搜档网
当前位置:搜档网 › 高考数学专题20 立体几何大题(解析版)

高考数学专题20 立体几何大题(解析版)

高考数学专题20 立体几何大题(解析版)
高考数学专题20 立体几何大题(解析版)

专题20 立体几何大题(解析版)

立体几何解答题高考中的必考题,占12分,一般考察立体几何知识掌握情况及解答技巧。如线面垂直、面面垂直、线面平行,线面角、二面角等问题。 立体几何解答题中的易错和易混点

易错点1:求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法;

易错点2:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大;

易错点3:作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见;

易错点4:求点到面的距离的常规方法是什么?(直接法、等体积法、换点法、向量法) 易错点5:求多面体体积的常规方法是什么?(割补法、等积变换法) 易错点6: 两条异面直线所成的角的范围:0°<α≤90° 直线与平面所成的角的范围:0o ≤α≤90°

二面角的平面角的取值范围:0°≤α≤180°

易错点7:用向量法求线面角得的是正弦值,而不是余弦值;

易错点8:用向量法求二面角时,最后一步忘了判断二面角的平面角是钝角还是锐角,导致结果错误。 题组一 1.(2015新课标Ⅱ)如图,长方体ABCD —A 1B 1C 1D 1中,AB = 16,BC = 10,AA 1 = 8, 点E ,F 分别在A 1B 1,D 1C 1上,A 1E = D 1F = 4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形。

(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值。 【解析】(Ⅰ)交线围成的正方形EHGF 如图: (Ⅱ)作EM AB ⊥,垂足为M , 则114,8AM A E EM AA ==== 因为EHGF 为正方形,所以10EH EF BC ===

于是226MH EH EM =

-=,所以10AH =

以D 为坐标原点,DA u u u r

的方向为x 轴正方向, 建立如图所以的空间直角坐标系D xyz -,则

(10,0,0),(10,10,0),(10,4,8),(0,4,8),(10,0,0),(0,6,8)A H E F FE HE ==-u u u r u u u r

设(,,)n x y z =是平面EHGF 的法向量,则

0,0,n FE n HE ?=??=??u u u r g u u u

r g 即100,

680,x y z =??-+=?

所以可取(0,4,3)n = 又(10,4,8)AF =-u u u r

故||45

|cos ,|||||n AF n AF n AF <>==u u u r

u u u r g u u u r

所以AF 与平面EHGF 所成角的正弦值为

415

15

所以直线PA 与平面PEH 所成角的正弦值为

24

. 2.(2016全国III )如图,四棱锥P ABCD -中,

PA ⊥底面ABCD ,AD BC P ,=3AB AD AC ==,

4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.

(Ⅰ)证明MN P 平面PAB ;

(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.

【解析】(Ⅰ)由已知得23

2

==

AD AM ,

取BP 的中点T ,连接TN AT ,.

由N 为PC 中点知BC TN //,22

1

==BC TN .

又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //.

因为?AT 平面PAB ,?MN 平面PAB ,所以//MN 平面PAB .

(Ⅱ)取BC 的中点E ,连结AE ,由AC AB =得BC AE ⊥,从而AD AE ⊥,

且5)2

(22

22=-=-=BC AB BE AB AE . 以A 为坐标原点,AE u u u r

的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,

)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,2

5

(N , (0,2,4)PM =-u u u u r ,)2,1,2

5(-=PN ,

)2,1,2

5

(=AN .

设(,,)x y z =r n 为平面PMN 的法向量,则00

PM PN ??=???=??r u u u u r r u u u r

n n ,即???

??=-+=-022

5042z y x z x , 可取(0,2,1)n =r

于是||85

|cos ,|||||n AN n AN n AN ?<>==r u u u r

r u u u r r u u u r .

所以直线AN 与平面PMN 所成角的正弦值为

85

题组二

3.(2013新课标Ⅱ)如图,直三棱柱111ABC A B C -中,

12

2

AA AC CB AB ===

E

D

C

B

A

A 1

B 1

C 1

P

A

B D

C N M

(Ⅰ)证明:1BC //平面1A CD ;

(Ⅱ)求二面角1D A C E --的正弦值.

【解析】(Ⅰ)连结1AC ,交,D E 分别是1,AB BB 的中点,1A C 于点O ,

连结DO ,则O 为1AC 的中点,

因为D 为AB 的中点,所以OD ∥1BC ,又因为OD ?平面1A CD ,

1BC ?平面1A CD ,所以1BC //平面1A CD ;

(Ⅱ)由1AA

=AC=CB=

2

AB 可设:AB=2a ,则1AA

, 所以AC ⊥BC ,又因为直棱柱,所以以点C 为坐标原点,分别以直线CA 、CB 、1CC 为x 轴、y 轴、z 轴,建立空间直角坐标系如图, 则(0,0,0)C

、1)A 、

D

、E ,

1)CA =u u u r

CD =u u u r

CE =u u u r , 1(,A E =u u u r ,

设平面1A CD 的法向量为(,,)n x y z =r ,则0n CD ?=r u u u r 且10n CA ?=r u u u r

可解得y x z =-=,令1x =,得平面1A CD 的一个法向量为(1,1,1)n =--

r

同理可得平面1A CE 的一个法向量为(2,1,2)

m =-u r

则cos ,n m <>=r u r

,所以sin ,n m <>=r u r

所以二面角D-1A C -E

4.(2012新课标)如图,直三棱柱111C B A ABC -中,

11

2

AC BC AA ==

,D 是棱1AA 的中点,BD DC ⊥1. (Ⅰ)证明:BC DC ⊥1;

(Ⅱ)求二面角11C BD A --的大小.

【解析】(Ⅰ)在Rt DAC ?中,AD AC =,得:45ADC ?

∠=

同理:1114590A DC CDC ?

?

∠=?∠=

得:111,DC DC DC BD DC ⊥⊥?⊥面1BCD DC BC ?⊥ (Ⅱ)11,DC BC CC BC BC ⊥⊥?⊥面11ACC A BC AC ?⊥ 取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H

1111111AC B C C O A B =?⊥,面111A B C ⊥面1A BD 1C O ?⊥面1A BD 1OH BD C H BD ⊥?⊥ 得:点H 与点D 重合

A

C

B

1

B 1

A D

1

C 1

且1C DO ∠是二面角1

1C BD A --的平面角

AC a =,则122

a

C O =

,1112230C D a C O C DO ?==?∠= 既二面角11C BD A --的大小为30?

传统法求二面角的大小:作出二面角的平面角并通过解三角形计算。 作平面角常用方法如下:

①先确定二面角的棱,在棱上找一点,分别在两个半平面内作棱的垂线,两垂线所成的角即为平面角。

②垂面法:用垂直于二面角棱的平面截二面角,两交线所成的角即为平面角

③三垂线定理及其逆定理:过一个半平面内一点作另一半平面的垂线,过垂足在另一个半平面内作棱的垂线得棱上一点(即斜足),斜足与面上一点的连线和斜足与垂足连线所成角为平面角。

④利用特殊图形的垂直关系直接作出平面角。此类问题的特征是图形中一般有二面角的平面角,只须利用前面三种方法进行判断即可找到二面角的平面角。 题组三

5.(2019全国Ⅲ理19)图1是由矩形ADEB 、R t △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.

(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B-CG-A 的大小.

【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.

由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ?平面ABC ,所以平面ABC ⊥平面BCGE .

(2)作EH ⊥BC ,垂足为H .因为EH ?平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH =3.以H 为坐

标原点,HC u u u r

的方向为x 轴的正方向,建立如图所示的空间直角坐标系–H xyz ,则A (–1,

1,0),C (1,0,0),G (2,0,3),

CG u u u r =(1,0,3),AC u u u r

=(2,–1,0).

设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ??=???=??u u u r u u u r n n 即30,

20.x z x y ?+=??

-=?

? 所以可取n =(3,6,–3).

又平面BCGE 的法向量可取为m =(0,1,0), 所以3

cos ,||||???=

=

n m n m n m .

因此二面角B –CG –A 的大小为30°.

附:平面图形的翻折问题:

(1)将平面图形沿直线翻折成立体图形,实际上是以该直线为轴的一个旋转

(2)求解翻折问题的基本方法是:先比较翻折前后的图形,弄清哪些量和位置关系在翻折

过程中不变,哪些已发生变化,然后将不变的条件集中到立体图形中,将问题归结为一个条件与结论均明朗化的立几问题。 (3)把平面图形翻折成空间图形后的有关计算问题,必须抓住在翻折过程中点、线、面之间的位置关系、数量关系中,哪些是变的,哪些不变,特别要抓住不变量。一般地,在同一个半平面内的几何元素之间的关系是不变的,涉及到两个半平面内的几何元素之间的关系是变的。 题组四 6.(2017新课标Ⅲ)如图,四面体ABCD 中,ABC ?是正三

角形,ACD ?是直角三角形,ABD CBD ∠=∠,

AB BD =.

(1)证明:平面ACD ⊥平面ABC ; (2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D AE C

--的余弦值.

【解析】(1)由题设可得,ABD CBD ???,从而AD DC =.

又ACD ?是直角三角形,所以0=90ACD ∠

取AC 的中点O ,连接DO ,BO ,则DO AC ⊥,DO AO =. 又由于ABC ?是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB ?中,222BO AO AB +=.

又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=o . 所以平面ACD ⊥平面ABC .

(2)由题设及(1)知,OA,OB,OD 两两垂直,以O 为坐标原点,OA u u u r

的方向为x 轴

正方向,OA u u u r

为单位长,建立如图所示的空间直角坐标系O xyz -,

则(1,0,0)A

,B ,(1,0,0)C -,(0,0,1)D .

由题设知,四面体ABCE 的体积为四面体ABCD 的体积的

1

2,从而E 到平面ABC 的距离为D 到平面ABC 的距离的1

2

即E 为DB 的中点,

得1)2E . 故(1,0,1)AD =-u u u r ,(2,0,0)AC =-u u u r

,1

()2AE =-u u u r 设()=x,y,z n 是平面DAE 的法向量,则AD AE ?=??=??u u u r g u u u r g 0,0,n n

即x z x y z -+=??

?-++=??

01

022

可取=n 设m 是平面AEC 的法向量,则0,

0,

AC AE ?=??=??u u u r g u u u r

g m m

同理可得(0,=-m A B C D

E

则cos ,=

=

g 7

n m n m n m 所以二面角D AE C --的余弦值为

7

7

. 7.(2018全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的

平面与半圆弧?CD

所在平面垂直,M 是?CD 上异于C ,D 的点.

(1)证明:平面AMD ⊥平面BMC ;

(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.

【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .

因为BC ⊥CD ,BC ?平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .

因为M 为?CD

上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又BC I CM =C ,所以DM ⊥平面BMC .

而DM ?平面AMD ,故平面AMD ⊥平面BMC .

(2)以D 为坐标原点,DA u u u r

的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -.

当三棱锥M ABC -体积最大时,M 为?CD

的中点. 由题设得(0,0,0)D ,(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,(0,1,1)M ,

(2,1,1)AM =-u u u u r ,(0,2,0)AB =u u u r ,(2,0,0)DA =u u u r

设(,,)x y z =n 是平面MAB 的法向量,则

0,0.

AM AB ??=???=??u u u u r u u u

r n n 即20,

20.x y z y -++=??=? 可取(1,0,2)=n .

DA u u u r

是平面MCD 的法向量,因此

5

cos ,5||||

DA DA DA ?=

=u u u r

u u u r u u u r n n n , 25sin ,5

DA =u u u r n ,

所以面MAB 与面MCD 所成二面角的正弦值是

25

5

题组五 8.(2014新课标II )如图,四棱锥P ABCD -中,底面ABCD

为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ; (Ⅱ)设二面角D AE C --为60°,AP =1,AD =3, 求三棱锥E ACD -的体积.

【解析】(Ⅰ)连接BD 交AC 于点O ,连结EO .

因为ABCD 为矩形,所以O 为BD 的中点.

M

D C

B

A

z

y

x

A B

C

D M

又E 为PD 的中点,所以EO ∥PB .

EO ?平面AEC ,PB ?平面AEC ,所以PB ∥平面AEC . (Ⅱ)因为PA ⊥平面ABCD ,ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.

如图,以A 为坐标原点,AB u u u r

的方向为x 轴的正方向, AP u u u r

为单位长,建立空间直角坐标系A xyz -,

则(0,3,0),D 31(0,

,),22E 31(0,,)22

AE =u u u r . 设(,0,0)(0)B m m >,则(,3,0),C m (,3,0)AC m =u u u r

. 设1(,,)x y z =n 为平面AEC 的法向量,

则1

10,0,

AC AE ??=???=??u u u r u u u r n n 即30,31

0,2

mx y y z ?+=??+=?,可取13

(,1,3)=-n .

又2(1,0,0)=n 为平面DAE 的法向量,

由题设121cos ,2=

n n ,即2

31342m =+,解得3

2

m =. 因为E 为PD 的中点,所以三棱锥E ACD -的高为1

2

三棱锥E ACD -的体积11313

33222V =????=.

9.(2011新课标)如图,四棱锥P ABCD -中,底面ABCD 为

平行四边形,60DAB ∠=?,

2AB AD =,PD ⊥底面ABCD . (Ⅰ)证明:PA BD ⊥;

(Ⅱ)若PD AD =,求二面角A PB C --的余弦值.

【解析】(Ⅰ)因为60,2DAB AB AD ∠=?=,

由余弦定理得3BD AD =

从而2

2

2

BD AD AB +=,故BD ⊥AD

又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD . 故 P A ⊥BD

(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则

()1,0,0A ,()03,0B ,,()

1,3,0C -,()0,0,1P . (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=-uu u v u v

设平面PAB 的法向量为(,,)x y z =n ,

则00

AB PB ??=???=??uu u r uu r n n ,即 3030x y y z ?-+=??-=??

x

y

z O

A

B C

D

P

E

因此可取n =(3,1,3)

设平面PBC 的法向量为m ,则 0

PB BC ??=???=??uu r uu u r

m m 可取m =(0,-1,3-)

27

cos ,727

=

=-m n 故二面角A-PB-C 的余弦值为27

-

. 题组六 10.(2010新课标)如图,已知四棱锥P ABCD -的底面为等腰梯形,

AB CD ∥,AC BD ⊥,垂足为H ,PH 是四棱锥的高,E 为AD 中点.

(Ⅰ)证明:PE BC ⊥; (Ⅱ)若60APB ADB ∠=∠=o

,求直线PA 与平面PEH 所 成角的正弦值.

【解析】以H 为原点,,,HA HB HP 分别为,,x y z 轴,线段HA 的长

为单位长, 建立空间直角坐标系如图, 则(1,0,0),(0,1,0)A B

(Ⅰ)设(,0,0),(0,0,)(0,0)C m P n m n <>,

则1(0,,0),(,

,0).22m

D m

E 可得1(,,),(,1,0).22

m

PE n BC m =-=-

因为0022

m m

PE BC ?=-+=,所以PE BC ⊥

(Ⅱ)由已知条件可得 33,1,m n C =-=-故 (,0,0) 313(0,,0),(,,0),(0,0,1)2D E P -- 设 (,,)n x y x =为平面PEH 的法向量则0,0,

HE HP ??=???=??n n 即13026

0x y z ?-

=???=?

因此可以取(1,3,0)=n ,由(1,0,1)PA =-u u u r ,可得2

cos ,4

PA =u u u r n ,

直线PA 与平面PEH 所成角的正弦值2

4.

立体几何十大经典类型(解题思想方法归纳) 类型一: 证明线线平行

1.证明两直线a 、b 平行,若直线a 和直线b 共面时,则可以用平面几何中常用的一些方法(如证明a 和b 是一个平行四边形的一组对边)证明它们无公共点。 在立体几何中一般还有以下几种思路:

①根据公理4 ②根据“线面平行”的性质定理

③根据“线面垂直”的性质定理,若直线a 和b 都与平面α垂直,则a //b 。 ④根据“面面平行”的性质定理 ⑤根据三角形中位线的性质。 ⑥根据平行四边形的性质。 ⑦根据对应线段成比例。 2.设法转化为线面平行、面面平行、线面垂直的相关问题 3.向量方法:证明向量共线。

类型二: 证明线面平行 1.传统几何方法:

①根据直线与平面平行的定义 ②根据直线与平面平行的判定定理 ③根据平面与平面平行的性质定理 2.方法②通过“线线平行证明线面平行”,是由低维升向高维的一种思维方式;方法③通过“面面平行证明线面平行”,是由高维降向低维的一种思维方式。这两种思维方式是立体几何中基本的思维方法。 3.向量方法:

①转化为证明向量共线。 ②根据共面向量定理。

③证明向量与平面的法向量相互垂直。

类型三: 证明面面平行 1.传统几何方法:

①根据两个平面平行的定义 ②根据两个平面平行的判定定理 ③垂直于同一条直线的两个平面平行 ④平行于同一平面的两个平面平行 思维过程:注意三者的转化

线线平行??

→?判定线面平行??→?判定

面面平行 线线平行??

?←性质

线面垂直???←性质

面面平行 向量方法:

①转化为用向量证明线线平行、线面平行问题。②证明两个平面的法向量共线。

类型四: 证明线线垂直

1. 证明线线垂直,若两条直线在同一平面内,可用平面几何中证明两条直线垂直的方法来

证明它们垂直。立体几何一般有以下几种证明方法: ①根据定义

②如果直线a //直线b ,直线a ⊥直线c ,则c b ⊥ ③如果直线⊥a 平面α,α?c 则c a ⊥ ④三垂线定理及其逆定理

⑤根据二面角的平面角的定义⑥等腰(等边)三角形中的中线 ⑦菱形(正方形)的对角线互相垂直 ⑧勾股定理中的三角形

⑨1:2:2 的直角梯形中 ⑩利用相似或全等证明直角,直径所对的圆周角 2. 向量方法:证明向量相互垂直。

类型五: 证明线面垂直 1. 传统几何方法:

①如果一条直线垂直于一个平面内的任何一条直线,则这条直线和这个平面垂直 ②线面垂直的判定定理

③如果一条直线垂直于两个平行平面中的一个,则这条直线也与另一个平面垂直 ④两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面 ⑤面面垂直的性质定理

2. 向量方法:

①转化为证明向量垂直。

②证明向量与平面的法向量共线。

类型六: 证明面面垂直 1.传统几何方法:

①根据面面垂直的定义:如果两个平面相交所成的二面角是直二面角,那么这两个平面互相垂直

②根据面面垂直的判定定理

③利用结论:如果一个平面垂直于两个平行平面中的一个,则它垂直于另一个平面 2 .向量方法:

①转化为用向量证明线线垂直、线面垂直问题。 ②证明两个平面的法向量相互垂直。

类型七: 求异面直线所成角

1. 传统几何方法:先判断这个角是否是直角,如果是直角可直接证明并得出结论,一般求

角的步骤是:

(1)利用平移作出要计算的角; (2)构造含该角的三角形; (3)解三角形求角 2. 异面直线所成的角作法: ①定义。在具体问题中异面直线的给出是异面线段形式表示的,因此由异面直线所成角的定义我们可以选择两条线段的四个端点,过其中一个端点作另外一条线段的平行线,选择点的原则是过这点作另外一条线段的平行线要容易作(往往是这点和另外一条线段在一个三角形中且这点在三角形的一边上,或这点和另外一条线段在已知一个平面内且作平行线要好作)

②利用中位法。如给出异面直线AB 和CD ,连接AC 、AD 、BC ,然后再分别取这三条线段的中点E 、F 、G ,连接EF 、EG 、FG 得到△EFG ,则∠FEG 就是所求角或所求角的补角。这种方法优点是作异面直线所成角比较容易,但缺点是△EFG 中有一边GF 的长度不容易求。 3. 向量方法:

转化成求两个向量的夹角(即等于所求的异面直线所成的角或其补角的大小)

类型八: 求平面的斜线与平面所成角 1. 传统几何方法:

①转化为求斜线与它在平面内的射影所成的角,通过直角三角形求解。 ②利用三面角定理(即最小角定理)21cos cos cos θθθ?=求1θ。 2. 向量方法:设为平面α的法向量,直线a 与平面α所成的角为θ,则

???

?????

?? ??>∈<->∈<><-=πππππθ,2,,2,2,0,,,2n a n a n a n a

类型九: 求二面角

1. 作出二面角的平面角并通过解三角形计算。作平面角常用方法如下:

①先确定二面角的棱,在棱上找一点,分别在两个半平面内作棱的垂线,两垂线所成的角即为平面角。

②垂面法:用垂直于二面角棱的平面截二面角,两交线所成的角即为平面角。 ③三垂线定理及其逆定理:过一个半平面内一点作另一半平面的垂线,过垂足在另一个半

平面内作棱的垂线得棱上一点(即斜足),斜足与面上一点的连线和斜足与垂足连线所成角为平面角。

④利用特殊图形的垂直关系直接作出平面角。此类问题的特征是图形中一般有二面角的平面角,只须利用前面三种方法进行判断即可找到二面角的平面角。

2. 求二面角的大小有时也可不必作平面角,只须判断出二面角与某个线面角或线线角相

等,求出即可。

①用射影面积公式:S S /

cos =θ

(其中S 为斜面面积,/

S 为射影面积,θ为斜面与其射影面所成的二面角的平面角)。此法

适用于棱未给出或平面角难以作出的情形。

②公式法:如利用两条异面直线上两点间的距离公式可求出二面角,公式为:

θcos 2222mn n m d EF -++=

③向量方法:

只要在两个半平面内各有棱的垂线a 、b (不必相交),则向量a 、b 所成的角的大小等于所求二面角或其补角的大小。

另法:设1n 、2n 分别为两个半平面的法向量,则它们所成的角的大小等于所求二面角或其补角的大小。

3. 对于棱未给出的二面角的求法可通过“作平行线”法或“找公共点”法寻求棱。

类型十: 求距离

1. 立体几何主要研究以下八种距离:点点距、点线距、点面距、线线距(平行线间距离与

异面直线间的距离)、线面距、面面距及球面上两点间的距离(课本9.10)。 (1)无论哪种距离,其定义原则有以下两条:一是惟一性,二是最短原则。

(2)以上距离之间有些可以互相转化,如两平行线间距离可以转化成点线距,线面距与面面距都可转化成点面距,再转化成点线距。(3)关于点线距问题经常用到三垂线定理或其逆定理来作出距离,其关键是垂足位置的确定。

(4)点线距、点面距为重点,异面直线间的距离是难点。 2. 求点到平面的距离,主要有以下方法: ①作出垂线段,直接求垂线段的长度。

②若点在一个平面上,而此平面又垂直于已知平面,利用面面垂直必推出线面垂直,得出表示距离的垂线段。

(若上述平面难以找到,可以转化为与所求距离等价的另一个平面、直线或点到已知平面的距离)

③垂足不易确定时,可转化为三棱锥的高,再利用等积法求点面距离。 ④向量方法:

若平面α的一法向量为n ,直线AB 与平面α交于点A , 点B 到平面α的距离为h ,则

h =

3. 求异面直线间的距离的方法: ①求公垂线段的长度

②可把距离看作某图形的高,转化为其他距离问题。例如转化成其中一条异面直线(a )到过另一条异面直线(b )且与这条直线(a )平行的平面的距离。 ③转化为求线段长函数的最小值。 ④公式法:(见课本49页)

θcos 2222mn n m l d μ--=设为两异面直线公垂线的方向向量,E 、F 分别为这两条

直线上各一点,则EF 在n 的单位向量e 上的正射影的长度即为所求的距离,即所求距离

h =

?=

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

2020高考数学立体几何练习题23题

2020高考数学之立体几何解答題23題 一.解答题(共23小题) 1.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点. (Ⅰ)求证:AN∥平面MEC; (Ⅱ)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为?若存在,求出AP的长h;若不存在,请说明理由. 2.如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2 的菱形,AC⊥CB,BC=1. (Ⅰ)证明:AC1⊥平面A1BC; (Ⅱ)求二面角B﹣A1C﹣B1的大小.

3.如图,已知四棱锥P﹣ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°. (I)求点P到平面ABCD的距离, (II)求面APB与面CPB所成二面角的大小. 4.在正三棱锥P﹣ABC中,底面正△ABC的中心为O,D是PA的中点,PO=AB=2,求PB与平面BDC所成角的正弦值.

5.如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知. (1)求证:B1C1⊥平面OAH; (2)求二面角O﹣A1B1﹣C1的大小. 6.如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形. (1)求证:AD⊥BC. (2)求二面角B﹣AC﹣D的大小. (3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.

2018届高考数学(理)热点题型:立体几何(含答案解析)

4 42 立体几何 热点一空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. π 【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO. (1)求证:平面PBD⊥平面COD; (2)求直线PD与平面BDC所成角的正弦值. (1)证明∵OB=OC,又∵∠ABC= π 4 , ππ ∴∠OCB=,∴∠BOC=. ∴CO⊥AB. 又PO⊥平面ABC, OC?平面ABC,∴PO⊥OC. 又∵PO,AB?平面PAB,PO∩AB=O, ∴CO⊥平面PAB,即CO⊥平面PDB. 又CO?平面COD, ∴平面PDB⊥平面COD. (2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.

? →·n ? 则 sin θ=? ?|PD||n|? PD BC BD BC BD =? ?= 02+(-1)2+(-1)2× 12+12+32 ? 11 1×0+1×(-1)+3×(-1) 设 OA =1,则 PO =OB =OC =2,DA =1. 则 C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴→=(0,-1,-1),→=(2,-2,0),→=(0,-3,1). 设平面 BDC 的一个法向量为 n =(x ,y ,z), ??n·→=0, ?2x -2y =0, ∴? ∴? ??n·→=0, ?-3y +z =0, 令 y =1,则 x =1,z =3,∴n=(1,1,3). 设 PD 与平面 BDC 所成的角为 θ, ? PD ? → ? ? ? ? 2 22 . 即直线 PD 与平面 BDC 所成角的正弦值为 2 22 11 . 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【对点训练】 如图所示,在多面体 A B D DCBA 中,四边形 AA B B ,ADD A ,ABCD 均为正方 1 1 1 1 1 1 1 形,E 为 B D 的中点,过 A ,D ,E 的平面交 CD 于 F. 1 1 1 1 (1)证明:EF∥B C. 1 (2)求二面角 EA D B 的余弦值. 1 1 (1)证明 由正方形的性质可知 A B ∥AB∥DC,且 A B =AB =DC ,所以四边形 A B CD 为平行 1 1 1 1 1 1

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》经典测试题及答案解析

【高中数学】单元《空间向量与立体几何》知识点归纳 一、选择题 1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( ) A . 643 π B .8316π π+ C .28π D .8216π π+ 【答案】B 【解析】 【分析】 结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可. 【详解】 结合三视图,还原直观图,得到 故体积22221183242231633V r h r l πππππ=?+?=?+??=+,故选B . 【点睛】 本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等. 2.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存 在一点P ,使得1AP D P +取得最小值,则此最小值为( )

A .7 B .3 C .1+3 D .2 【答案】A 【解析】 【分析】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值. 【详解】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值, Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=. 所以11=90+60=150MA D ∠o o o 221111111113 2cos 13223()72 MD A D A M A D A M MA D ∴=+-∠=+-??- ??= 故选A . 【点睛】 本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题. 3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ). A 10 B .3:1 C .2:1 D 102 【答案】A

年高考数学试题知识分类大全立体几何

年高考数学试题知识分类大全立体几何 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

2007年高考数学试题汇编 立体几何 一、选择题 1.(全国Ⅰ?理7题)如图,正四棱柱1111D C B A ABCD -中, AB AA 21=,则异面直线11AD B A 与所成角的余弦值为( D ) A .51 B .52 C .53 D .5 4 2.(全国Ⅱ?理7题)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于( A ) A . 6 B . 10 C . 2 2 D . 3 3.(北京理3题)平面α∥平面β的一个充分条件是( D ) A .存在一条直线a a ααβ,∥,∥ B .存在一条直线a a a αβ?,,∥ C .存在两条平行直线a b a b a b αββα??,,,,∥,∥ D .存在两条异面直线a b a a b αβα?,,,∥,∥ 4.(安徽理2题)设l ,m ,n 均为直线,其中m ,n 在平面α内,“l α⊥”是l m ⊥且“l n ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也 不必要条件 5.(安徽理8题)半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为( ) A .)33arccos(- B .)36arccos(- C .)31arccos(- D .)4 1arccos(- 6.(福建理8题)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( D ) A .,,//,////m n m n ααββαβ??? B . //,,//m n m n αβαβ??? C .,//m m n n αα⊥⊥? D . //,m n n m αα⊥?⊥

全国高考理科数学:立体几何

2013年国理科数学试题分类汇编7立体几何 一、选择题 1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个 球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的 厚度则球的体积为 ) A 2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的 直线,αβ是两个不同的平面下列命题正确的是( )[] A .若αβ⊥m α?n β?则m n ⊥ B .若//αβm α?n β?则//m n C .若m n ⊥m α?n β?则αβ⊥ D .若m α⊥//m n //n β则αβ⊥ 3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积 之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱 1111ABCD A B C D -12AA AB =则CD 与平面1BDC 所成角的正弦值等于( ) A 5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为

( ) A .168π+ B .88π+ C .1616π+ D .816π+ 6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何 体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<< 7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正 方体的正视图的面积不可能...等于( ) A .1 B 8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如 图所示则该四棱台的体积是

2019高考数学试题汇编之立体几何(原卷版)

专题04 立体几何 1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则 A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是 A.158 B.162 C.182 D.324

4.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 5.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC , BC P 到平面ABC 的距离为___________. 6.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长 方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.) 7.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方 体1111ABCD A B C D 挖去四棱锥O ?EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3 ,不考虑打印损耗,制作该模型所需原料的质量为___________g. 8.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网 格纸上小正方形的边长为1,那么该几何体的体积为__________.

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

2018届高考数学立体几何(理科)专题02-二面角

2018届高考数学立体几何(理科)专题02 二面角 1.如图,在三棱柱111ABC A B C -中, 1,90A A AB ABC =∠=?侧面11A ABB ⊥底面ABC . (1)求证: 1AB ⊥平面1A BC ; (2)若15360AC BC A AB ==∠=?,,,求二面角11B A C C --的余弦值.

2.如图所示的多面体中,下底面平行四边形与上底面平行,且,,,,平面 平面,点为的中点. (1)过点作一个平面与平面平行,并说明理由; (2)求平面与平面所成锐二面角的余弦值.

3.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形, 2AB AD =, BD =,且PD ⊥底面ABCD . (1)证明:平面PBD ⊥平面PBC ; (2)若Q 为PC 的中点,且1AP BQ ?=u u u v u u u v ,求二面角Q BD C --的大小.

4.如图所示的几何体是由棱台和棱锥拼接而成的组合体,其底面四边形是边长为2的菱形,,平面. (1)求证:; (2)求平面与平面所成锐角二面角的余弦值.

5.在四棱锥P ABCD -中,四边形ABCD 是矩形,平面PAB ⊥平面ABCD ,点E 、F 分别为BC 、AP 中点. (1)求证: //EF 平面PCD ; (2)若0 ,120,AD AP PB APB ==∠=,求平面DEF 与平面PAB 所成锐二面角的余弦值.

6.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形, ,90AD BC ADC ∠=o P ,平面PAD ⊥底面ABCD , Q 为AD 中点, M 是棱PC 上的点, 1 2,1,2 PA PD BC AD CD === ==(Ⅰ)若点M 是棱PC 的中点,求证: PA P 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ; (Ⅲ)若二面角M BQ C --为30o ,设PM tMC =,试确定t 的值.

2007年高考理科数学“立体几何”题

2007年高考“立体几何”题 1.(全国Ⅰ) 如图,正四棱柱1111ABCD A B C D -中,12AA AB =, 则异面直线1A B 与1AD 所成角的余弦值为( ) A . 15 B . 25 C . 3 5 D . 45 解:如图,连接BC 1,A 1C 1,∠A 1BC 1是异面直线1A B 与1AD 所成的角,设AB=a ,AA 1=2a ,∴ A 1B=C 1B=5a , A 1C 1=2a ,∠A 1BC 1的余弦值为4 5 ,选D 。 一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知 正三棱柱的底面边长为2,则该三角形的斜边长为 . 解:一个等腰直角三角形DEF 的三个顶点分别在 正三棱柱的三条侧棱上,∠EDF=90°,已知 正三棱柱的底面边长为AB=2,则该三角形 的斜边EF 上的中线DG=3. ∴ 斜边EF 的长为23。 四棱锥S ABCD -中,底面ABCD 为平行四边形, 侧面SBC ⊥底面ABCD .已知45ABC =∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. 解法一: (Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD . 因为SA SB =,所以AO BO =, 又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 1 A A B 1B 1A 1D 1C C D C 1A C F A D B C A S

2021-2022年高考数学专题复习导练测 第八章 立体几何阶段测试(十)理 新人教A版

2021年高考数学专题复习导练测 第八章 立体几何阶段测试(十)理 新人教A 版 一、选择题 1.空间中四点可确定的平面有( ) A .1个 B .3个 C .4个 D .1个或4个或无数个 答案 D 解析 当这四点共线时,可确定无数个平面;当这四点不共线且共面时,可确定一个平面;当这四点不共面时,其中任三点可确定一个平面,此时可确定4个平面. 2.一个长方体被一个平面所截,得到的几何体的三视图,如图所示,则这个几何体的体积为( ) A .8 B .4 C .2 D .1 答案 C 解析 根据该几何体的三视图知,该几何体是一个平放的三棱柱;它的底面三角形的面积为S 底面=1 2×2×1=1,棱柱高为h =2,∴棱柱的体积为S 棱柱=S 底面·h =1×2=2. 3.下列命题中,错误的是( ) A .三角形的两条边平行于一个平面,则第三边也平行于这个平面 B .平面α∥平面β,a ?α,过β内的一点B 有唯一的一条直线b ,使b ∥a C .α∥β,γ∥δ,α、β、γ、δ所成的交线为a 、b 、c 、d ,则a ∥b ∥c ∥d D .一条直线与两个平面成等角,则这两个平面平行

答案D 解析A正确,三角形可以确定一个平面,若三角形两边平行于一个平面,而它所在的平面与这个平面平行,故第三边平行于这个平面;B正确,两平面平行,一面中的线必平行于另一个平面,平面内的一点与这条线可以确定一个平面,这个平面与已知平面交于一条直线,过该点在这个平面内只有这条直线与a平行;C正确,利用同一平面内不相交的两直线一定平行判断即可确定C是正确的;D错误,一条直线与两个平面成等角,这两个平面可能是相交平面,故应选D. 4.在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是( ) A.锐角三角形B.直角三角形 C.钝角三角形D.不能确定 答案B 解析作AE⊥BD,交BD于E, ∵平面ABD⊥平面BCD, ∴AE⊥平面BCD,BC?平面BCD,∴AE⊥BC, 而DA⊥平面ABC,BC?平面ABC,∴DA⊥BC, 又∵AE∩AD=A,∴BC⊥平面ABD, 而AB?平面ABD,∴BC⊥AB, 即△ABC为直角三角形.故选B. 5.在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )

立体几何-2019年高考理科数学解读考纲

05 立体几何 (三)立体几何初步 1.空间几何体 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图. (3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. (4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). (5)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 2.点、直线、平面之间的位置关系 (1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. ? 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. 公理2:过不在同一条直线上的三点,有且只有一个平面. 格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90πB.63π C.42πD.36π 【答案】B 【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规

则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解. 考向二 球的组合体 样题4 (2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B . 3π4 C . π2 D . π4 【答案】B 【解析】绘制圆柱的轴截面如图所示: 由题意可得:, 结合勾股定理,底面半径, 由圆柱的体积公式,可得圆柱的体积是,故选B. 【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 样题5 (2017江苏)如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12 O O 的体积为1V ,球O 的体积为2V ,则 1 2 V V 的值是 .

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

相关主题