搜档网
当前位置:搜档网 › 制冷系统常见故障

制冷系统常见故障

制冷系统常见故障
制冷系统常见故障

制冷系统常见故障

回液

1、对于使用膨胀阀的制冷系统,回液与膨胀阀选型和使用不当密切相关。膨胀阀选型过大、过热度设定太小、感温包安装方法不正确或绝热包扎破损、膨胀阀失灵都可能造成回液。

2、对于使用毛细管的小制冷系统而言,加液量过大会引起回液。

3、蒸发器结霜严重或风扇故障时传热变差,未蒸发的液体会引起回液。

4、温度频繁波动也会引起膨胀阀反应失灵而引起回液。

对于回液较难避免的制冷系统,安装气液分离器和采用抽空停机(即停机前让压缩机抽干蒸发器中液态制冷剂)控制可以有效阻止或降低回液的危害。

带液启动

1、回气冷却型压缩机在启动时,曲轴箱内的润滑油剧烈起泡的现象叫带液启动。

2、带液启动时的起泡现象可以在油视镜上清楚地观察到。

3、带液启动的根本原因是润滑油中溶解的以及沉在润滑油下面了大量的制冷剂,在压力突然降低时突然沸腾,并引起润滑油的起泡现象。起泡持续的时间长短与制冷剂的量有关,通常为几分钟或十几分钟。大量泡沫漂浮在油面上,甚至充满了曲轴箱。一旦通过进气道吸入气缸,泡沫会还原成液体(润滑油与制冷剂的混合物),很容易引起液击。显然,带液启动引起的液击只发生在启动过程。

4、与回液不同,引起带液启动的制冷剂是以“制冷剂迁移”的方式进入曲轴箱的。制冷剂迁移是指压缩机停止运行时,蒸发器中的制冷剂以气体形式,通过回气管路进入压缩机并被润滑油吸收,或在压缩机内冷凝后与润滑油混合的过程或现象。

5、压缩机停机后,温度会降低,而压力会升高。由于润滑油中的制冷剂蒸汽分压低,就会吸收油面上的制冷剂蒸气,造成曲轴箱气压低于蒸发器气压的现象。油温愈低,蒸汽压力越低,对制冷剂蒸汽的的吸收力就愈大。蒸发器中的蒸汽就会慢慢向曲轴箱“迁移”。此外,如果压缩机在室外,天气寒冷时或在夜晚,其温度往往比室内的蒸发器低,曲轴箱内的压力也就低,制冷剂迁移到压缩机后也容易被冷凝而进入润滑油。

6、制冷剂迁移是一个很缓慢的过程。压缩机停机时间越长,迁移到润滑油中的制冷剂就会越多。只要蒸发器中存在液态制冷剂,这一过程就会进行。由于

溶解了制冷剂的润滑油较重,它会沉在曲轴箱的底部,而浮在上面的润滑油还可以吸收更多的制冷剂。

7、由于结构原因,空冷压缩机启动时曲轴箱压力的降低会缓慢得多,起泡现象不很剧烈,泡沫也很难进入气缸,因此空冷压缩机不存在带液启动液击问题。

8、理论上讲,压缩机安装曲轴箱加热器(电热器)可以有效防止制冷剂迁移。短时间停机(比如在夜间)后,维持曲轴箱加热器通电,可以使润滑油温度略高于系统其它部位,制冷剂迁移不会发生。长时间停机不用(比如一个冬天)后,开机前先加热润滑油几个或十几个小时,可以蒸发掉润滑油中的大部分制冷剂,既可以大大减小带液启动时液击的可能性,也可以降低制冷剂冲刷造成的危害。但实际应用中,停机后维持加热器供电或者开机前十几小时先给加热器供电,是有难度的。因此,曲轴箱加热器的实际效果会大打折扣。

9、对于较大系统,停机前让压缩机抽干蒸发器中液态制冷剂(称为抽空停机),可以从根本上避免制冷剂迁移。而回气管路上安装气液分离器,可以增加制冷剂迁移的阻力,降低迁移量。

回油

1、当压缩机比蒸发器的位置高时,垂直回气管上的回油弯是必需的。回油弯要尽可能紧凑,以减小存油。回油弯之间的间距要合适,回油弯的数量比较多时,应该补充一些润滑油。

2、变负荷系统的回油管路也必须小心。当负荷减小时,回气速度会降低,速度太低不利于回油。为了保证低负荷下的回油,垂直的吸气管可以采用双立管。

3、压缩机频繁启动不利于回油。由于连续运转时间很短压缩机就停了,回气管内来不及形成稳定的高速气流,润滑油就只能留在管路内。回油少于奔油,压缩机就会缺油。运转时间越短,管线越长,系统越复杂,回油问题就越突出。

4、缺油会引起严重的润滑不足,缺油的根本原因不在于压缩机奔油多少和快慢,而是系统回油不好。安装油分离器可以快速回油,延长压缩机无回油运转时间。

5、蒸发器和回气管路的设计必须考虑到回油。避免频繁启动、定时化霜、及时补充制冷剂、及时更换磨损的活塞组件等维护措施也有助于回油。

蒸发温度/回气温度/回气压力

1、蒸发温度每提高10℃,电机负载可增加30%甚至更高,造成小马拉大车的现象。因此,低温压缩机用于中高温系统、冷库降温过程持续时间过长,压缩机就长时间处于超负荷状态,对电机的损伤很大,使电机以后遇到电压波动、电涌等突发情况时很容易烧毁。

2、蒸发温度越低,制冷剂质量流量越小,实际需要的电机功率也就越小。因此将压缩机和中高温冷冻压缩机用于低温时,尽管电机的实际功耗比名义功率减小了很多,但相对于低温时的实际功率需要和冷却情况还是太大,电机冷却很容易出现问题。

3、回气温度高低是相对于蒸发温度为而言的。为了防止回液,一般回气管路都要求20℃的回气过热度。如果回气管路保温不好,过热度就远远超过20℃。

4、回气温度越高,气缸吸气温度和排气温度就越高。回气温度每升高1℃,排气温度将升高1~1.3℃。

5、对于回气冷却型压缩机,制冷剂蒸气在流经电机腔时被电机加热,气缸吸气温度再一次被提高。电机发热量受功率和效率影响,而消耗功率与排量、容积效率、工况、摩擦阻力等密切相关。

6、一些用户偏面地认为,蒸发温度越低冷度速度越快,这种想法其实有很多问题。降低蒸发温度虽然可以增加冷冻温差,但压缩机的制冷量却减小了,因此冷冻速度不一定快。何况蒸发温度越低,制冷系数就越低,而负荷却有增加,运转时间延长,耗电量会增大。

7、降低回气管路阻力也可以提高回气压力,具体方法包括及时更换脏堵的回气过滤器、尽可能缩小蒸发管和回气管路的长度等。

8、此外,制冷剂不足也是回气压力低的一个因素。

吸气温度过高

(1)系统中制冷剂充注量不足,即使膨胀阀开到最大,供液量也不会有什么变化,这样制冷剂蒸汽在蒸发器中过热使吸气温度升高。

(2)膨胀阀开启度过小,造成系统制冷剂的循环量不足,进人蒸发器的制冷剂量少,过热度大,从而吸气温度高。

(3)膨胀阀口滤网堵塞,蒸发器内的供液量不足,制冷剂液体量减少,蒸发器内有一部分被过热蒸汽所占据,因此吸气温度升高

(4)其他原因引起吸气温度过高,如回气管道隔热不好或管道过长,都可引起吸气温度过高。正常情况下压缩机缸盖应是半边凉、半边热。

若吸气温度过高则缸盖全部发热。

吸气温度过低

(1)制冷剂充注量太多,占据了冷凝器内部分容积而使冷凝压力增高,进入蒸发器的液体随之增多。蒸发器中液体不能完全气化,使压缩机吸人的气体中

带有液体微滴。这样,回气管道的温度下降,但蒸发温度因压力未下降而未变化,过热度减小。即使关小膨胀阀也无显著改善。

(2)膨胀阀开启度过大。由于感温元件绑扎过松、与回气管接触面积小,或者感温元件未用绝热材料包扎及其包扎位置错误等,致使感温元件所测温度不准确,接近环境温度,使膨胀阀动作的开启度增大,导致供液量过多。

蒸发温度对制冷效率影响

1、蒸发温度对制冷效率影响较大,它每降低1度,制取同样的冷量需增加功率4%,所以在条件许可的情况下,适当提高蒸发温度,对提高空调器制冷效率是有利的。家用空调器的蒸发温度一般比空调出风口温度低5~10度,正常运行时,蒸发温度在5~12度,出风温度在10~20度。

排气温度/排气压力/排气量

1、排气温度过高的原因主要有以下几种:回气温度高、电机加热量大、压缩比高、冷凝压力高、制冷剂的绝热指数、制冷剂选择不当。

2、对于R22压缩机,当蒸发温度从-5℃降低到-40℃时,一般COP会降低4倍,而其他参数变化不大,气体在电机腔的温升会增加三四倍。由于气缸吸气温度每升高1℃,排气温度可升高1~1.3℃。因此,蒸发温度从-5℃降低到-40℃,排汽温度会上升约30~40℃。回气冷却型半封压缩机,制冷剂在电机腔的温升范围大致在15~45℃之间。

3、空气冷却(风冷)型压缩机中制冷制不经过绕组,因而不存在电机加热问题。

4、排气温度受压缩比(冷凝压力/蒸发压力,一般为4)影响很大。正常情况下,压缩机的排气压力与冷凝压力很接近。冷凝压力升高时,压缩机排气温度也升高。压缩比越大,排气温度就越高,输气系数减小,从而使压缩机的制冷量降低,耗电量增加。

5、降低压缩比可以明显降低排气温度,具体方法包括提高吸气压力和降低排气压力。吸气压力由蒸发压力和吸气管路阻力决定。提高蒸发温度,可以有效提高吸气压力,迅速降低压缩比,从而降低排气温度。

6、实践表明,通过提高吸气压力来降低排气温度,比其他方法更简单有效。

7、排气压力过高的主要原因是冷凝压力太高(系统内有空气;制冷剂充注量过多,液体占据了有效冷凝面积;冷凝器散热面积不足、积垢、冷却风量或水量不足、冷却水或空气温度太高等)。选择合适的冷凝面积、维持充足的冷却介质流量是非常重要的。

8、排气压力过低,虽然其现象是表现在高压端,但原因多产生于低压端。其原因:

(1)膨胀阀冰堵或脏堵,以及过滤器堵塞等,必然使吸、排气压力都下降;

(2)制冷剂充注量不足;

(3)膨胀阀孔堵塞,供液量减少甚至停止,此时吸、排气压力均降低。

9、排气量不足主要是与压缩机的设计气量相比而言,压缩机吸气管太长,管径太小,致使吸气阻力增大,影响了吸气量从而使排气量减少。

液击

1、为了保证压缩机的安全运转,防止产生液击现象,要求吸气温度比蒸发温度高一点,即应具有一定的过热度。过热度的大小可通过调节膨胀阀开启度来实现。

2、应避免吸气温度过高或过低。吸气温度过高,即过热度过大,将导致压缩机排气温度升高。吸气温度过低,则说明制冷剂在蒸发器中蒸发不完全,既降低了蒸发器换热效率,湿蒸汽的吸人又会形成压缩机液击。吸气温度正常情况下应比蒸发温度高5~10℃。

过热度

1、对于常用的R22制冷剂,压缩机制冷量是随有效过热的增大而减小的,当过热度为10℃时,制冷量为饱和蒸发下制冷量的99.5%,当过热度为20℃时,制冷量为饱和蒸发下制冷量的99.3%,可见制冷量随过热度的增加而衰减是很小的。

2、对于R502制冷剂来说,压缩机制冷量随有效过热度的增大而

制冷系统的故障及分析..

制冷系统的故障,概述 本小册子谈及的是在小的,相对来说简单的制冷系统。所述及的故障,故障原因,处理方法以及对系统运行的影响也适用于更加复杂的,大型系统。但是在这种系统中会发生其他故障。这些故障以及在电子调节器中的故障在这里并不叙述。 不使用仪表的故障查找 在获得了一点小经验之后,在制冷系统中的许多普通故障能够用目视,听觉,感觉,有时用嗅觉来确定位置。 分类 故障查找可分为两部分。第一部分专门叙述能够用感官直接观察到故障。这里给出了症象,可能的原因和对运行的影响。第二部分叙述能够用感官直接观察到的故障,以及那些只能用仪表检测的故障。这里给出了症象和可能的原因以及处理方法的说明。 需要系统的知识 在故障检测方法中一个重要要素是熟悉系统是如何构成,它的功能和控制,属机械的和电气的。对系统不熟悉时应该藉仔细看管路布置和其他关键图并设法知道系统的形式(管路,元件布置以及各个连接系统)来补救。 理论知识是必需的 如果要发现并纠正故障和不正确的运行,一定数量的理论知识是需要的。在即使相对来说简单的制冷系统上检测所有形式的故障取决于这些因素的全面知识:——所有元件的构成,他们运行的模式以及特性。 ——必需的测量设备和测量技术。 ——环境对制冷系统运行的影响。控制器和安全装置的功能和设定。 ——制冷系统和它们检查方面的安全立法。 在检查制冷系统的故障之前,应注意采用故障探测的最重要仪表是有益的。 故障探测用的仪表 在制冷系统中最常用于故障探测的工具如下: 1.压力表 2.温度计 3.湿度计 4.检漏仪 5.真空表 6.钳形电流表 7.兆欧计 8.极性检查器 仪表分类 制冷系统上的故障探测和修理用仪表应当具有某些可靠性要求,这些要求中的某些可分类如下: a.精确度 b.分解度 c. 重复性 d. 长期稳定性 e. 温度稳定性 最重要的是a,b,e。 a.精确度 一个仪表的精确度是它能够给出的测得变数数值的准确程度。精确度通常以%(±)表示,满刻度(FS)或者测量值。一个特别仪表的精确度例子是如果精确度是FS的±2%,则测量值的误差是±2%。 b. 分解度 一个仪表的分解度是可以从它上面读到 的最小测量单位。例如,一个数字温度计显示0.1℃,因为读数的最末数字有一个0.1℃分解度。 分解度并不表示精确度。即使分解度是0.1℃,误差到±2℃的精确度是常见的。因此在两者之间区别是非常重要的。 c.重复性 系统维修 制冷系统的故障及分析

制冷设备常见故障及处理方法

制冷系统及设备常见的故障原因及排除方法 1、冷系统安全运行必要的三个条件是什么? 2、什么叫蒸发温度? 3、什么叫冷凝温度? 4、什么叫再冷却( 或称过冷) 温度? 5、什么叫中间温度? 6、什么叫压缩机的吸气温度? 7、什么叫压缩机的排气温度? 8、什么叫潮车? 9、什么原因能造成潮车? 10、潮车后能造成什么后果? 11、如何排除潮车? 12、排气压力超高什么原因? 13、压缩机不能启动 14、压缩机启动后即停机 15、气缸内有敲击声(活塞机) 16、曲轴箱内有敲击声(活塞机) 17、压缩机启动后无油压 18、润滑油油压过低(活塞机) 19、压缩机耗油量增大 20、轴封漏油或漏气 21、压缩机卸载装置机构失灵 22、压缩机吸气温度比蒸发温度高(比规定值高) 23、压缩机排气温度相对压力下温度偏高 24、压缩机吸入压力太低 25、机组发生不正常振动(螺杆机) 26、制冷能力不足 27、机器运转中出现不正常的响声(螺杆机) 28、排气温度或油温过高 29、排气温度或油温下降 30、滑阀动作不灵活或不动作 31、螺杆压缩机体温度过高 32、压缩机及油泵轴封泄漏 33、油压过低 34、油消耗量大

35、油面上升 36、停车时压缩机反转 37、吸气温度低于应用温度 38、制冷系统及设备的调整压力值( 供参考) 39、高压系统试验压力是多少? 40、低压系统试验压力是多少? 41、系统真空试验压力是多少? 42、设备的检修期要求 43、螺杆压缩机组检修期限 1、冷系统安全运行必要的三个条件是什么? 答:(1) 系统内的制冷剂压力不得出现异常高压,以免设备破裂。 (2) 不得发生湿冲程、液爆、液击等误操作,以免设备被破坏。 (3) 运动部件不得有缺陷或紧固件松动,以免损坏机械。 2 、什么叫蒸发温度? 答:蒸发器内的制冷剂在一定压力下沸腾汽化时的温度称为蒸发温度。 3、什么叫冷凝温度? 答:冷凝器内的气体制冷剂,在一定的压力下凝结成液体的温度称为冷凝温度。 4 、什么叫再冷却( 或称过冷) 温度? 答:冷凝后的液体制冷剂在高温、高压下被冷却到低于冷凝温度后的温度称冷却温度( 或过冷温度) 。 5 、什么叫中间温度? 答:中问冷却器中制冷剂在中问压力(P2) 下所对应的饱和温度称中间温度。 6 、什么叫压缩机的吸气温度? 答:压缩机的吸气温度,可以从压缩机的吸气阀前面的温度计测得, 吸气温度一般都高于蒸发温度,其高出差值取决于回气管的长度与管道保温情况,一般应较蒸发温度高5~10 ℃( 称过热度) 。 7 、什么叫压缩机的排气温度? 答:压缩机的排气温度可以从排气管路上的温度计测得。排气温度的高低与压力比(PK/P·) 及吸气温度成正比,如果吸气的过热度越高, 压力比愈大, 则排气温度也就愈高, 否则相反, 一般排气压力稍高于冷凝压力。 8 、什么叫潮车? 答:制冷工质因未能或未充分吸热而将液体或湿蒸汽被压缩机吸入机内称为潮车 9 、什么原因能造成潮车? 答:(1) 系统中的气液分离器标高是否低于标准( 要求 1.2m 以上)。 (2) 系统中的自动控制液位失灵。 (3) 手动供液过大、过急( 或节流阀内漏或开启过大)。

CO2制冷装置

CO2制冷装置CDPL500-SIE-29-Y 一:工作原理 二:操作流程: 三:仪表的操作: 四:冷干机的操作: 五:几种常见报警及消除:

CO2制冷装置 CDPL500-SIE-29-Y (一):工作原理 干燥清洁的二氧化碳气体在进入二氧化碳液化器进行液化,液化器是一个列管式换热器,制冷剂在管中流动,不断蒸发汽化吸收热量,二氧化碳气体被冷却到-20~-25℃(温度随压力的变化而变化)左右并被液化,在此温度下不能液化的气体(称为不凝性气体,主要成份是氧气和氮气)积聚在液化器的顶部被排放出液化器。制冷剂可在一定温度及压力下被冷却循环水冷凝成液体,使制冷剂具有制冷能力,吸收的热量被冷却水带走。液化的二氧化碳液体自流被送入储液罐储存。 储存液体时或生产用气时压力超过一定值时(1.93Mpa),冷冻机组自动开启(制冷机组满负荷运行)进行降温降压,将气体液化,避免安全阀起跳损耗气体。当制冷机组压力下降至一定值时(1.83Mpa),液化器冷冻机组自动停止工作;当二氧化碳来气量减少时,二氧化碳回路压力会降低,此时螺杆制冷压缩机会进行卸载。制冷机组工作时压力超过2MPa,建议关闭手动控制气体压缩机,如压力仍维持2Mpa,建议用户关闭制冷机组,检测发酵罐来气中二氧化碳浓度。 制冷压缩机的卸载范围: 1:二氧化碳回路压力>1.8 Mpa:制冷机组满负荷加经济器运行

2:二氧化碳回路压力>1.8Mpa,<1.7 Mpa:制冷机组满负荷运行 3:二氧化碳回路压力<1.7 Mpa:制冷机组75%负荷运行 2:二氧化碳回路压力<1.6 Mpa:制冷机组停止运行,等待气体压缩机给二氧化碳回路升压。 (二):操作流程: (1)自动运行:(系统正常运行) 按下启动按钮,这时候制冷压缩机进入运行准备状态,启动按钮灯亮。当系统压力大于18KG,制冷压缩机就可以运行,低于16KG自动停止,然后当系统压力再次大于18KG后会自动再运行,除非按下停止按钮,机器才会停止运行,同时停止按钮灯亮。如果运行中发现有报警发生,机器也会停止运行,人为的消除报警后再次按下启动按钮才能让机器运行。 (2)降压操作:(系统长时间停机可能会导致压力超高) 将允许降压打在开的位臵,允许降压指示灯亮。系统长时间停机可能会导致压力超高。当高过19.3KG时,制冷压缩机强制投入运行,到压力低于18KG停止。一般可以将允许降压打在开的位臵。 (3)工作流程: 系统运行后3秒制冷压缩机启动,首先线圈1得电,500毫秒后线圈2得电。这时能调阀1和2都未得电,压缩机为50%功率运行,线圈1运行后1分钟能调阀2得电,为75%功率运行。再过1分钟能

冷库制冷系统的概述

冷库制冷系统的概述 利用外界能量使热量从温度较低的物质(或环境)转移到温度较高的物质(或环境)的系统叫制冷系统。 制冷系统可分为蒸气制冷系统、空气制冷系统和热电制冷系统。其中蒸气制冷系统又可分为蒸气压缩式、蒸气吸收式和蒸气喷射式等多种类型。 1.制冷系统方案设计的意义 制冷系统方案设计是设计工作中一个关键的环节,其方案的选用直接关系到制冷装置建造费用、操作管理的方便程度、机器设备的先进性及经常运转费用的高低等。因此,在选择、确定方案时,应从先进性、实用性、经济发展诸方面考虑,因地制宜地选出合适的设计方案。 2.制冷系统方案设计的依据 1)制冷装置服务对象,如冷库、空调、工艺用水等。 2)建设规模和投资限额。 3)生产工艺要求。 4)当地水文气象条件,如冷却水温、水量、水质等。 5)制冷装置所处环境。 3.制冷系统方案设计原则 1)满足生产工艺要求。 2)尽量选用新工艺、新技术、新设备。 3)制冷系统在运行安全可靠的前提下尽量简单,操作管理方便。 4)投资合理,不仅要考虑一次投资和经常运转费用,还要考虑到技术、经济及发展问题。 总之,要使所选方案安全可靠、方便灵活、技术先进、经济合理。 4.蒸气压缩制冷系统的基本构成 (1)单级压缩系统的基本构成由制冷原理可知,压缩机、冷凝器、节流阀、蒸发器是构成压缩式制冷系统必不可少的四大部件,把它们依次用管道连接起来,就形成了一个最基本的单级压缩系统。制冷剂在系统中经过压缩、冷凝、节流,蒸发四个过程,即可完成一个制冷循环。 (2)双级压缩系统的基本构成。双级压缩由低压级压缩机(低压缸)、高压级压缩机(高压缸)、中间冷却器、冷凝器、节流阀、蒸发器组成的双级压缩系统的基本构成。其循环是:低压级压缩机由蒸发器吸入低压蒸气,压缩至中间冷却器,在中间冷却器内被冷却,再由高压级压缩机吸入并升压至冷凝压力送入冷凝器,在冷凝器中被冷凝成液体,再经节流阀供至蒸发器吸热蒸发,如此循环。中间冷却器内的冷源是由高压液体经节流后提供。 (3)综合系统的基本构成实际制冷装置中,有单级压缩系统,也有双级压缩系统,还有既有单级也有双级的综合系统。此时的综合系统并不是由两个独立的单、双级系统合并而成,一般情况下,由于单、双级压缩冷凝压力的一致性,实际上综合系统可以看成是单级系统和双级系统共用冷凝器而构成的。 (4)压缩系统的基本构成是制冷系统中比不可少的。但使用中的制冷系统为了提高运行的安全性和改善运行的经济性,增设了诸如贮液器、油分离、气液分离器、排液桶、低压循环桶、液泵、调节站、安全阀等设备和阀件,构成了比基本构成复杂得多的实际制冷系统。 5.蒸气压缩式制冷系统原理图 用管线、阀件图例绘制的,能简单的表示出实际制冷系统中机器、设备、阀件、仪表之间互相关系的图称制冷系统原理图。从制冷系统原理图上可以看出机器、设备的规格、

螺杆制冷机组常见故障及补救方法

螺杆机组: 1、启动负荷大,不能启动或启动后立即停车的故障原因及补救方法: 1、能量调节未至零位,减载至零位。 2、压缩机与电极同轴度过大,重新校正同轴度。 3、压缩机内充满油或液体制冷剂,盘动压缩机联轴节,将机腔内积液排出。 4、压缩机内磨损烧伤,拆卸检修。 5、电源断电或电压过低(低于额定值10%),排除电路故障,按产品要求供 电。 6、压力控制器或温度控制器调节不当,使触头常开,按要求调整触头位置。 7、压差控制器或热继电器断开后未复位,按下复位键。 8、电机绕组烧毁或短路,检修。 9、变压器、接触器、中间继电器线圈烧毁或触头接触不良,拆检、修复。 10、温度控制器调整不当或出故障不能打开电磁阀,调整温度控制器的调定 值或更换温控器。 11、电控柜或仪表箱电路接线有误,检查、改正。 12、机组内部压力太高,连接均压阀。 2、压缩机在运转中突然停车怎么办? 1、吸气压力低于规定压力,应查明原因排除故障。 2、排气压力过高,使高压继电器动作。 3、温度控制器调的过小或失灵,调大控制范围,更换温控器。 4、电机超载使压差控制器或保险丝烧毁,排除故障更换保险丝。 5、油压过低使压差控制器动作,查明原因,排除故障。 6、控制电路故障,查明原因,排除故障。 7、仪表箱接线端松动,接触不良,查明后上紧。 8、油温过高,油温继电器动作,增加油冷却器冷却水量。 3、机组震动过大的故障原因及补救方法: 1、机组地脚未紧固,塞紧调整垫铁,拧紧地脚螺栓。 2、压缩机与电机同轴度过大,重新校正同轴度。

3、机组与管道固有震动频率相近而共振,改变管道支撑点位置。 4、吸如过量的润滑油或液体制冷剂,停机,盘动联轴节联将液体排出。 4、运行中有异常声音的故障原因及补救方法: 1、压缩机内有异物,检修压缩机及吸气过滤器。 2、止推轴承磨损破裂,更换。 3、滑动轴承磨损,转子与机壳磨擦,更换滑动轴承检修。 4、联轴节的键松动,紧固螺栓或更换键。 5、排气温度过高的故障原因及补救方法: 1、冷凝器冷却水量不足,增加冷却水量。 2、冷却水温过高,开启冷却塔。 3、制冷剂充灌量过多,适量放出制冷剂。 4、膨胀阀开启过小,适当调节。 5、系统中存有空气(压力表指示明显跳动),排放空气。 6、冷凝器内传热管上有水垢,清除水垢。 7、冷凝器内传热管上有油膜,回收冷冻机油。 8、机内喷油量不足,调整喷油量。 9、蒸发器配用过小,更换。 10、热负荷过大,减少热负荷。 11 、油温过高,增加油冷却器冷却水量(液氨量),降低油温。 12、吸气过热度过大,适当开大供液阀,增加供热量。 6、压缩机本体温度过高的故障原因及补救方法: 1、吸气温度过高,适当调大截流阀。 2、部件磨损造成摩擦部位发热,停车检查。 3、压力比过大,降低排气压力。 4、油冷却器能力不足,增加冷却水量(液氨量),降低油温。 5、喷油量不足,增加喷油量。 6、由于杂质等原因造成压缩机烧伤,停车检查。 7、蒸发气温度过低的故障原因及补救方法: 1、制冷剂不足,添加制冷剂到规定值。

汽车空调不制冷故障诊断与排除

汽车空调不制冷故障诊断与排除 摘要:现在轿车都基本上都装有空调,在不同季节都能给驾驶员提供一个车内舒适的环境。但当空调在长时间的工作之后也会出现各种各样的故障,汽车空调系统常见的故障有高压管被油污,继电器电阻值过大,空调压缩机不工作,温控开关失效,尤其是不制冷的这种现象也较为多见。 汽车空调产生不制冷的故障现象,大多是制冷系统所引起的,我们在维修过程中除了要求维修工要有一个好的诊断思维和方法以外,对故障进行全面的分析,分析储故障可能的原因,先从外围找故障,然后有里及外的进行检查,在维修时要做到认真,细致方可彻底完全地排除故障。 汽车空调系统中出现的故障,不能片面的下结论故障的原因,本文通过收集大量的资料和参考书,通过平常实习中的实例进行总结,最后得出结论。 关键词:制冷原理不制冷检修维修注意事项维护保养

一、汽车空调制冷系统概述 (一) 汽车空调制冷系统基本的组成 汽车空调制冷系统主要由压缩机、冷凝器、储液器、膨胀阀、蒸发器、风机及管路与控制部件等组成。 (二)制冷系统工作原理 工作原理是压缩机将气体的制冷剂提高压力(同时温度也提高),目的是使制冷剂比较容易液化放热。高压的气体制冷剂进入冷凝器,冷凝器风扇使空气通过冷凝器的缝隙,带走制冷剂放出的热量并使其液化。液化后的制冷剂进入储液干燥罐,滤掉其中的杂质、水分,同时存储适量的液态的制冷剂以备制冷负荷发生变化时制冷剂不会断流,从储液干燥罐出来的制冷剂流至膨胀阀,从膨胀阀中的节流孔喷出形成雾状制冷剂,雾状的制冷剂进入蒸发器,由于制冷剂的压力急剧下降,便很快蒸发气化,吸收热量,蒸发器外部的风扇使空气不断通过蒸发器的缝隙,其温度下降,使车内温度降低,蒸发器出来的气态制冷剂再进入压缩机重复上述过程。这种循环系统中的膨胀阀可以根据制冷负荷的大小调节制冷剂的流量。 二、汽车空调系统不制冷的检查方法 (一)感观检查法 1、压缩机运转状态的检查 (1)传动带是否断裂或松弛 (2)压缩机内部是否有噪声 (3)压缩机离合器是否打滑

冷藏车制冷机组压缩机常见故障分析

冷藏车制冷机组压缩机常见故障分析 1、高压、低压均低。原因:雪种不足。辅助诊断:只要开空调,玻璃眼中就一直有气泡;摸三个地方的温度,高温、中温偏低,低温偏高。只要补充雪种就可排除故障了。 2、高压、低压均高。原因:(1)有空气;(2)雪种过多;(3)冷凝器冷却效果差;(4)膨胀阀开度太大。 诊断方法:先看一下,低压管上是不是结了霜,如果结了霜,是膨胀阀开度太大。再用水冲一下冷凝器,如果效果明显变好的话,是冷凝器冷效果差。如果没有什么变化,是系统中有空气。剩下的是雪种太多了。如果在开空调或关空调时,玻璃眼中也没有气泡,可以肯定是雪种太多。只要放掉一些雪种,故障就可排除了。 3、运行时,低压有时呈真空,有时正常。可以确诊是系统中有水份。那只有重新抽真空,一般还需要更换储液干燥器,再重新加注雪种就可。 4、低压一直指示真空。原因:系统有堵塞之处,雪种不循环。最容易堵塞的地方不外呼是膨胀阀和储液干燥器。只要摸一下储液干燥器的进出口管子,如果温度相差很大,可以肯定是储液干燥器中的过滤器堵塞了。那只有更换它了。否则就是膨胀阀堵塞了。一般也是换新处理。 5、低压高、高压低。原因:压缩机本身不良。由于压缩机是空调系统中的主要的部件,价格也较高,因此不能随便换新。可进一步确诊,方法如下:将压缩机的低压管拆开,将高压管在压力表之后设法堵住。起动发动机,并在电磁离合器上接上12V电源。如果压力低于15公斤每平方厘米的话,可以肯定是压缩机坏了。一般只有换压缩机总成了。请注意,试验时,只要发动机运行不到半分钟就可确诊了,千万不要运行时间太长。

二、泄漏 雪种泄漏,一般可以用卤素灯、电子检漏仪等设备来进行检查。但在实际工作中,大多数修理厂都采用肥皂水进行检漏的方法。 三、风量小 就是吹出来的风太小。先查看产生的风是不是太小呢产生的风小的原因有:风机供电电压太低风机本身故障另一个是蒸发器太脏等原因,造成风的阻力太大。还一个就是风道漏掉了风,这是一个较常见的故障。 在实际工作中,可能还会遇到其他故障。但我认为,只要认真想想前面介绍的空调的基本原理,都一定可以排除的。 空调的使用注意事项与维护 一、注意事项 1、使用空调时,鼓风机尽量开高档,温度尽量设置高一点。这样做,车厢的空气循环快,又易停机,就是效果好,又节省。 2、在炎热的夏天停车时,应避免在阳光下直接曝晒。且在使用空调前,应先开窗放走车内高温空气。 二、维护 1、经常从玻璃眼中查看雪种状况。如缺少,要及时排除泄漏处,并尽快补充。

制冷机故障判断与排除方法

制冷机故障判断与排除方法 制冷系统正常运行标志 1、冷凝水及冷却水的水温不能太高,水压应不低于0.12MPa 2、制冷机运行中应无杂声和异常响动 3、油泵压力应满足要求 4、氟机吸气温度比蒸发温度高5-15℃ 5、汽缸壁不应有局部发热和结霜情况,表面温差不大于15-20 ℃ 6、曲轴箱油温在任何情况下氟机不超过70 ℃,最低不低于10 ℃ 7、制冷机排气温度R22不超过135 ℃,R13不超过125 ℃,排气温度进一步上升,就会与冷冻油的闪点160 ℃接近,容易引起冷冻油变质 8、冷凝压力高低主要根据循环水情况、冷凝器结构形式及使用制冷剂所确定。压力太高对制冷效率的提高是有害的,应尽可能降低冷凝压力 9、曲轴箱油面不低于视镜的水平中心线 10、氟机油分离器自动回油管应时冷时热为正常;液体管路的过滤器前后不应有明显的温差,更不能出现结霜的情况,否则就是堵塞;氟机汽缸盖应半边冷半边热;氟系统各接头不应渗油,渗油说明漏氟 11、运行中用手摸卧式冷凝器时,应上部热下部凉,冷热交界处为制冷剂液面 12、在一定的水流量下,冷却水进出应有温差,如没有温差或温差极小,说明热交换设备传热面有污垢,需停车清洗 13、制冷机本身应有密封,不得渗漏制冷剂和润滑油, 14、膨胀阀阀体结霜或结露均匀,但进口处不能出现浓厚结霜,流体经过膨胀阀时,能听到沉闷的微小声。 15、系统中各压力表指针相对稳定,温度计指示正确 一、排气压力过高 原因排除方法 ?系统内有空气等不凝性气体?放出空气等不凝性气体 ?冷却水量不足或太热?调节冷却水量,降低水温 ?水冷凝器脏,影响换热?清洗冷凝器水程 ?系统中制冷剂太多?回收多余制冷剂 ?排气阀门未开足或排气管不畅通?开足排气阀门,疏通排气管 不凝性气体的危害 导致冷凝压力升高。 根据道尔顿定律:一个容器内气体总压力等于各气体分压力之和。在冷凝器中,总压力为空气和制冷剂压力之和。 ?形成气阻 由于不凝性气体存在,冷凝器传热面上形成气体层,起到了热阻的作用,从而降低冷凝器传热效率。同时,空气进入系统使含水量增加,腐蚀管道和设备。 ?导致制冷量下降、耗电量增加 ?安全隐患 如有空气存在,在排气温度较高的情况下,遇到油类蒸汽,容易发生意外事故 系统中有不凝性气体的判断方法 ?制冷机排气压力表指针出现摆动 ?排气压力与排气温度都大于正常的压力与温度 ?对于氟系统,空气比氟气轻,因而空气存在于卧式冷凝器上部。放空时,空气不凉。 系统进空气的可能性 ?抽真空不彻底 ?维护时未排净空气,例如加氟时加氟管未排净空气

第二节 制冷空调设备常用金属材料

第二节制冷空调设备常用金属材料 制冷空调中常用的金属材料有:黑色金属,有色金属及其合金。 黑色金属:铁和以铁为基础的合金。 铸铁:(≥2.11%C)铁碳合金。 铁合金:铁与任何一种金属或非金属的合金。 一、工业用钢 工业用钢按化学成分分为碳素钢和合金钢两大类。 碳素钢是指含碳量低于2.11%的铁碳合金。 合金钢是指为了提高钢的性能,在碳钢基础上有意加入一定量合金元素所获得的铁基合金。 一、钢的分类及编号 1.钢的分类 ①按化学成分 碳素钢(低碳钢≤0.25%C、中碳钢≤0.25~0.6%C、高碳钢 >0.6%C) 合金钢(低合金钢合金元素总量 <5%、中合金钢合金元素总量 5~10%、高合金钢合金元素总量 >10%) ②按质量钢的质量是以磷、硫的含量来划分的。分为普通质量钢、优质钢、高级优质钢和特级优质钢。 钢类碳素钢合金钢 P S P S 普通质量钢≤0.045 ≤0.045 ≤0.045 ≤0.045 优质钢≤0.035 ≤0.035 ≤0.035 ≤0.035 高级优质钢≤0.030 ≤0.030 ≤0.025 ≤0.025 特技优质钢≤0.025 ≤0.020 ≤0.025 ≤0.015 ③按金相组织分 按退火组织分(亚共析钢、共析钢、过共析钢) 按正火组织分(珠光体钢、贝氏体钢、马氏体钢、铁素体钢、奥氏体钢、莱氏体钢) ④按用途分 2.钢的编号 我国钢材的编号(牌号)是采用汉语拼音字母、化学元素符号和阿拉伯数字相结合的方法。根据牌号可以看出钢的类别,含碳量,合金元素及其含量,冶炼质量以及应具备的性能和用途。 牌号中的元素用汉字或化学元素表示;采用汉语拼音字母或汉字表示钢产品的名称、用途、特性和工艺方法时,一般从代表钢产品名称的汉字的汉语拼音中选取第一个字母。 1)碳素结构钢和低合金高强度钢 Q+最低屈服强度值+质量等级符号+脱氧方法符号 Q表示“屈服强度”;屈服强度值单位是MPa; 质量等级符号为A、B、C、D、E。由A到E,其P、S含量依次下降,质量提高。

二氧化碳在冷库制冷系统的应用讲课稿

C O2在冷库制冷系统的应用 辽宁石油化工大学汤玉鹏一、C O2作为制冷剂的发展历史 在19世纪末至20世纪30年代前,C O2(R744),氨(R717),S O2(R764),氯甲烷(R40)等曾被广泛应用。 1850年,最初是由美国人A l e x a n d e r T w i n i n g提出在蒸汽压缩系统中采用C O2作为制冷剂,并获英国专利[1]。 1867年,T h a d d e u s S C L o w e首次成功使用C O2应用于商业机,获得了英国专利。于1869年制造了一台制冰机。 1882年,C a r l v o n L i n d e为德国埃森的F K r u p p公司设计和开发了采用C O2 作为工质的制冷机。 1884年,WR a y d t设计的C O2压缩制冰系统获得了英国15475号专利。澳大利亚的J Ha r r i s o n设计了一台用于制冷的C O2装置获得了英国1890号专利。 1886年,德国人F r a n z Wi n d h a u s e n设计的C O2压缩机获得了英国专利。英国的J&E Ha l公司收购了该专利,将其改进后于1890年开始投入生产。 19世纪90年代美国开始将C O2应用于制冷。 1897年K r o e s c h e l B r o s锅炉公司在芝加哥成立了分公司,生产C O2压缩机。 1919年前后,C O2制冷压缩机才被广泛应用在舒适性空调中。 1920年,在教堂的空调系统中得到应用。 1925年,干冰循环用于空气调节。 1927年,在办公室的空调系统中得到使用。 1930年,在住宅的空调系统中得到使用,后来又被用于各种商业建筑和公共设施的空调制冷系统。 C O2制冷曾经达到很辉煌的程度。据统计,1900年全世界范围内的356艘船舶中,37%用空气循环制冷机,37%用氨吸收式制冷机,25%使用C O2蒸气压缩式制冷机。发展到1930年,80%的船舶采用C O2制冷机,其余的20%则用氨制冷机。由于当时的技术水平比较差,C O2较低的临界温度(31.1℃)和较高的临界压力(7.37MP a),使得C O2系统的效率较低。加上其冷凝器的冷却介质多采用温度较低的地下水或海水,基本属于亚临界循环。当水温较高时(如热带海洋上行驶的轮船其冷却水的温度可接近30℃),其制冷效率会更加下降。所以C O2制冷技术并没有进一步开发运用于汽车空调、热泵等。

制冷装置自动化-复习大纲

复习大纲 问答题: 1、制冷与空调装置自动控制的目的是什么?为什么要采用自动控制。 1、能量转换的需要: ⑴、将电能转换成热能; ⑵、将电能转换成机械能; 2、控制功能的需要; ⑴、高精度空气调节系统的需要; ⑵、空调装置及设备工作顺序,逻辑判断的需要。 3、安全、正常工作的需要; 4、提高工作与运行效率的需要; (1)提高制冷设备运行的稳定性 (2)自动调节系统制冷剂的供液量,以维持被冷却物体所需要的低温。 (3)保证制冷设备的安全运转 (4)全自动系统可按程序启动、自动调节、自动记录、自动显示,以减轻操作者的劳动。 (5)提高运行的经济性。 2、制冷与空调装置自动控制主要有哪些内容?请举例说明。 (1)对制冷装置的压力、温度、湿度、流量、液位、电流、电压等参数进行自动调节与控制。 (2)制冷装置的保护:当制冷装置工作异常、参数达到警戒值,使装置故障性停机或执行保护性操作,并发出报警信号以确保人机安全。 (3)由于制冷装置的型号、功能、容量、使用条件等不同,因此、制冷与空调装置的自动控制系统种类、控制方式及复杂程度也不同。 3、制冷自动控制系统的分类有哪些?请举例说明各类系统的应用领域。 若按给定值的给定变化规律来分 定值控制系统——将被控制量保持在某一定值或很小的范围中的控制系统 如冰箱 程序控制系统——被控量的给定值按预定的时间程序而变化的控制系统 如热泵烘干机 随动控制系统——被控量的给定值随时间任意地变化的控制系统 智能、灵活的系统: 4、制冷与空调装置对控制系统的性能要求有哪些?详细说明一下。 5、制冷自动控制系统有哪几个组成部分?同时写出各部分在系统中的作用。 a)受控对象(过程):制冷系统的压缩机、风扇或水泵过程等,从传感器到执行 器之间 b)被控量(热工参数、被控参数):表征其工作状态的物理量如T,P,湿度,流量,液 位…… c)传感器(测量变送):对被控量进行测量(转换成标准信号)的装置,成比例地

冷水机组常见故障和解决方法

冷水机组常见问题和故障的分析与解决方法核心提示: 冷水机组在中央空调系统运行时担负着提供冷量的重任,作为运行管理人员,除了要正确操作、认真维护保养外,能及时发现和排除常见的一些问题和故障,对保证中央空调系统不中断正常运行,减小因出现的问题和故障造成的损失及所付出的代价有重要作用。 1.冷水机组运行中故障的早期发现与分析 对冷水机组进行精心的维护保养,可以尽量减少故障的发生,但不可能杜绝故障的出现。因为冷水机组本身和客观的外部条件,使得冷水机组的结构制造、安装质量、使用方法和操作水平等优劣程度各异,不可能绝对地全部消除潜在的不利因素,因此构成冷水机组故障的不安全因素始终是存在的。 为了保证冷水机组安全、高效、经济的长期正常运转,在其使用过程中尽早发现故障的隐患是十分重要的。作为运行操作人员,可以通过“看、摸、听、想”来达到这个目的。 看:看冷水机组运行申高、低压力值的大小。油压的大小,冷却水和冷 冻水进出口水压的高低等参数,这些参数值以满足设定运行工况要求的参数值 为正常,偏离工况要求的参数值为异常,每一个异常的工况参数都可能包含着一定的故障因素。此外,还要注意看冷水机组的一些外观表象,例如出现压缩机吸气管结霜这样的现象,就表示冷水机组制冷量过大,蒸发温度过低,压缩机吸气过热度小,吸气压力低。这对于活塞式擒口喹。机组将会引起“液击”;对于离心式冷水机组则会引起踹振。 二摸:在全面观察各部分运行参数的基础上t 进一步体验各部分的温度情况,用手触摸冷水机组各部分及管道(包括气管、液管、水管、油管等),感觉压缩机工作温度及振动;两器的进出口温度;管道接头处的油迹及分布情况等。 正常情况下,压缩机运转平稳,吸、排气温差大,机体温升不高;蒸发温度低,冷冻水进出口温差大;冷凝温度高,冷却水进、出口温差大;各管道接头处无制冷剂泄漏则无油污等;任何与上述情况相反的表现,都意味着相应的部位存在着故障因素。 用手摸物体对温度的感觉特征见表1。 表 1 触摸物体测温的感觉特征 温度/c 手感特征 温度/c

制冷装置常见故障分析

毕业设计类型:方案设计 机电工程学院 毕业设计 某制冷装置常见故障分析 指导教师龙景良 学生姓名肖日恒 专业名称轮机工程技术 班级名称轮机1201班 2015年 5月

目录 第一章引言.......................................................... 第二章船舶制冷...................................................... 1船舶制冷的基本原理................................................. 2 船舶制冷的主要元器件............................................... 1.2.1 制冷压缩机..................................................... 1.2.2 冷凝器......................................................... 1.2.3 热力膨胀阀..................................................... 1.2.4 蒸发器......................................................... 第三章船舶制冷的几种典型故障........................................ 1 冰塞............................................................... 1.1冰塞形成的原因................................................... 2 液击............................................................... 2.1造成液击的原因................................................... 2.2 液击的现象....................................................... 3 压缩机启停频繁..................................................... 3.1压缩机启停频繁的原因及其特征..................................... 第四章针对船舶制冷故障做出理论分析................................... 1 冰塞的理论分析..................................................... 2 液击的理论分析..................................................... 3 压缩机启停频繁的理论分析........................................... 第五章综合分析.......................................................

制冷系统十大常见故障原因

制冷系统十大常见故障原因 回液 1、对于使用膨胀阀的制冷系统,回液与膨胀阀选型和使用不当密切相关。 膨胀阀选型过大、过热度设定太小、感温包安装方法不正确或绝热包扎破损、膨胀阀失灵都可能造成回液。 2、对于使用毛细管的小制冷系统而言,加液量过大会引起回液。蒸发器结 霜严重或风扇故障时传热变差,未蒸发的液体会引起回液。温度频繁波动也会引起膨胀阀反应失灵而引起回液。 对于回液较难避免的制冷系统,安装气液分离器控制可以有效阻止或降低回液的危害。 带液启动 1、压缩机内的润滑油剧烈起泡的现象叫带液启动。带液启动时的起泡现象 可以在油视镜上清楚地观察到。根本原因是润滑油中溶解的以及沉在润滑油下面了大量的制冷剂,在压力突然降低时突然沸腾,并引起润滑油的起泡现象,很容易引起液击。 2、压缩机安装曲轴箱加热器(电热器)可以有效防止制冷剂迁移。短时间 停机,维持曲轴箱加热器通电。长时间停机不用后,开机前先加热润滑油几个或十几个小时。回气管路上安装气液分离器,可以增加制冷剂迁移的阻力,降低迁移量。 回油 1、当压缩机比蒸发器的位置高时,垂直回气管上的回油弯是必需的。回油 弯要尽可能紧凑,以减小存油。回油弯之间的间距要合适,回油弯的数量比较多时,应该补充一些润滑油。 2压缩机频繁启动不利于回油。由于连续运转时间很短压缩机就停了,回气 管内来不及形成稳定的高速气流,润滑油就只能留在管路内。回油少于奔油,压缩机就会缺油。运转时间越短,管线越长,系统越复杂,回油问题就越突出。 3缺油会引起严重的润滑不足,缺油的根本原因不在于压缩机奔油多少和快 慢,而是系统回油不好。安装油分离器可以快速回油,延长压缩机无回油运转时间。

冷冻机常见故障

常见故障 冷凝压力高(比规定值高)故障原因与补救办法 冷凝压力高(比规定值高)故障原因与补救办法: ①系统中有不凝性气体:放不凝性气体。 ②冷却水良不足和水温太高:检查水阀是否开启,及水过滤器是否堵塞,设法降低水温。 ③冷凝器内有污物影响传热面积:清洗冷凝器。 ④冷凝器内存液过多:放出多余制冷剂。 压缩机吸入压力太低故障原因与补救办法 压缩机吸入压力太低故障原因与补救办法: ①液体节液阀或吸气过滤网阻塞:拆卸检查并清洗。 ②系统中制冷剂不足:补充制冷剂。 ③蒸发器内制冷剂不足:开大节流阀。 ④系统中的油太多:找出系统中集油部分把油放出。 压缩机排气温度相对压力下降温度偏高故障原因与补救办 法

压缩机排气温度相对压力下降温度偏高故障原因与补救办法: ①吸入气体温度过高:按序号 5.10检查调正。 ②排气阀片破裂:打开气缸盖检查阀片。 ③安全阀漏气:检查安全阀调整修理。 ④活塞环漏气:检查修理或更换。 ⑤缸套下面垫片破裂漏气:检查更换。 压缩机吸气温度比蒸发温度高(比规定值高)故障原因与补 救办法 压缩机吸气温度比蒸发温度高(比规定值高)故障原因与补救办法: ①系统中制冷剂不足:补充制冷剂。 ②蒸发器内制冷剂不足:开大节流阀。 ③含水量超过规定:检查含水量。 ④制冷系统低压管路绝热层不好:检查修理 压缩机卸载装置机构失灵故障原因与补救办法 压缩机卸载装置机构失灵故障原因与补救办法: ①油压不够:调节油压比吸气压力高0.15-0.2Mp a。 ②油管阻塞:拆开清洗。 ③油缸内有污物卡死:拆开清洗。

轴封漏油或漏气故障原因与补救办法 轴封漏油或漏气故障原因与补救办法: ①轴封密封面破坏:检查修理。 ②耐油密封橡胶圈破坏:更换密封橡胶圈。 压缩机的耗油量增大故障原因与补救办法 压缩机的耗油量增大故障原因与补救办法: ①制冷剂液体进入曲轴箱:将吸入截止阀和供液节流阀关小或暂时关闭。 ②压缩机的密封环、刮油环、或气缸磨损:检查,必要时更换。 润滑油油压过低故障原因与补救办法 润滑油油压过低故障原因与补救办法: ①吸油过滤网堵塞:拆下清洗。 ②油压调节阀失灵:检查修理 ③油泵间隙过大、磨损:检查修理或更换。 ④曲轴箱油量不足:添加润滑油。 ⑤各轴间隙过大或部分油路漏油:检查修理。

奥迪A6空调制冷系统故障诊断与排除

奥迪A6空调制冷系统故障诊断与排除 摘要 近年来,环保和能源问题成为世界关注的焦点,也成为影响汽车业发展的关键因素,各种替代能源动力车的出现,为汽车空调行业提出了新的课题和挑战。我国汽车空调的安装随着汽车业的发展已成为现代汽车的一项基本配置。本文针对于奥迪A6空调制冷系统使用中存在的问题,分析了制冷系统的组成部件、工作原理、常见故障。并运用相关专业设备进行故障检查,分析故障原因,结合维修实例,归纳出一套关于奥迪A6空调制冷系统常见故障诊断与排除流程。但在很多方面还是存在问题,需要进行改进。 关键词:汽车空调制冷系统;故障检修;诊断与排除

目录 1前言 (1) 2奥迪A6空调制冷系统概述 (2) 2.1 奥迪A6空调制冷系统的构造与功能 (2) 2.2 奥迪A6空调制冷系统的工作原理 (3) 3空调制冷系统常见故障诊断与排除 (5) 3.1空调制冷系统输出的制冷量不足 (5) 3.2空调制冷系统完全没有冷气吹出 (6) 4空调制冷系统主要部件常见故障的诊断与排除 (8) 4.1冷凝器故障诊断与排除 (8) 4.2储液干燥器故障诊断与排除 (9) 4.3膨胀阀故障诊断于排除 (8) 4.4蒸发器故障诊断与排除 (10) 4.5电磁离合器故障和排除 (10) 5奥迪A6空调制冷系统故障案例分析 (12) 5.1奥迪A6(3.2FSI quattro)制冷系统故障检修案例分析 (12) 5.2奥迪A6(2.0T FSI)制冷系统故障检修案例分析 (13) 总结 .......................................................................................................... 错误!未定义书签。致谢 .......................................................................................................... 错误!未定义书签。参考文献 . (14)

中央空调系统常见故障分析

航天大厦中央空调系统常见故障分析——李苏雄 航天大厦是麦克维尔(型号:WSC087LAU49F/E2609/C2609/R134A)冷水机组:700冷吨2台、400冷吨1台(总负荷:1100冷吨);冷冻泵75KW3台、45KW2台;冷却泵75KW3台、45KW2台;冷却塔()水吨配电机5.5KW10台;同时采用高效的变频节能系统;末端设施采用风柜(台)和风机盘管(台)按系统管道三管路段分层供冷;这就由冷却塔――冷却泵――主机――冷冻泵――风柜(盘管)+辅助设施(管道\阀\减振器\集水器\分水器等)以R134A为冷源,水的循环来实现热的搬迁;这些配置过于大。 按实际核算是:700TR是490KW,冷冻水流量为420立方/H配泵55KW;冷却水流量为517立方/H配泵75KW;冷却塔(800水吨)水流量为517立方/H配泵22KW; 400TR是280KW,冷冻水流量为240立方/H配泵30KW;冷却水流量为295立方/H配泵37KW;冷却塔(500水吨)水流量为295立方/H配泵11KW(上述数据是本人根据机组配置计算来);现在对中央空调系统常见故障与分析讲解如下: 一、离心机组的常见故障、并进行分析: 故障可能的原因故障排除 1、症状:排气压力过高/反常。 冷凝器的液体制冷剂出口 温度与冷媒水出口温度的温差超 出正常范围 冷凝器中有空气 排气压力过高冷凝器传热管太脏或者结 后 清洁冷凝器传热管/检查水质 冷却水温度过高降低冷却水的出口温度(检 查冷却塔和水的流动情况) 冷却水的进、出口温差超出冷却水流量不够增大冷却水流量

正常范围、同时蒸发压力正常 2、症状:吸气压力过低/反常。 蒸发器的冷冻水出口温度与制冷剂进口温度的温差超出正常范围、同时排气温度过高制冷剂充注不足对系统检漏、并添加制冷剂节流孔堵塞清除堵塞 蒸发器的冷冻水出口温度 与制冷剂进口温度的温差超出正 常范围、同时排气温度过高 蒸发器传热管太脏或堵塞清除堵塞 冷冻水温度过低、同时电机电流过少跟系统容量相比、负荷不足检查导流叶片电机的运行、 设定低水温切断值 3、症状:蒸发压力过高。 冷冻水温度过高导流叶片未能打开检查导流叶片电机的定位 电路 系统过载确保叶片全部打开(不要让 电机过载)、直到负荷降低为止4、症状:按下系统启动键后、油压尚未建立。 控制盘上显示的油压过低、压缩机不能启动油泵转向错误检查油泵的转向(检查接 线) 油泵不转检查油泵的接线、按下油泵 启动器(装在冷凝器筒体上)的手 动复位 5、症状:压缩机启动、油压正常、短时间波动、然后压缩机因油压截断值而停机。 油压正常、短时间波动、然后压缩机因油压截断值而停机。会显示“油压过低”的信息 存在不正常的启动情况如 因系统压力下降,导致油横和油管 中出现泡沫 将压缩机中的润滑油排掉, 然后加新油 油加热器烧毁更换油加热器

冷水机组常见故障及解决办法

冷水机组常见故障及解决办法 一、回气管及压缩机机壳结霜: 可能造成的原因:1.膨胀阀开启度过大;2.冷媒过多;3.热负荷过小; 排除方案:1.调整膨胀阀;2.排放部份冷媒;3.增大热负荷或打开冻水回路旁通阀; 二、水泵不出水: 可能造成的原因:1.水泵转向反向;2.叶轮堵塞;3.水压、水量不足 排除方案:1.纠正水泵电机转向;2.清洗水泵叶轮;3;检查水泵密封,检查进水量 三、冷冻水泵流量不足: 可能造成的原因:1.叶轮或水管堵塞;2.叶轮损坏;3.过滤器堵塞 排除方案:1.清洗叶轮或水泵;2.更换叶轮冻;3. 清洗过滤器 三、机组运转中高压过高(排气温度过高): 可能造成的原因:1.冷却水流量过少或水温过高(检查冷却水泵、开启冷却塔风扇);2.冷凝器铜管/翅片积垢多,换热效果差;3.冷媒过多;4.膨胀阀开启度过小; 排除方案:1.加大冷却水流量或降低水温;2.清洗换热器;3.排放部份冷媒;4.适当调整膨胀阀开启度; 四、机组运转时低压过低: 可能造成的原因:1.冷媒不足;2.过滤器堵塞;3.膨胀阀开启度过小;4.毛细管堵塞; 排除方案:1.补漏,补充冷媒或调整膨胀阀;2.清洗或更换过滤器;3.适当调整膨胀阀开启度;4.清洗或更换毛细管; 五、机组启动不了或启动后立即停机: 可能造成的原因:1.电源断电或电压过低;2.温控器调设不当,使触头常开;3.冷却水未开,联锁电路断开;4.保护器件作用后未复位; 排除方案: 1.排除电路故障按机组要求供电;2.重新调整温控设定值;3.开冷却水系统,接通联锁电路按一次停机按钮后再开机。 注意: 1.排除以上故障前都应先检查各电源连接线路是否有断开、破损、短路等,避免在维修时带来不必要的麻烦。 2.当机器故障时,应当请专业的制冷人士检查维护。 3.定期清洗设备及管道,过滤器。

相关主题