (Cable TV) 93 Ohms is still used for short runs such as the connection between computers and their monitors because of low capacitance per foot which would reduce the loading on circuits and allow longer cable runs.V olume 9 of the MIT Rad Lab Series has some greater details of this for those interested. It has been reprinted by Artech House and is available.

90 天线触点下面的地线挖掉有什么意义?

就是多层板天线馈点下面不铺铜, 如果天线馈入点下存在地平面,就好比馈入点与地之间存在一电容(传输线模型推导),这样会导致信号的衰减,同时会影响到天线的增益。所以在画天线端口PCB Layout时,需注意馈入点下任何层均不铺地,顶层走线两侧留2~3mm空。有一个原因是,天线的座子很大,如果下层有地就会引入一个到地大电容,而一般天线本身是容性的,这样匹配后带宽和效率会恶化。如果是点接触的天线如内置天线触点下的地可以不去掉。

91 CDMA原理

在讨论WCDMA发射机之前,本部分对CDMA的原理进行简单的概述。CDMA系统使用的信号扩展方式为“直接序列”扩展方式。为了扩展信号,CDMA系统用一个独特的、称作扩展码的编码乘以未调制的基带数据,编码中含有一定数量的码片。

CDMA原理

在讨论WCDMA发射机之前,本部分对CDMA的原理进行简单的概述。CDMA系统使用的信号扩展方式为“直接序列”扩展方式。为了扩展信号,CDMA系统用一个独特的、称作扩展码的编码乘以未调制的基带数据,编码中含有一定数量的码片。

产生的扩展数据被调制到载波上用于发射,被调制的载波带宽受扩频编码码片速率的直接影响。WCDMA使用3.84MHz的码片速率,产生带宽很宽的发射频谱,因此使用“宽带”一词。

为了提取原始信息,CDMA接收机解调信息载波并使用相关器(带有原始发射机扩频码)重新生成(解扩)想要的信号。被提取的数据通过一个窄带的带通滤波器后根据需要进行进一步处理。

3G WCDMA发射机规范要求

3GPP规范的25.101章(在上文中提到过)包括了FDD 3G移动终端Rx/Tx的电气规范要求。在讨论WCDMA 发射机的要求之前,这部分将描述几个关键的发射机参数以及它们在发射机设计中的重要性。

邻近信道功率比[ACPR]:ACPR度量了干扰或者说是相邻频率信道功率的大小。通常定义为相邻频道(或偏移)内平均功率与发射信号频道内的平均功率之比,ACPR描述了由于发射机硬件非线性造成的失真大小。

ACPR对于WCDMA发射机来说是至关重要的,因为CDMA调制在调制载波中产生紧密相邻的频谱成分。这些成分的互调制导致中心载波两侧频谱的再生,发射机的非线性将使这些频谱再生成分进入相邻信道。

射频基本知识

引言 在进入射频测试前,让我们回顾一下单相交流电的基本知识。 一、单相交流电的产生 在一组线圈中,放一能旋转的磁铁。当磁铁匀速旋转时,线圈内的磁通一会儿大一会 儿小,一会儿正向一会儿反向,也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等幅的交流电压,这就是一个原理示意性交流发电机。若磁铁每秒旋转50周,则电压的变化必然也是50周。每秒的周期数称为频率f,其单位为赫芝Hz。103Hz=千赫kHz,,106Hz=兆赫MHz,109Hz=吉赫GHz。b5E2RGbCAP 在示波器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。即转了2π弪,每秒旋转了f个2π,称2πf为ω<常称角频率,实质为角速率)。则单相交流电的表达式可写成:p1EanqFDPw V=Vm=Vm 式中Vm(电压最大值>=Ve(有效值或Vr.m.s.>。t为时间<秒),为初相。 二、对相位的理解 1、由电压产生的角度来看 ·设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴<磁铁的磁极)

位置完全相同时,两者发出的电压是同相的。而当两者转轴错开角度时,用双线示波器来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。相位领先为正,滞后为负。DXDiTa9E3d ·假如在单相发电机上再加一组线圈,两组线圈互成90°<也即两电压之间相位差 90°),即可形成两相电机。假如用三组线圈互成120°<即三电压之间,相位各差120°)即可形成三相电机。两相电机常用于控制系统,三相电机常用于工业系统。RTCrpUDGiT 2、同频信号<电压)之间的叠加 当两个电压同相时,两者会相加;而反相时,两者会抵消。也就是说两者之间为复数运算关系。若用方位平面来表示,也就是矢量关系。矢量的模值<幅值)为标量,矢量的角度为相位。5PCzVD7HxA 虽然人们关心的是幅值,但运算却必须采用矢量。 虽然一般希望信号相加,但作匹配时,却要将反射信号抵消。 三、射频 交流电的频率为50Hz时,称为工频。20Hz到20kHz为音频,20kHz以上为超声波 ,当频率高到100 kHz以上时,交流电的辐射效应显著增强;因此100 kHz以上的频率泛称射频。有时会以3 GHz为界,以上称为微波。常用频段划分见附录。jLBHrnAILg

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3G Hz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(LO) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstop10格的频率差,例如:Span=1MHz,则100kHz/div.

射频基础知识培训

射频基础知识培训 1、无线通信基本概念 利用电磁波的辐射和传播,经过空间传送信息的通信方式称之为无线电通信(Wireless Communication),也称之为无线通信。利用无线通信可以传送电报、电话、传真、数据、图像以及广播和电视节目等通信业务。 目前无线通信使用的频率从超长波波段到亚毫米波段(包括亚毫米波以下),以至光波。无线通信使用的频率范围和波段见下表1-1 表1-1 无线通信使用的电磁波的频率范围和波段

由于种种原因,在一些欧、美、日等西方国家常常把部分微波波段分为L、S、C、X、Ku、K、Ka等波段(或称子波段),具体如表1 - 2所示 表1-2 无线通信使用的电磁波的频率范围和波段

无线通信中的电磁波按照其波长的不同具有不同的传播特点,下面按波长分述如下: 极长波(极低频ELF)传播 极长波是指波长为1~10万公里(频率为3~30Hz)的电磁波。理论研究表明,这一波段的电磁波沿陆地表面和海水中传播的衰耗极小。 1.2超长波(超低频SLF)传播 超长波是指波长1千公里至1万公里(频率为30~300Hz)的电磁波。这一波段的电磁波传播十分稳定,在海水中衰耗很小(频率为75Hz时衰耗系数为m)对海水穿透能力很强,可深达100m以上。 甚长波(甚低频VLF)传播 甚长波是指波长10公里~100公里(频率为3~30kHz)的电磁波。无线通信中使用的甚长波的频率为10~30kHz,该波段的电磁波可在大地与低层的电离层间形成的波导中进行传播,距离可达数千公里乃至覆盖全球。 长波(低频LF)传播 长波是指波长1公里~10公里(频率为30~300kHz)的电磁波。其可沿地表面传播(地波)和靠电离层反射传播(天波)。 中波(中频MF)传播 中波是指波长100米~1000米(频率为300~3000kHz)的电磁波。中波可沿地表面传播(地波)和靠电离层反射传播(天波)。中波沿地表面传播时,受地表面的吸收较长波严重。中波的天波传播与昼夜变化有关。 短波(高频HF)传播 短波是指波长为10米~100米(频率为3~30MHz)的电磁波。短波可沿地表面传播(地波),沿空间以直接或绕射方式传播(空间波)和靠电离层反射传播(天波)。 超短波(甚高频VHF)传播

射频基础知识

第一部分射频基本概念 第一章常用概念 一、特性阻抗 特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。 在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。当不相等时则会产生反射,造成失真和功率损失。反射系数(此处指电压反射系数)可以由下式计算得出: z1 二、驻波系数 驻波系数式衡量负载匹配程度的一个指标,它在数值上等于: 由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。射频很多接口的驻波系数指标规定小于1.5。 三、信号的峰值功率 解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。峰值功率即是指以某种概率出现的尖峰的瞬态功率。通常概率取为0.1%。

四、功率的dB表示 射频信号的功率常用dBm、dBW表示,它与mW、W的换算关系如下: dBm=10logmW dBW=10logW 例如信号功率为x W,利用dBm表示时其大小为 五、噪声 噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。 六、相位噪声

相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。 例如晶体的相位噪声可以这样描述: 七、噪声系数 噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:

射频(RF)基础知识

●什么是RF? 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)? 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高? 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 ● 4. RF仿真软件在手机设计调试中的作用是什么? 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么? 答:基本原则是使EMC最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代 表何意? 答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能?二者有何区别? 答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么? 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点? 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。 详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以 及由此对硬件的性能要求等内容? 答:可以看看https://www.sodocs.net/doc/641537707.html,和https://www.sodocs.net/doc/641537707.html,,或许有所帮助。关于TI的wireless solution,可以看看https://www.sodocs.net/doc/641537707.html,中的wireless communications.

射频开关基础知识详细讲解

射频开关基础知识详细讲解 射频和微波开关可在传输路径内高效发送信号。此类开关的功能可由四个基本电气参数加以表征。 虽然多个参数与射频和微波开关的性能相关,然而以下四个由于其相互间较强的相关性而被视为至关重要的参数:隔离度,插入损耗,开关时间,功率处理能力。 隔离度即电路输入端和输出端之间的衰减度,是衡量开关截止有效性的指标。插入损耗(也称传输损耗)为开关处于导通状态下时损耗的总功率。由于插入损耗可直接导致系统噪声系数的增大,因此对于设计者而言,插入损耗是最为关键的参数。 开关时间是指开关从“导通”状态转变为“截止”状态以及从“截止”状态转变为“导通”状态所需要的时间。该时间上可达高功率开关的数微秒级,下可至低功率高速开关的数纳秒级。开关时间的最常见定义为自输入控制电压达到其50%至最终射频输出功率达到其90%所需的时间。此外,功率处理能力定义为开关在不发生任何永久性电气性能劣化的前提下所能承受的最大射频输入功率。

图示为使用12个不同SMA母同轴连接器的单刀十二掷机电式开关一 例 射频和微波开关可分为机电式继电器开关以及固态开关两大类。这些开关可设计为多种不同构型——从单刀单掷到可将单个输入转换成16种不同输出状态的单刀十六掷,或更多掷的构型。切换开关为一种双刀双掷构型的开关。此类开关具有四个端口以及两种可能的开关状态,从而可将负载在两个源之间切换。 机电式继电器开关的插入损耗较低(《0.1dB),隔离度较高(》 85dB),且可以毫秒级的速度切换信号。此类开关的主要优点在于,其可在直流~毫米波(》50 GHz)频率范围内工作,而且对静电放电不敏感。此外,机电式继电器开关可处理较高的功率水平(达数千瓦的峰值功率)且不发生视频泄漏。

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交 调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的 电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 中 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振 (L0)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振 比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整 流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3GHz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(L0) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号, 然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstopIO格的频率差,例如:

射频基础知识知识讲解

第一部分 射频基础知识 目录 第一章与移动通信相关的射频知识简介 (1) 1.1 何谓射频 (1) 1.1.1长线和分布参数的概念 (1) 1.1.2射频传输线终端短路 (3) 1.1.3射频传输线终端开路 (4) 1.1.4射频传输线终端完全匹配 (4) 1.1.5射频传输线终端不完全匹配 (5) 1.1.6电压驻波分布 (5) 1.1.7射频各种馈线 (6) 1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 无线电频段和波段命名 (9) 1.3 移动通信系统使用频段 (9) 1.4 第一代移动通信系统及其主要特点 (12) 1.5 第二代移动通信系统及其主要特点 (12) 1.6 第三代移动通信系统及其主要特点 (12) 1.7 何谓“双工”方式?何谓“多址”方式 (12) 1.8 发信功率及其单位换算 (13) 1.9 接收机的热噪声功率电平 (13) 1.10 接收机底噪及接收灵敏度 (13) 1.11 电场强度、电压及功率电平的换算 (14) 1.12 G网的全速率和半速率信道 (14) 1.13 G网设计中选用哪个信道的发射功率作为参考功率 (15) 1.14 G网的传输时延,时间提前量和最大小区半径的限制 (15)

1.15 GPRS的基本概念 (15) 1.16 EDGE的基本概念 (16) 第二章天线 (16) 2.1天线概述 (16) 2.1.1天线 (16) 2.1.2天线的起源和发展 (17) 2.1.3天线在移动通信中的应用 (17) 2.1.4无线电波 (17) 2.1.5 无线电波的频率与波长 (17) 2.1.6偶极子 (18) 2.1.7频率范围 (19) 2.1.8天线如何控制无线辐射能量走向 (19) 2.2天线的基本特性 (21) 2.2.1增益 (21) 2.2.2波瓣宽度 (22) 2.2.3下倾角 (23) 2.2.4前后比 (24) 2.2.5阻抗 (24) 2.2.6回波损耗 (25) 2.2.7隔离度 (27) 2.2.8极化 (29) 2.2.9交调 (31) 2.2.10天线参数在无线组网中的作用 (31) 2.2.11通信方程式 (32) 2.3.网络优化中天线 (33) 2.3.1网络优化中天线的作用 (33) 2.3.2天线分集技术 (34) 2.3.3遥控电调电下倾天线 (1) 第三章电波传播 (3) 3.1 陆地移动通信中无线电波传播的主要特点 (3) 3.2 快衰落遵循什么分布规律,基本特征和克服方法 (4)

相关主题