搜档网
当前位置:搜档网 › 带宽、采样率和存储深度-示波器

带宽、采样率和存储深度-示波器

带宽、采样率和存储深度-示波器
带宽、采样率和存储深度-示波器

带宽、采样率和存储深度是数字示波器的三大关键指标。相对于工程师们对示波器带宽的熟悉和重视,采样率和存储深度往往在示波器的选型、评估和测试中为大家所忽视。这篇文章的目的是通过简单介绍采样率和存储深度的相关理论结合常见的应用帮助工程师更好的理解采样率和存储深度这两个指针的重要特征及对实际测试的影响,同时有助于我们掌握选择示波器的权衡方法,树立正确的使用示波器的观念。

在开始了解采样和存储的相关概念前,我们先回顾一下数字存储示波器的工作原理。

图1 数字存储示波器的原理组成框图

输入的电压信号经耦合电路后送至前端放大器,前端放大器将信号放大,以提高示波器的灵敏度和动态范围。放大器输出的信号由取样/保持电路进行取样,并由A/D转换器数字化,经过A/D转换后,信号变成了数字形式存入内存中,微处理器对内存中的数字化信号波形进行相应的处理,并显示在显示屏上。这就是数字存储示波器的工作过程。

采样、采样速率

我们知道,计算机只能处理离散的数字信号。在模拟电压信号进入示波器后面临的首要问题就是连续信号的数字化(模/数转化)问题。一般把从连续信号到离散信号的过程叫采样(sampling)。连续信号必须经过采样和量化才能被计算机处理,因此,采样是数字示波器作波形运算和分析的基础。通过测量等时间间隔波形的电压幅值,并把该电压转化为用八位二进制代码表示的数字信息,这就是数字存储示波器的采样。采样电压之间的时间间隔越小,那么重建出来的波形就越接近原始信号。采样率(sampling rate)就是采样时间间隔。比如,如果示波器的采样率是每秒10G次(10GSa/s),则意味着每100ps进行一次采样。

图2 示波器的采样

根据Nyquist采样定理,当对一个最高频率为f 的带限信号进行采样时,采样频率SF 必须大于f 的两倍以上才能确保从采样值完全重构原来的信号。这里,f 称为Nyquist频率,2 f 为Nyquist采样率。对于正弦波,每个周期至少需要两次以上的采样才能保证数字化后的脉冲序列能较为准确的还原原始波形。如果采样率低于Nyquist采样率则会导致混迭

(Aliasing)现象。

图3 采样率SF<2 f ,混迭失真

图4和图5显示的波形看上去非常相似,但是频率测量的结果却相差很大,究竟哪一个是正确的?仔细观察我们会发现图4中触发位置和触发电平没有对应起来,而且采样率只有250MS/s,图5中使用了20GS/s的采样率,可以确定,图4显示的波形欺骗了我们,这即是一例采样率过低导致的混迭(Aliasing)给我们造成的假像。

图4 250MS/s采样率的波形显示图5 20GS/s采样的波形显示

因此在实际测量中,对于较高频的信号,工程师的眼睛应该时刻盯着示波器的采样率,防止混迭的风险。我们建议工程师在开始测量前先固定示波器的采样率,这样就避免了欠采样。力科示波器的时基(Time Base)菜单里提供了这个选项,可以方便的设置。

由Nyquist定理我们知道对于最大采样率为10GS/s的示波器,可以测到的最高频率为5GHz,即采样率的一半,这就是示波器的数字带宽,而这个带宽是DSO的上限频率,实际带宽是不可能达到这个值的,数字带宽是从理论上推导出来的,是DSO带宽的理论值。与我们经常提到的示波器带宽(模拟带宽)是完全不同的两个概念。

那么在实际的数字存储示波器,对特定的带宽,采样率到底选取多大?通常还与示波器所采用的采样模式有关。

采样模式

当信号进入DSO后,所有的输入信号在对其进行A/D转化前都需要采样,采样技术大体上分为两类:实时模式和等效时间模式。

实时采样(real-time sampling)模式用来捕获非重复性或单次信号,使用固定的时间间隔进行采样。触发一次后,示波器对电压进行连续采样,然后根据采样点重建信号波形。

等效时间采样(equivalent-time sampling),是对周期性波形在不同的周期中进行采样,然后将采样点拼接起来重建波形,为了得到足够多的采样点,需要多次触发。等效时间采样又包括顺序采样和随机重复采样两种。使用等效时间采样模式必须满足两个前提条件:1.

波形必须是重复的;2.必须能稳定触发。

实时采样模式下示波器的带宽取决于A/D转化器的最高采样速率和所采用的内插算法。即示波器的实时带宽与DSO采用的A/D和内插算法有关。

这里又提到一个实时带宽的概念,实时带宽也称为有效存储带宽,是数字存储示波器采用实时采样方式时所具有的带宽。这么多带宽的概念可能已经看得大家要抓狂了,在此总结一下:DSO的带宽分为模拟带宽和存储带宽。通常我们常说的带宽都是指示波器的模拟带宽,即一般在示波器面板上标称的带宽。而存储带宽也就是根据Nyquist定理计算出来的理论上的数字带宽,这只是个理论值。

通常我们用有效存储带宽(BWa)来表征DSO的实际带宽,其定义为:BWa=最高采样速率/ k,最高采样速率对于单次信号来说指其最高实时采样速率,即A/D转化器的最高速率;对于重复信号来说指最高等效采样速率。K称为带宽因子,取决于DSO采用的内插算法。DSO采用的内插算法一般有线性(linear)插值和正弦(sinx/x)插值两种。K在用线性插值时约为10,用正弦内插约为2.5,而k=2.5只适于重现正弦波,对于脉冲波,一般取k=4,此时,具有1GS/s采样率的DSO的有效存储带宽为250MHz。

图6 不同插值方式的波形显示

内插与最高采样率之间的理论关系并非本文讨论的重点。我们只须了解以下结论:在使用正弦插值法时,为了准确再显信号,示波器的采样速率至少需为信号最高频率成分的2.5倍。使用线性插值法时,示波器的采样速率应至少是信号最高频率成分的10倍。这也解释了示波器用于实时采样时,为什么最大采样率通常是其额定模拟带宽的四倍或以上。

在谈完采样率后,还有一个与DSO的A/D密切相关的概念,就是示波器的垂直分辨率。垂直分辨率决定了DSO所能分辨的最小电压增量,通常用A/D的位数n表示。前面我们提到现在DSO的A/D转换器都是8位编码的,那么示波器的最小量化单位就是1/256,(2

的8次方),即0.391%。了解这一点是非常重要的,对于电压的幅值测量,如果你示波器当前的垂直刻度设置成1v/div的档位,那意味着你的测量值有8V*0.391%=31.25mV以内的误差是正常的!!!因为小于31.25mV的电压示波器在该文件位元下已经分辨不出来了,如果只用了4位,那测出来的误差更惊人!所以建议大家在测量波形时,尽可能调整波形让其充满整个屏幕,充分利用8位的分辨率。我们经常听到有工程师抱怨示波器测不准他的电压或者说测量结果不一致,其实大多数情况是工程师还没有理解示波器的垂直分辨率对测量结果的影响。这里顺便提一下,关于示波器的测量精度问题,必须澄清一点——示波器本身就不是计量的仪器!!!它是“工程师的眼睛”,帮助你更深入的了解你的电路的特征。做个广告:经常做电源测量或者纹波测量,或者想深入了解示波器量化误差的工程师,大家可以参考我的同事Frankie博客的一片文章《示波器不是垂直量的计量工具》

https://www.sodocs.net/doc/869933325.html,/s/blog_521262a301009ryp.html

图7 是用模拟带宽为1GHz的示波器测量上升时间为1ns的脉冲,在不同采样率下测量结果的比较,可以看出:超过带宽5倍以上的采样率提供了良好的测量精度。进一步,根据我们的经验,建议工程师在测量脉冲波时,保证上升沿有5个以上采样点,这样既确保了波形不失真,也提高了测量精度。

图7 采样率与带宽的关系

图8 采样率过低导致波形失真

提到采样率就不能不提存储深度。对DSO而言,这两个参量是密切相关的。

存储、存储深度

把经过A/D数字化后的八位二进制波形信息存储到示波器的高速CMOS内存中,就是示波器的存储,这个过程是“写过程”。内存的容量(存储深度)是很重要的。对于DSO,其最大存储深度是一定的,但是在实际测试中所使用的存储长度却是可变的。

在存储深度一定的情况下,存储速度越快,存储时间就越短,他们之间是一个反比关系。存储速度等效于采样率,存储时间等效于采样时间,采样时间由示波器的显示窗口所代表的时间决定,所以:

存储深度=采样率× 采样时间(距离= 速度×时间)

力科示波器的时基(Time Base)卷标即直观的显示了这三者之间的关系,如图9所示

图9 存储深度、采样率、采样时间(时基)的关系

由于DSO的水平刻度分为10格,每格的所代表的时间长度即为时基(time base),单位是t/div,所以采样时间=time base × 10.

由以上关系式我们知道,提高示波器的存储深度可以间接提高示波器的采样率:当要测量较长时间的波形时,由于存储深度是固定的,所以只能降低采样率来达到,但这样势必造成波形质量的下降;如果增大存储深度,则可以以更高的采样率来测量,以获取不失真的波形。

图10的曲线充分揭示了采样率、存储深度、采样时间三者的关系及存储深度对示波器实际采样率的影响。比如,当时基选择10us/div文件位时,整个示波器窗口的采样时间是10us/div * 10格=100us,在1Mpts的存储深度下,当前的实际采样率为:1M÷100us=10Gs/s,如果存储深度只有250K,那当前的实际采样率就只要2.5GS/s了!

图10 存储深度决定了实际采样率的大小

一句话,存储深度决定了DSO同时分析高频和低频现象的能力,包括低速信号的高频噪声和高速信号的低频调制。

关于示波器的带宽

关于示波器的带宽 汪进进 美国力科公司深圳代表处 带宽被称为示波器的第一指标,也是示波器最值钱的指标。 示波器市场的划分常以带宽作为首要依据,工程师在选择示波器的时候,首先要确定的也是带宽。在销售过程中,关于带宽的故事也特别多。 通常谈到的带宽没有特别说明是指示波器模拟前端放大器的带宽,也就是常说的-3dB截止频率点。 此外,还有数字带宽,触发带宽的概念。 我们常说数字示波器有五大功能,即捕获(Capture),观察(View),测量(Measurement),分析(Analyse)和归档(Document)。 这五大功能组成的原理框图如图1所示。 图1,数字示波器的原理框图 捕获部分主要是由三颗芯片和一个电路组成,即放大器芯片,A/D芯片,存储器芯片和触发器电路,原理框图如下图2所示。被测信号首先经过探头和放大器及归一化后转换成ADC可以接收的电压范围,采样和保持电路按固定采样率将信号分割成一个个独立的采样电平,ADC将这些电平转化成数字的采样点,这些数字采样点保存在采集存储器里送显示和测量分析处理。 图2,示波器捕获电路原理框图

示波器放大器的典型电路如图3所示。这个电路在模拟电路教科书中处处可见。这种放大器可以等效为RC低通滤波器如图4所示。 由此等效电路推导出输出电压和输入电压的关系,得出理想的幅频特性的波特图如图5所示。 图3,放大器的典型电路 图4,放大器的等效电路模型 图5,放大器的理想波特图

至此,我们知道带宽f2即输出电压降低到输入电压70.7%时的频率点。 根据放大器的等效模型,我们可进一步推导示波器的上升时间和带宽的关系式,即我们常提到的0.35的关系:上升时间=0.35/带宽,推导过程如下图6所示。 需要说明的是,0.35是基于高斯响应的理论值,实际测量系统中这个数值往往介于0.35-0.45之间。在示波器的datasheet上都会标明“上升时间”指标。 示波器测量出来的上升时间与真实的上升时间之间存在下面的关系式。 在对快沿信号测试中,需要通过该关系式来修正实际被测信号的上升时间。 Measured risetime(tr)2 = (tr signal)2+(tr scope)2+(tr probe)2 图6,示波器上升时间和带宽的关系 示波器前端放大器幅频特性的波特图是新示波器发布的“出生证”。 示波器每年需要进行校准,波特图是第一需要校准的数据。示波器波特图的测量方法如图7所示。 信号源从10MHz频率开始逐渐递增发送一定幅值的正弦波送到功分器,功分器将输入的信号能量等分为二后通过等长的线缆分别送到示波器和功率计。 功分器和线缆是无源器件,可以严格定标,信号源本身的幅频特性不可以作为定标仪器,需要通过功率计实测的能量来作为示波器的输入幅值的定标值。 有时候客户会对示波器的波特图很感兴趣,直接用信号源连接到示波器来评估示波器的波特图,在带宽超过1GHz时这种方法是很不严谨的。需要用功率计来作为定标工具! 2006年二月份的EDN杂志中有文章介绍。 https://www.sodocs.net/doc/869933325.html,/article/CA6305348.html#Calibrating 此外,在计量波特图时需要对示波器每个档位都进行计量,最终产生的波特图是所有档位的结果叠加在一起的。波特图的计量是需要半天时间完成的,并不是想象中那么轻松的工作。如图8所示是力科SDA9000的波特图,我特地将Excel中大量数据显示给大家以使大家对校准的严谨性有深刻认识。 其垂直轴是

码流码率高清的区别

关键帧的周期,也就是两个IDR帧之间的距离,一个帧组的最大帧数,一般而言,每一秒视频至少需要使用1 个关键帧。增加关键帧个数可改善质量,但是同时增加带宽和网络负载。 需要说明的是,通过提高GOP值来提高图像质量是有限度的,在遇到场景切换的情况时,H.264编码器会自动强制插入一个I帧,此时实际的GOP值被缩短了。另一方面,在一个GOP中,P、B帧是由I帧预测得到的,当I帧的图像质量比较差时,会影响到一个GOP中后续P、B帧的图像质量,直到下一个GOP开始才有可能得以恢复,所以GOP值也不宜设置过大。 同时,由于P、B帧的复杂度大于I帧,所以过多的P、B帧会影响编码效率,使编码效率降低。另外,过长的GOP还会影响Seek操作的响应速度,由于P、B帧是由前面的I或P帧预测得到的,所以Seek操作需要直接定位,解码某一个P或B帧时,需要先解码得到本GOP内的I帧及之前的N个预测帧才可以,GOP值越长,需要解码的预测帧就越多,seek响应的时间也越长。 CABAC/CAVLC H.264/AVC标准中两种熵编码方法,CABAC叫自适应二进制算数编码,CAVLC叫前后自适应可变长度编码, CABAC:是一种无损编码方式,画质好,X264就会舍弃一些较小的DCT系数,码率降低,可以将码率再降低10-15%(特别是在高码率情况下),会降低编码和解码的速速。 CAVLC将占用更少的CPU资源,但会影响压缩性能。 帧:当采样视频信号时,如果是通过逐行扫描,那么得到的信号就是一帧图像,通常帧频为25帧每秒(PAL制)、30帧每秒(NTSC制); 场:当采样视频信号时,如果是通过隔行扫描(奇、偶数行),那么一帧图像就被分成了两场,通常场频为50Hz(PAL制)、60Hz(NTSC制); 帧频、场频的由来:最早由于抗干扰和滤波技术的限制,电视图像的场频通常与电网频率(交流电)相一致,于是根据各地交流电频率不同就有了欧洲和中国等PAL制的50Hz和北美等NTSC制的60Hz,但是现在并没有这样的限制了,帧频可以和场频一样,或者场频可以更高。 帧编码、场编码方式:逐行视频帧内邻近行空间相关性较强,因此当活动量非常小或者静止的图像比较适宜采用帧编码方式;而场内相邻行之间的时间相关性较强,对运动量较大的运动图像则适宜采用场编码方式。 Deblocking 开启会减少块效应。 FORCE_IDR 是否让每个I帧变成IDR帧,如果是IDR帧,支持随机访问。 frame,tff,bff

示波器主要技术指标及选择资料

精品文档 一、数字示波器的主要性能指标在选择数字示波器时,我们主要考虑其是否能够真实地显示被测信号,即显示信号与被测信号的一致性。数字示波器的性能很大程度上影响到其实现信号完整性的能力,下面根据其主要性能指标进行详细分析。示波器最主要的技术指标是带宽、采样率和存储深度 1、带宽如图1所示,数字示波器带宽指输入不同频率的等幅正弦波信号,当输出波形的幅度随频率变化下降到实际幅度的70.7%时的频率值(即f-3dB)。带宽决定了数字示波器对信号的基本测量能力。随着信号频率的增加,数字示波器对信号的准确显示能力下降。实际测试中我们会发现,当被测信号的频率与数字示波器带宽相近时,数字示波器将无法分辨信号的高频变化,显示信号出现失真。例如:频率为100MHz、电压幅度为1V的信号用带宽为100MHz的数字示波器测试,其显示的电压只有0.7V左右。图2为同一阶跃信号用带宽分别为4GHz、1.5GHz和300MHz 的数字示波器测量所得的结果。从图中可以看出,数字示波器的带宽越高,信号的上升沿越陡,显示的高频分量成分越多,再现的信号越准确。实际应用中考虑到价

(数字示波格因素器带宽越高价格经过实践越贵),我们经验的积累,发现只要数字示波器带宽为被测信号最高频率的倍,即可获得3-5的精2%3%到±±满足一般的测度,示波器所试需求。能准确测量的频大家都遵率范围,循测量的五倍法示波器所需带则:被测信号的最宽=使,高信号频率*5用五倍准则选定的示波器的测量误差将不会超过,对大多-2%+/的操作来说已经足够。 、采样率,2指数字示波器对信号采样的频率,精品文档. 精品文档 表示为样点数每秒(S/s)。示波器的采样速率越快,所显示的波形的分辨率和清晰度就越高,重

什么是码率

什么是码率? 码率是指每秒码流中经过的比特数。此处所指码流即MPEG文件。 一般情况下,MPEG的压缩率是通过指定码率实现的。码率越高,画质和音质越好,而压缩率则越低。 在同一码流中码率始终恒定时,称之为固定码率(CBR,Constant Bit Rate)。 一般情况,MPEG基本上是CBR,VBR技术被DVD等广泛支持。 PAL与NTSC制式的转换问题 1、PAL制式是每秒记录25幅画面; 2、NTSC制式是每秒记录30幅画面;(两种制式的画面的扫描线也不同); 3、DV格式既不属于PAL制式也不属于NTSC制式,但它确实分为25幅画面/秒和30幅画面/秒两种版本; 4、透过镜头,PAL制的TRV-900记录的是25幅画面/秒,而NTSC制的TRV-900记录的是30幅画面/秒 5、从数字端口(1394端口),TRV-900(其它数字摄像机也相同)既可记录25幅画面/秒信号,也可记录30幅画面/秒; 6、从模拟输入口,TRV-900只能记录与摄像机制式相同的模拟信号(PAL制式或NTSC制式); 7、如果你将一个PAL制式摄像机拍摄的DV带在一个NTSC制式的TRV-900中播放,它会输出一个非标准的、带有NTSC3.58彩色编码的25幅画面/秒信号。大多数电视机都可以很好地播放出来,但录像机无法记录。如果通过数字端口(1394口)输出,则它输出的将是标准的PAL版DV信号; 8、反之,如果你将一个采用NTSC制式记录的DV带,在一个PAL制式的TRV―900摄像机中播放,它将输出一个NTSC4.43或PAL制式彩色编码的非标准的30幅画面/秒信号(取决于摄像机的菜单设置)。大多数电视机都可以很好地播放出来,但录像机无法记录。如果通过数字端口(1394口)输出,则它输出的将是标准的NTSC版DV信号; 9、没有一种摄像机可以将帧数(即每秒画面数)或每幅画面的扫描线转换过来。这一点是理解问题的关键,即当摄像机遇见其它制式标准时,它需要不同的晶体振荡器去处理不同的制式信号(3.58(NTSC)或者4.43(PAL和NTSC4.43))。但摄像机只能有一种晶体振荡器。 10、TRV900将以其自有的格式从PC卡端口记录静像。即如果我在PAL制摄像机中放入一盘NTSC制式记录的DV带,并从一幅JEPG格式文件中加入数秒钟的录像,那么这几秒钟的录像将以PAL格式记录下来。 如果你通过IEEE-1394记录或回放,那么你只是在进行一个纯粹的数字文件传递。因而不存在格式转换问题。如果原来是PAL制的,拷贝后仍是PAL制。如果原来是NTSC制的,拷贝后仍是NTSC制。不管你是用什么制式的摄像机。 如果你有一种制式的模拟信号,想转换成另一种制式,你需要一个专门的影像转换盒才行。如果你有一种 制式的数字DV信号,想转换成另一种制式的DV信号,则可以采用软件进行转换。 什么是MPEG码流? MPEG-Video码流图像部分的码流。文件扩展名通常使用:m1v, m2v, mpv, vbs等。 MPEG-Audio码流声音部分的码流。文件扩展名通常使用:mp1, mp2, mp3, mpa等。 MPEG-System码流MPEG-Video码流和MPEG-Audio码流复合形成的独立码流。文件扩展名通常使用:mpg, m2p等。

声音中的比特率

声音中的比特率 简介 比特率是指将数字声音由模拟格式转化成数字格式的采样率,采样率越高,还原后的音质就越好。作为一种数字音乐压缩效率的参考性指标,比特率表示单位时间(1秒)内传送的比特数bps(bit per second,位/秒)的速度。通常使用kbps(通俗地讲就是每秒钟1000比特)作为单位。cd中的数字音乐比特率为1411.2kbps(也就是记录1秒钟的cd音乐,需要1411.2×1024比特的数据),音乐文件的BIT RATE高是意味着在单位时间(1秒)内需要处理的数据量(BIT)多,也就是音乐文件的音质好的意思。但是,BIT RA TE高时文件大小变大,会占据很多的内存容量,音乐文件最常用的bit rate是128kbps,MP3文件可以使用的一般是8~320kbps,但不同MP3机在这方面支持的范围不一样,大部分的是32-256Kbps,这个指数当然是越广越好了,不过320Kbps是暂时最高等级了。 比特率值与现实音频对照 16Kbps=电话音质24Kbps=增加电话音质、短波广播、长波广播、欧洲制式中波广播40Kbps=美国制式中波广播56Kbps=话音64Kbps=增加话音(手机铃声最佳比特率设定值、手机单声道MP3播放器最佳设定值)112Kbps=FM调频立体声广播128Kbps=磁带(手机立体声MP3播放器最佳设定值、低档MP3播放器最佳设定值)160Kbps=HIFI高保真(中高档MP3播放器最佳设定值)192Kbps=CD(高档MP3播放器最佳设定值)256Kbps=Studio音乐工作室(音乐发烧友适用)实际上随着技术的进步,比特率也越来越高,MP3的最高比特率为320Kbps,但一些格式可以达到更高的比特率和更高的音质。比如正逐渐兴起的APE音频格式,能够提供真正发烧级的无损音质和相对于WA V格式更小的体积,其比特率通常为550kbps-----950kbps。 常见编码模式 VBR(V ariable Bitrate)动态比特率也就是没有固定的比特率,压缩软件在压缩时根据音频数据即时确定使用什么比特率,这是以质量为前提兼顾文件大小的方式,推荐编码模式;ABR(A verage Bitrate)平均比特率是VBR的一种插值参数。LAME针对CBR 不佳的文件体积比和VBR生成文件大小不定的特点独创了这种编码模式。ABR在指定的文件大小内,以每50帧(30帧约1秒)为一段,低频和不敏感频率使用相对低的流量,高频和大动态表现时使用高流量,可以做为VBR和CBR的一种折衷选择。CBR(Constant Bitrate),常数比特率指文件从头到尾都是一种位速率。相对于VBR和ABR来讲,它压缩出来的文件体积很大,而且音质相对于VBR和ABR不会有明显的提高。 实际价值 APE的比特率高低与音质的关系,有如下几种观点:1、APE的比特率越高,音质越好。 2、APE的比特率和音质没有关系。 3、APE的比特率由压缩比决定。首先,APE的比特率到底由什么决定?经过几次试验,发现APE的比特率是由原CD本身的特征和压制APE 时采取的参数两者共同决定的。原CD的特征是主要因素。同样的CD抓的W A V文件,用猴子压缩时采取不同的参数,会导致得出的APE的比特率有细小的差别(50KBPS左右),压缩比越高,比特率越低。而原CD的特征的差异就会导致压出的APE比特率有非常大的区别(能达到500K左右),这个特征包括母带录制时采样量值(BIT)、音乐本身的动态范围(不能简单认为交响乐就比人声清唱的动态范围大)。20BIT和16BIT灌制的CD压出来

示波器测量之带宽与采样率

在具体测试过程中,示波器到底选择多少带宽比较合适呢? 首先,看下面的实例。 从上图可以看出,带宽越大,所能显示的信号频率分量越丰富,也就能更加接近真实的信号波形。 1、示波器带宽的精确计算 可按照以下步骤来完成计算: a、判断被测信号的最快上升/下降时间 b、判断最高信号频率f f=0.5/RT(10%~90%) f=0.4/RT(20%~80%) c、判断所需的测量精确度 所需精确度高斯频响最大平坦频响 20%BW=1.0*fBW=1.0*f 10%BW=1.3*fBW=1.2*f 3%BW=1.9*fBW=1.4*f d、计算所需带宽。 举例说明: 判断一个高斯响应示波器在测量被测数字信号时所需的最小带宽,其中被测信号最快上升时间为1ns(10%~90%): f=0.5/1ns=500MHz 若要求3%的测量误差:所需示波器带宽=1.9*500MHz=950MHz 若要求20%的测量误差:所需示波器带宽=1.0*500MHz=500MHz 因此,决定示波器带宽的重要因素是:被测信号的最快上升时间。 示波器的系统带宽由示波器带宽和探头带宽共同决定: a、高斯频响:具备高斯频响的示波器,按照10%到90%的标准衡量,上升时间约为0.35/fBW 系统带宽2=示波器带宽2+探头带宽2

b、最大平坦频响:系统带宽=Min{示波器带宽,探头带宽} 例如:1GHz带宽的示波器,配置1GHz带宽的无源探头,若它们的频响为高斯频响,则系统带宽为:700MHz左右。 2、影响示波器带宽的因素 通常,这些因素有:采样率、频响曲线。 a、频率曲线 频响曲线如下图所示。 带宽 被测信号的频率→ b、采样率 根据Nyquist采样定律,采样频率必须2倍于信号最高频率,即: Fs>2*fmax 才能保证信号可以被无混叠的重构出来。 (1)对于理想砖墙频响来说,采样率=示波器带宽*2,即可重构出信号。但是该情况在真实世界中是不存在的,大多数示波器的频响都是介于理想砖墙频响和高斯频响之间。 (2)对于高斯频响,采样率=示波器带宽*4,可对被测信号中的大部分频率成分进行无混叠重构。通常实际示波器的频响大多比高斯频响陡一点。 (3)对于最大平坦频响,采样率=示波器带宽*2.5,即可对被测信号中的大部分频率成分进行恢复。目前一些高端示波器都可以做到利用2.5倍带宽的采样率来完成信号重构。 是不是采样率越高量测精度越高?

采样率和编码率

简单的说,音频的质量和体积取决于两方面:采样率和编码率。采样率:自然的声音是连续的信号,而计算机不能直接处理,要将其“离散化”。举个简单的例子:正弦曲线是连续的,就像声音一样,进入计算机后,计算机把连续的曲线按照1mm一个点把正弦曲线分成了若干个点,这样就可以处理了,这个过程叫采样。显然,分点分得密度越大,曲线就越 逼真,这个密度在音频中就是采样率。每一个点都要占用存储空间,因此采样率越高体积 越大。编码率:采样只是处理的第一步。采样之后,还要把采集的数据存储起来。存储是需要空间的,一秒钟的采样数据用多少空间来存储,这就是编码率。可见,在采样率相同的前提下,编码率越低,体积越小。但是,采样和编码两个步骤都会降低音质。采样降低质量是没办法的,想输入计算机就必须采样。编码实际上就是压缩,像mp3这样的算法都是有损压缩,扔掉了大部分人耳察觉不带的声波数据,因而体积很小。 音频处理软件大部分是以时间为横坐标计量单位,因此采样率就是没单位时间内可以容纳 的样品数量,采样率越大,证明同样的时间内样品数越多,音频也就越逼真 低频噪音与高频噪音不同,高频噪音是那种很尖利的声音,随着距离越远或遭遇障碍物, 能迅速衰减,如高频噪音的点声源泉每10米距离就能下降6分贝。而低频噪音声音分贝 不高,却递减得很慢,因此能够长距离直入人耳,比如变压器的电流声,大型冷柜机的声 音都属于低频噪音。高频率的声音日常生活中接触较多的有门铃、女人声音、鸟鸣声等,因此,如果对门铃声音反应比较迟钝,或在男女一起说话时,对频率较高的女声一起说话时,对频率较高的女声听不太清楚,以及对鸟叫声不敏感,都要怀疑自已是否出现了高 频听力受损。以前有数据说有听力损失的儿童和青年中大约90%的人存在4-8KHZ的高频听 力损失。

示波器的三大关键指标

带宽、采样率和存储深度是数字示波器的三大关键指标。相对于工程师们对示波器带宽的熟悉和重视,采样率和存储深度往往在示波器的选型、评估和测试中为大家所忽视。这篇文章的目的是通过简单介绍采样率和存储深度的相关理论结合常见的应用帮助工程师更好的理解采样率和存储深度这两个指针的重要特征及对实际测试的影响,同时有助于我们掌握选择示波器的权衡方法,树立正确的使用示波器的观念。 在开始了解采样和存储的相关概念前,我们先回顾一下数字存储示波器的工作原理。 图1 数字存储示波器的原理组成框图 输入的电压信号经耦合电路后送至前端放大器,前端放大器将信号放大,以提高示波器的灵敏度和动态范围。放大器输出的信号由取样/保持电路进行取样,并由A/D转换器数字化,经过A/D转换后,信号变成了数字形式存入内存中,微处理器对内存中的数字化信号波形进行相应的处理,并显示在显示屏上。这就是数字存储示波器的工作过程。 采样、采样速率 我们知道,计算机只能处理离散的数字信号。在模拟电压信号进入示波器后面临的首要问题就是连续信号的数字化(模/数转化)问题。一般把从连续信号到离散信号的过程叫采样(sampling)。连续信号必须经过采样和量化才能被计算机处理,因此,采样是数字示波器作波形运算和分析的基础。通过测量等时间间隔波形的电压幅值,并把该电压转化为用八位二进制代码表示的数字信息,这就是数字存储示波器的采样。采样电压之间的时间间隔越小,那么重建出来的波形就越接近原始信号。采样率(sampling rate)就是采样时间间隔。比如,如果示波器的采样率是每秒10G次(10GSa/s),则意味着每100ps进行一次采样。

比特率与采样率

比特率】这个词有多种翻译,比如码率等,表示经过编码(压缩)后的音频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最少的单位,要么是0,要么是1。比特率与音频压缩的关系简单的说就是比特率越高音质就越好,但编码后的文件就越大;如果比特率越少则情况刚好翻转。 quote: -------------------------------------------------------------------------------- VBR(Variable Bitrate)动态比特率也就是没有固定的比特率,压缩软件在压缩时根据音频数据即时确定使用什么比特率,这是以质量为前提兼顾文件大小的方式,推荐编码模式;ABR(Average Bitrate)平均比特率是VBR的一种插值参数。LAME针对CBR不佳的文件体积比和VBR生成文件大小不定的特点独创了这种编码模式。ABR在指定的文件大小内,以每50帧(30帧约1秒)为一段,低频和不敏感频率使用相对低的流量,高频和大动态表现时使用高流量,可以做为VBR和CBR的一种折衷选择。 CBR(Constant Bitrate),常数比特率指文件从头到尾都是一种位速率。相对于VBR和ABR 来讲,它压缩出来的文件体积很大,而且音质相对于VBR和ABR不会有明显的提高。 -------------------------------------------------------------------------------- 【采样率】是指在数字录音时,单位时间内对音频信号进行采样的次数.它以赫兹(HZ)或千赫兹(KHZ)为单位.通常来说,采样率越高,单位时间内对声音采样的次数就越多,这样音质就越好.MP3音乐的采样率一般是44.1KHZ,即每秒要对声音进行44100次分析,记录下每次分析之间的差别.采样越高,获得的声音信息也就越完整.如果要对频率范围在20---20000HZ之间的声音信息进行正确采样,声音必须按不低于40000HZ的采样频率进行采样.降低声音文件的采样率,文件的体积会减小,但声音的失真现象也会越明显.因此,采样率涉及到如何协调声音文件的体积与声音的比例关系。 quote: -------------------------------------------------------------------------------- 几种音频的采样率 采样率质量级别用途 48KHZ 演播质量数字媒体上的声音或音乐 44.1KHZ CD质量高保真声音或音乐 32KHZ 接近CD质量数字摄像机音频

关于示波器的采样率-汪进进

关于示波器的采样率汪进进

关于示波器的采样率 采样率(Sampling Rate),顾名思义就是“采样的速率”,就是单位时间内将模拟电平转换成离散的采样点的速率,譬如采样率为4GSa/s就表示每秒采样4G个点。Sa是Samples的缩写。有些示波器厂商写作4GS/s。当然,采用不同量纲的单位就是MSa/s、MS/s,KSa/s、KS/s,Sa/s,S/s。 1,采样过程反应了数字示波器的本质:将模拟信号离散为一个一个的采样点 数字示波器区别于模拟示波器的一个最大不同是将模拟信号进行离散化。我们常说的话是,“在数字世界里,永远只有0和1”。如何将那些各种不同形状的模拟信号转换成为0和1呢? 图1和图2表示了示波器将模拟信号离散化的过程。采样-保持电路根据采样时钟将连续的模拟信号“等时间间隔地”、“实时地”转换为离散的电平,离散的电平再经过模数转换器(ADC)转换为一系列的0和1。对于8位ADC来说,8个连续的0和1组成一个采样点,代表了一个电平值。示波器将这些离散的采样点直接显示或将点和点通过某种方式相连显示为示波器屏幕上的波形。示波器保存的离散的采样点的个数就是“存储深度(memory)”。 INPUT WA VEFORM SA MPLED WA VEFORM SA MPLING CLOCK 图1 采样-保持电路将模拟信号转换成一个一个离散的电平 汪进进 深圳市鼎阳科技有限公司

图2 ADC将模拟信号离散化为0和1组成的采样点 将图1和图2的离散化过程换个示意图来表达,如图3所示,离散的采样点之间的间隔就是采样周期,采样周期的倒数就是采样率。采样率4GSa/s就表示两个采样点之间的间隔为500ps。在“点显示”方式和“线性插值”模式下,将示波器屏幕上的波形展开,有些示波器能看出屏幕上等时间间隔的采样点,打开示波器光标可以测量出两个点之间的间隔即为采样周期。 图3 采样周期表示相邻两个采样点之间的间隔 2,最高采样率 VS当前采样率 在示波器的前面板上通常都会标识采样率,如图4所示是中国首款智能示波器SDS3000系列中的一款SDS3054,她的面板上标识了采样率为 4GS/s,该采样率就是指这台示波器可以工作到的最高采样率。

视频中的比特率

视频中的比特率 比特率是指每秒传送的比特(bit)数。单位为bps(Bit Per Second),比特率越高,传送的数据越大。声音中的比特率是指将数字声音由模拟格式转化成数字格式的采样率,采样率越高,还原后的音质就越好。视频中的比特率(码率)原理与声音中的相同,都是指由模拟信号转换为数字信号的采样率。 目录计算机中的比特率声音中的比特率 简介 比特率值与现实音频对照 常见编码模式 视频中的比特率 码率计算公式 码率几点原则 实际价值计算机中的比特率声音中的比特率 简介 比特率值与现实音频对照 常见编码模式 视频中的比特率 码率计算公式 码率几点原则 实际价值 展开 编辑本段计算机中的比特率 比特率是指每秒传送的比特(bit)数。单位为bps(Bit Per Second),比特率越高,传送的数据越大。 比特率比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 计算机中的信息都是二进制的0和1来表示,其中每一个0或1被称作一个位,用小写b表示,即bit(位);大写B表示byte,即字节,一个字节=八个位,即1B=8b;前面的大写K表示千的意思,即千个位(Kb)或千个字节(KB)。表示文件的大小单位,一般都使用字节(KB)来表示文件的大小。 Kbps:首先要了解的是,ps指的是/s,即每秒。Kbps指的是网络速度,也就是每秒钟传送多少个千位的信息(K表示千位,Kb表示的是多少千个位),为了在直观上显得网络的传输速度较快,一般公司都使用kb(千位)来表示,如果是KBps,则表示每秒传送多少千字节。1KBps=8Kbps。ADSL上网时的网速 比特率是512Kbps,如果转换成字节,就是512/8=64KBps(即64千字节每秒)。 在电信和计算中,比特率(有时书面bitrate)是位被传送通过收音机或导线的速度,有时也被利用以波特速率,不是一般相同。注意"速度"在这环境不提到distance/time但对"information"/time的数量,并且应该因而是卓越的从"传播速度"(取决于传输媒介和有通常物理意思)。 它通常被表达作为位每秒、省略的bit/s、b/s,或非正式地bps。B应该总是小写,避

如何选择合适的示波器带宽

如何选择合适的示波器带宽 来源:安捷伦科技作者:Johnnie Hancock 带宽是大多数工程师在选择一款示波器时首先考虑的参数。本文将为您提供一些有用的窍门,教您如何为您的数字和模拟应用选择合适的示波器带宽。但首先,我们先看看示波器带宽的定义。 示波器带宽的定义 所有示波器都表现出如图1所示的在较高频率处滚降的低通频率响应。大多数带宽参数在1 GHz及以下的示波器通常表现为高斯响应,即具备约从-3 dB频率的三分之一处开始缓慢滚降的特性。而那些带宽规格超过1 GHz的示波器通常则具备最大平坦频率响应,如图2所示。这种频响通常表现为带内响应较平缓,而在约-3 dB频率处滚降较陡。 图1:低通频率响应

图2:最大平坦频率响应 示波器的这两种频率响应各有各的优缺点。具备最大平坦频响的示波器比具备高斯频响的示波器对带内信号的衰减较小,也就是说前者对带内信号的测量更精确。但具备高斯频响的示波器比具备最大平坦频响的示波器对代外信号的衰减小,也就是说在同样的带宽规格下,具备高斯频响的示波器通常具备更快的上升时间。然而,有时对带外信号的衰减大有助于消除那些根据奈奎斯特标准(fMAX < fS)可能造成混迭的高频成分。关于奈奎斯特采样理论更深入的探讨,请参看安捷伦应用笔记1587(Agilent Application Note 1587) 。 不论您手头的示波器具备高斯频响、最大平坦频响还是介于二者之间,我们都将输入信号通过示波器后衰减3 dB时的最低频率视为该示波器的带宽。示波器的带宽和频响可以利用正弦波信号发生器扫频测量得到。信号在示波器-3dB频率处的衰减转换后可表示为约-30%的幅度误差。因此,我们不能奢望对那些主要的频率成分接近示波器带宽的信号进行精确测量。 与示波器带宽规格紧密相关的是其上升时间参数。具备高斯频响的示波器,按照10%到90%的标准衡量,上升时间约为0.35/fBW。具备最大平坦频响的示波器上升时间规格一般在0.4/fBW范围上,随示波器频率滚降特性的陡度不同而有所差异。但我们必须记住的是,示波器的上升时间并非示波器能精确测量的最快的边缘速度,而是当输入信号具备理论上无限快的上升时间(0 ps)时,示波器能够得到的最快边沿速度。尽管实际上这种理论参数不可能测得到,因为脉冲发生器不可能输出边沿无限快的脉冲,但我们可以通过输入一个边沿速度为示波器上升时间规格的3到5倍的脉冲来测量示波器的上升时间。 数字应用需要的示波器带宽 经验告诉我们,示波器的带宽至少应比被测系统最快的数字时钟速率高5倍。如果我们选择的示波器满足这一标准,那么该示波器就能以最小的信号衰减捕捉到被测信号的5次谐波。信号的5次谐波在确定数字信号的整体形状方面非常重要。但如果需要对高速边沿进行精确测量,那么这个简单的公式并未考虑到快速上升和下降沿中包含的实际高频成分。 公式:fBW ≥ 5 x fclk 确定示波器带宽的一个更准确的方法是根据数字信号中存在的最高频率,而不是最大时钟速率。数字信号的最高频率要看设计中最快的边沿速度是多少。因此,我们首先要确定设计中最快的信号的上升和下降时间。这一信息通常可从设计中所用器件的公开说明书中获取。 第一步:确定最快的边沿速度 然后就可以利用一个简单的公式计算信号的最大“实际”频率成分。Howard W. Johnson 博士就此题目写过一本书《高速数字设计》。在书中,他将这一频率成分称为“拐点”频率(fknee)。所有快速边沿的频谱中都包含无限多的频率成分,但其中有一个拐点(或称“knee”),高于该频率的频率成分对于确定信号的形状就无关紧要了。 第二步:计算fknee fknee = 0.5/RT (10% - 90%) fknee = 0.4/RT (20% - 80%) 对于上升时间特性按照10% 到90%阀值定义的信号而言,拐点频率fknee等于0.5除以信号的上升时间。对上升时间特性按照20% 到80%阀值定义的信号而言(如今的器件规范中通常采用这种定义方式),fknee等于0.4除以信号的上升时间。但注意不要把此处的信号上升时间与示波器的上升时间规格混淆了,我们这里所说的是实际的信号边沿速度。

音乐比特率计算方法

采样率就是44.1KHz这个值,越高反应音乐效果越好比特率就一般是128kbps,反映每秒所使用的空间大小(比方硬盘空间大小),同样是越高反应音乐效果越好。以下是更多的信息:简单来讲,采样率和比特率就像是坐标轴上的横纵坐标。横坐标的采样率表示了每秒钟的采样次数。纵坐标的比特率表示了用数字量来量化模拟量的时候的精度。采样率类似于动态影像的帧数,比如电影的采样率是24赫兹,PAL制式的采样率是25赫兹,NTSC制式的采样率是30赫兹。当我们把采样到的一个个静止画面再以采样率同样的速度回放时,看到的就是连续的画面。同样的道理,把以44.1kHZ采样率记录的CD以同样的速率播放时,就能听到连续的声音。显然,这个采样率越高,听到的声音和看到的图像就越连贯。当然,人的听觉和视觉器官能分辨的采样率是有限的,基本上高于44.1kHZ采样的声音,绝大部分人已经觉察不到其中的分别了。而声音的位数就相当于画面的颜色数,表示每个取样的数据量,当然数据量越大,回放的声音越准确,不至于把开水壶的叫声和火车的鸣笛混淆。同样的道理,对于画面来说就是更清晰和准确,不至于把血和西红柿酱混淆。不过受人的器官的机能限制,16位的声音和24位的画面基本已经是普通人类的极限了,更高位数就只能靠仪器才能分辨出来了。比如电话就是3kHZ取样的7位声音,而CD是44.1kHZ取样的16位声音,所以CD就比电话更清楚。当你理解了以上这两个概念,比特率就很容易理解了。以电话为例,每秒3000次取样,每个取样是7比特,那么电话的比特率是21000。而CD是每秒44100次取样,两个声道,每个取样是13位PCM编码,所以CD的比特率是44100*2*13=1146600,也就是说CD每秒的数据量大约是144KB,而一张CD的容量是74分等于4440秒,就是639360KB=640MB。我试过,,采样率44.1Khz,16bit,2声道,即,44100*2*16=1411200,winamp播放器显示1411kbps

理解示波器带宽

当示波器用户选择示波器进行关键的测量时,示波器的主要参数指标往往是选择哪一款示波器的唯一标准。示波器最主要的指标参数是: (1)带宽; (2)采样率; (3)记录长度。 带宽- 这个指标能告诉我们什么? 模拟带宽是一个测量指标,简单的定义是:示波器测得正弦波的幅度不低于真实正弦波信号3dB 的幅度时的最高频率(见的IEEE -1057)。如图1,是一个理想的示波器带宽和幅度测量误差的曲线图,从图1可以看出,当被测正弦波的频率等于示波器的带宽(示波器的放大器的响应是一阶高斯型)时,幅度测量误差大约30%。如果想测量正弦波的幅度误差只有3%,被测正弦波的频率要比示波器的带宽要低很多(大约是示波器的带宽的0.3倍)。由于大多数信号是比正弦波复杂的多,使用示波器测量信号的通用法则是:示波器的带宽是被测信号的频率的5 倍。 带宽- 不能告诉我们什么 最典型的用户选择示波器显示和测量复杂的电和光信号,观测信号在示波器上幅度对时间的显示。模拟带宽,一个示波器重要的指标,它应该定义在频域,而不是在时域。根据采样理论,复杂的信号在频域包含丰富的频谱成分(包含多次正弦波的谐波成分),见图2.利用频谱分析,可以看到被采样信号的频率成分,

然而,如果要充分描述这些频率成分的特点,就必须知道组成复杂信号的每个成分的准确幅度和相位信息。在这种情况下,带宽除了能够告诉将怎样捕获这些细节,其它什么也不能告诉我们。从带宽的测量角度,我们只知道,输入一个频率和带宽相同的正弦波,示波器的幅度测量误差为30%。 带宽和上升时间的关系是什么 除了对通用的信号分析,大多数的工程师也有对时间测量感兴趣,如方波的上升时间和下降时间。因此,从指定的带宽可以评估示波器系统的上升时间,我们可以使用下面公式:tr= 0.35/BW(或0.42/BW);即:BW = 0.35/tr(或0.42/tr)=5*Fclock(一般普通信号的tr=7%*T,其中:T=1/Fclock)。实际信号的带宽:信号谐波幅值将为0次波(基波)的70%(即下降3dB)时的谐波频率。 这里的0.35是示波器带宽和上升时间(一阶高斯模型时的10%-90 %上升时间)之间的比例系数,示波器的放大器大多数使用的是一阶高斯型RC低通滤波器的响应模型。使用这个公式很容易计算出tr 上升时间,但是,实际往往不是这样的。图3 的表格给出了不同信号标准所需要的测量系统带宽的建议,建议的系统带宽能够保证上升时间或其它测量得到合理的测试精度。注意,仪器系统很多因数都会影响在示波器测试上升时间结果的精度,这些因数包括信号源,探头,以及示波器。图3 表格是假设信号和示波器的测试系统都是一阶响应特性,但是在实际上,特别是今天的高速串行信号,这个假设与实际相差甚远。对于最大平坦包络延迟响应,示波器的带宽和上升时间的关系系数接近0.45.在图3中,可以看出上升时间和带宽比例系数的变化,20GHz 幅频响应模型也发生变化,从简单的一阶响应到32 阶响应。16 阶和32 阶响应类似现在的高性能示波器的响

示波器基础系列之一 —— 关于示波器带宽

示波器基础系列之一——关于示波器带宽(一) 关于示波器的带宽 带宽被称为示波器的第一指标,也是示波器最值钱的指标。示波器市场的划分常以带宽作为首要依据,工程师在选择示波器的时候,首先要确定的也是带宽。在销售过程中,关于带宽的故事也特别多。 通常谈到的带宽没有特别说明是指示波器模拟前端放大器的带宽,也就是常说的-3dB截止频率点。此外,还有数字带宽,触发带宽的概念。 我们常说数字示波器有五大功能,即捕获(Capture),观察(View),测量(Measurment),分析(Analyse)和归档(Document)。这五大功能组成的原理框图如图1所示。 图1,数字示波器的原理框图 捕获部分主要是由三颗芯片和一个电路组成,即放大器芯片,A/D芯片,存储器芯片和触发器电路,原理框图如下图2所示。被测信号首先经过探头和放大器及归一化后成ADC可以接收的电压范围,采样和保持电路按固定采样率将信号分割成一个个独立的采样电平,ADC将这些电平转化成数字的采样点,这些数字采样点保存在采集存储器里送显示和测量分析处理。

图2,示波器捕获电路原理框图 示波器放大器的典型电路如图3所示。这个电路在模拟电路的教科书上处处可见。这种放大器可以等效为RC低通滤波器如图4所示。由此等效电路推导出输出电压和输入电压的关系,得出理想的幅频特性的波特图如图5所示。

图3,放大器的典型电路 图4,放大器的等效电路模型

至此,我们知道带宽f2即输出电压降低到输入电压70.7%时的频率点。根据放大器的等效模型,我们可进一步推导示波器的上升时间和带宽的关系式,即我们常提到的0.35的关系:上升时间=0.35/带宽,推导过程如下图6所示。需要说明的是,0.35是基于高斯响应的理论值,实际测量系统中这个数值往往介于0.35-0.45之间。在示波器的datasheet上都会标明“上升时间”指标。示波器测量出来的上升时间与真实的上升时间之间存在下面的关系式。在对快沿信号测试中,需要通过该关系式来修正实际被测信号的上升时间。 Measured risetime(tr)2 = (tr signal)2+(tr scope)2+(tr probe)2 示波器前端放大器幅频特性的波特图是新示波器发布的“出生证”。示波器每年需要进行校准,波特图是第一需要校准的数据。示波器波特图的测量方法如图

位速和采样率是什么意思

位速和采样率是什么意思 位速是指在一个数据流中每秒钟能通过的信息量。 采样率就是44.1KHz这个值,越高反应音乐效果越好 比特率就一般是128kbps,反映每秒所使用的空间大小(比方硬盘空间大小),同样是越高反应音乐效果越好。 简单来讲,采样率和比特率就像是坐标轴上的横纵坐标。 横坐标的采样率表示了每秒钟的采样次数。 纵坐标的比特率表示了用数字量来量化模拟量的时候的精度。 采样率类似于动态影像的帧数,比如电影的采样率是24赫兹,PAL制式的采样率是25赫兹,NTSC制式的采样率是30赫兹。当我们把采样到的一个个静止画面再以采样率同样的速度回放时,看到的就是连续的画面。同样的道理,把以44.1kHZ采样率记录的CD以同样的速率播放时,就能听到连续的声音。显然,这个采样率越高,听到的声音和看到的图像就越连贯。当然,人的听觉和视觉器官能分辨的采样率是有限的,基本上高于44.1kHZ 采样的声音,绝大部分人已经觉察不到其中的分别了。 而声音的位数就相当于画面的颜色数,表示每个取样的数据量,当然数据量越大,回放的声音越准确,不至于把开水壶的叫声和火车的鸣笛混淆。同样的道理,对于画面来说就是更清晰和准确,不至于把血和西红柿酱混淆。不过受人的器官的机能限制,16位的声音和24位的画面基本已经是普通人类的极限了,更高位数就只能靠仪器才能分辨出来了。比如电话就是3kHZ取样的7位声音,而CD是44.1kHZ取样的16位声音,所以CD就比电话更清楚。 当你理解了以上这两个概念,比特率就很容易理解了。以电话为例,每秒3000次取样,每个取样是7比特,那么电话的比特率是21000。而CD是每秒44100次取样,两个声道,每个取样是13位PCM编码,所以CD的比特率是44100*2*13=1146600,也就是说CD每秒的数据量大约是144KB,而一张CD的容量是74分等于4440秒,就是639360KB=640MB。 音频文件的采样频率(khz)与位速/码率(kbps) 数码音频系统是通过将声波波形转换成一连串的二进制数据来再现原始声音的,实现这个步骤使用的设备是模/数转换器(A/D)它以每秒上万次的速率对声波进行采样,每一次采样都记录下了原始模拟声波在某一时刻的状态,称之为样本。将一串的样本连接起来,就可以描述一段声波了,把每一秒钟所采样的数目称为采样频率或采样率,单位为HZ(赫兹)。采样频率越高所能描述的声波频率就越高。采样率决定声音频率的范围(相当于音调),可以用数字波形表示。以波形表示的频率范围通常被称为带宽。要正确理解音频采样可以分为采样的位数和采样的频率。 1.采样的位数 采样位数可以理解为采集卡处理声音的解析度。这个数值越大,解析度就越高,录制和回放的声音就越真实。我们首先要知道:电脑中的声音文件是用数字0和1来表示的。所以在电脑上录音的本质就是把模拟声音信号转换成数字信号。反之,在播放时则是把数字信号还原成模拟声音信号输出。采集卡的位是指采集卡在采集和播放声音文件时所使用数字声音信号的二进制位数。采集卡的位客观地反映了数字声音信号对输入声音信号描述的准确程度。8位代表2的8次方--256,16位则代表2的16次方-- 64K。比较一下,一段相同的音乐信息,16位声卡能把它分为64K个精度单位进行处理,而8位声卡只能处理256个精度单位,造成了较大的信号损失,最终的采样效果自然是无法相提并论的。 如今市面上所有的主流产品都是16位的采集卡,而并非有些无知商家所鼓吹的64位

示波器带宽和采样率选择

1 电源测量中带宽的选择 示波器带宽有四个相关名词:模拟带宽、数字带宽,系统带宽和触发带宽。数字带宽等于采样率的一半,实用意义不大。触发带宽是示波器厂商“硬”造出来的一个概念,是指示波器触发电 路可以正常工作的最大输入正弦信号的频率。对于高端示波器,触发电路在输入信号频率超过 一定大小就不能工作了! 系统带宽是指示波器前端放大器和探头、测试夹具等组成的测量系统 的带宽。一般不特别说明,带宽即是指示波器的模拟带宽,也就是示波器前端放大器的幅频特 性曲线的截止频率点。示波器的放大器是低通滤波器,其幅频特性曲线如图1所示,带宽就是输入电压幅值降低到输入 -3dB(70.7%)时的截止频率点。 带宽选择的理论依据,用一句话来概括就是带要能覆盖被测信号能量的99%以上。我们知道,任何信号都可以分解为无数次谐波的叠加,但是被测信号分解到多少次谐波之后能量会衰减到只剩下1%呢?这个答案不直观,因此带宽的选择是示波器行业的销售人员几乎每天都会遇 到的问题。这个问题有时侯很严肃,有时侯很滑稽。其实,带宽的选择是一个相对的结果,它取决于被测信号的类型和测量的准确度。最关键的因素是上升时间。上升时间越小,上升沿越陡,被测信号的高次谐波含量越丰富,需要的带宽越大。这里面就需要一些数学上的推导来确 定具体上升时间和信号能量之间的量化关系。业内比较认可的两个带宽选择的原则是: ?当被测信号是串行数据时,串行数据的上升时间如果大于20% UI(一个比特位的时间长度),那么示波器带宽只要达到被测信号比特率的1.8倍就能覆盖信号能量的99.9%。如 果上升时间大于30% UI,只要1.2倍信号的比特率就足够了。现实电路中,串行数据的上升 时间绝大多数在接收端时都大于30%了。因此,对于3Gbps的SATA信号,在经过夹具之后 用4GHz示波器就可以。大家可以用4GHz、6GHz、13GHz测试后比较一下看看。 ?电源不是串行信号,上面的规则并不适用。在很久很久以前,业内一就直流传的带宽选择 依据是“3到5倍”法则,即带宽是被测信号频率的“3到5倍”。其实这里面没有强调上升时间,这个法则不够具有普适性。SI之父Howard Johnson以其个人权威给出一个从示波器上升时间 来选择带宽的原则,但他没有给出详细的推导。

相关主题