搜档网
当前位置:搜档网 › 示波器的带宽和采样频率__第37问

示波器的带宽和采样频率__第37问

示波器的带宽和采样频率__第37问
示波器的带宽和采样频率__第37问

采样率是数字上的,每秒采样多少个样点。

采样率理论上需要满足农效香采样定律,即被测信号的最高频率信号的每个周期理论上至少需要采2个点,否则会造成混叠。但是在实际上还取决于很多其它的因素,比如波形的重构算法等,Siglent系列示波器采用先进的波形重构算法,同时配备有插值算法,精确重构波形。一般来说采样率是带宽的4-5倍就可以比较准确地再现波形

带宽与采样率

示波器的带宽(BW)直接表现出它所能测量信号的最小上升时间(Tr),它们之间的关系为:BW=0.35/Tr。示波器上标称的采样率都为实时采样率,采样率跟带宽一般没直接关系。对带宽为60M的示波器,它能测量的最小上升时间约为6ns。频率为1M的信号其上升沿也可做到只有200ps,拿这个示波器来测量这个信号的话其上升沿的测量值将大于6ns(探头有‘损耗’),严重失真。对常规信号来说,示波器带宽与所测信号频率之间的关系满足三倍(精度90%)或者五倍(精度97%)原则,对三倍原则60M带宽示波器所能测量的最大频率为20M。

示波器知识100问

1.对一个已设计完成的产品,如何用示波器经行检测分析其可靠性?

答:示波器早已成为检测电子线路最有效的工具之一,通过观察线路关键节点的电压电流波形可以直观地检查线路工作是否正常,验证设计是否恰当。这对提高可靠性极有帮助。当然对波形的正确分析判断有赖于工程师自身的经验。

2.决定示波器探头价格的主要因素是什么?

答:示波器的探头有非常多的种类,不同的性能,比如高压,差分,有源高速探头等等,价格也从几百人民币到接近一万美元。价格的

主要决定因素当然是带宽和功能。探头是示波器接触电路的部分,好的探头可以提供测试需要的保真度。为做到这一点,即使无源探头,内部也必须有非常多的无源器件补偿电路(RC网络)。

3.一般的示波器探头的使用寿命有多长时间?探头需不需要定期的标定?

答:示波器的探头寿命不好说,取决于使用环境和方法。

标准对于探头没有明确的计量规定,但是对于无源探头,至少在更换探头,探头交换通道的时候,必须进行探头补偿调整。所有有源探头在使用前应该有至少20分钟的预热,有的有源探头和电流探头需要进行零点漂移调整。

4.什么是示波器的实时采样率?

答:实时采样率是指示波器一次采集(一次触发)采样间隔的倒数。据了解,目前业界的最高水平是四个通道同时使用。

5.什么是示波器的等效时间采样?

答:等效时间采样指的是示波器把多次采集(多次触发)采集到的波形拼凑成一个波形,每次采样速率可能很慢,两次采集触发点有一定的偏移,最后形成的两个点间的最小采样间隔的倒数称为等效采样速率。其指标可以达到很高,如1ps。

6.什么是功率因数?如何如何测量?

答:功率因数:在直流电路里,电压乘电流就是有功功率。但在交流电路里,电压乘电流是视在功率,而能起到作功的一部分功率(即有功功率)将小于视在功率。有功功率与视在功率之比叫做功率因数,以COSΦ表示,其实最简单的测量方式就是测量电压与电流之间的相位差,得出的结果就是功率因数。

7.如何表达和测试功率密度?

答:功率密度就是单位体积里的功率,一般电源里用W/in3。

8.有无办法利用示波器测出高频变压器或电感磁芯的工作情况?

答:TEK推出的功率测试方案里就有一项功能——B-H曲线的分析,它能反应磁芯的工作状态,还能测出动态电感值,并得出磁芯损耗。9.开关电源的噪声有多种如布线不合理引起的交叉干扰、电感漏磁、二极管反向尖峰...等引起噪声,如何用示波器鉴别?

答:TEK的TDS5000示波器上有频域分析、分析噪声的频率段就能分析出噪声的种类,才好用相应的处理方法。示波器只能提供数据分析和波段形显示。

10.用示波器怎样可以测试到开头电源的幅射?

答:开关电源存在幅射干扰,一般做法是设法探出干扰源,然后再去屏蔽它。用示波器可以傅立叶变换的功能分析其频率成份构成,根据频率范围,从而判断干扰的种类。

11.在反激式电源设计过程当中,经常会因为变压器漏感大,而使变压器的转换效率降低,绕制时采用初级中间夹绕次级的方式仍然不大理想。变压器绕制有什么技巧吗?

答:将大功率的输出绕组绕在里面,尽量靠近原边,加强偶合。

12.有没有能分析开关损耗的示波器?

答:泰克的电源测试系统即TDS5000系列数字荧光示波器加上TDSPWR2功率分析软件就可以轻松的分析开关损耗以及每周期的功率损耗甚至包括RDS ON。

13.示波器能否进行傅立叶分解?

答:现代数字示波器大多具有FFT功能,其中上述系统甚至可以按EN61000-3-2标准对电流谐波进行预测试。

14.示波器能否进行滤波处理?如对PWM波进行低通滤波?

答:TDS5000可以进行20MHz,150MHz低通滤波,还可以进行一种称之为高分辨率采集的数字低通滤波,在此种模式中采样点的垂直分辨率可从8bits提高到12bits,上述系统可以输出像比如PWM这样的信号按照脉宽变化的趋势的类似正弦波波形。

15.使用数字示波器时,对B触发和触发电平的设置与被测信号有什么原则?

答:泰克的示波器支持A,B trigger功能,简单说就是可以双事件序列触发,当选择A-B seq时,A事件作为主触发,配合B事件捕获复杂的波形。触发方法为A事件arm触发系统,当定义的B事件出现时在B事件处触发。具体详细的触发说明,请参考示波器的手册。16.如何用TDS3052B测量载波频率为几十K,调制波频率为电源频率的已调波的最大值?

答:工频输入可能为低频的50Hz/60Hz,同时载波为几十K,一个工频周期为20ms左右,如果示波器需要观测20ms信号,即示波器的duration采集窗口至少为2ms/div ×10格,同时根据几十k的载波信号,确定示波器的采样率。最后可以估算出需要的采集内存长度,判断是否能够满足测试要求。

17.使用一台标称100MHz的DSO示波器,测量一个高频开关幅值400V,f=50M,示波器如何描绘出它的波形和上升时间?

答:①示波器的带宽是以正弦波幅度衰减-3dB点为带宽定义的。

②数字示波器中对于波形和上升时间的描绘都是通过实时采样电路和高速A/D变换器获得波形数据,再通过插值运算得到的。

③在泰克的示波器中,有实时的处理电路完成所谓的正弦内插功能,在信号采集电路部分完成。当然,很多示波器也是通过示波器的主处理器进行数学运算完成的,这个时候会花比较多的时间。

④对于您测量的信号,恐怕使用100MHz的示波器是无法进行。50MHz的方波,理论上应该使用450MHz以上的示波器才能将信号中最重要的9次以下谐波准确重新,从而保证波形不失真。更何况,您恐怕还要考虑信号上升时间的问题,理论上,示波器的上升时间应该比信号快5倍以上。

⑤探头也一样,由于普通探头在测量高压的时候会产生高频失真的效应,您应该采用特别的差分探头或者高压探头比如,泰克的P5205,P5100进行测量。

18.如何在模拟电路用好数字示波器,比如测音频放大器的小信号,电源的杂波等?

答:要注意的问题有:

①示波器的接地问题,示波器的机壳和探头的参考地线都是连接地线的,因此良好的接地是测量干扰的首要条件。

②示波器参考地线引入的干扰问题,由于普通探头通常都有一段接地线,会与待测点构成一个类似环形天线的干扰路径,引入比较大的干扰,因此要尽量减少这一干扰,可以采用的方法是将探头帽拿掉,不使用探头上引出的地线,而直接使用探头尖端和探头内的地点接触待测点进行测量。

③使用差分测量的方法,消除共模噪声。泰克提供一系列的差分探头,比如专门针对小信号的ADA400A可以测量到几百微伏,用于高速信号测量的P7350提供高达5GHz的带宽。

④在泰克的很多示波器里提供高分辨率采集(Hi-Res)的信号捕获模式,可以过滤信号上叠加的随机噪声。

19.在测量离板信号线的传导骚扰时,发现在两个特定频点(一个是659K另一个是1.977K)上由两个很大的噪声信号。初步分析是由于板上的开关电源芯片引起的,如何使用示波器测量这样的噪声信号?

答:示波器可以测试噪声信号有几个考虑的因素:

①被测信号的幅度,是否为小信号,示波器配合探头可以测试uA?级的信号。

②被测信号的频率。

③探头的连接方式不当会产生噪声,影响测试结果。

20.在用泰克的示波器时,如何理解Holdoff这个参数?

答:Holdoff(触发释抑)的含义是暂时将示波器的触发电路封闭一段时间(即释抑时间),在这段时间内,即使有满足触发条件的信号波形点示波器也不会触发。在数字示波器中也会用百分比来表示,意义是整个记录长度或者整个屏幕的百分比。

示波器的触发部分的作用就是稳定的显示波形,触发释抑也是为了稳定显示波形而设置的功能。主要针对大周期重复而在大周期内有很多满足触发条件的不重复的波形点而专门设置的。比如图中所示,图中红色的点都可以满足触发条件,如果不用释抑功能,触发点将不固定,造成显示不稳定,使用触发释抑后,每次都在同一个点触发,因此可以稳定显示。

此外,对于调幅信号等也一样要使用触发释抑。详情请参见泰克文章《示波器XYZ》。

30.TDS3032B的带宽是300MHz,采样频率为2.5G/s,采样频率为带宽的8倍。请问带宽和采样频率之间有什么固定关系?我们也有一款其它厂家的示波器,带宽100MHz、采样频率只有200MHz。为什么两个示波器的带宽采样频率比相差这么大?

答:带宽是示波器最重要的指标,因为在数字示波器中有ADC,它的采样率理论上需要满足Nyquist采样定律,即被测信号的最高频率信号的每个周期理论上至少需要采2个点,否则会造成混叠。但是在实际上还取决于很多其它的因素,比如波形的重构算法等。泰克示波器采用先进的波形重构算法,被测信号的每个周期只需要2.5个点就能够重构波形。也有的示波器采用线性插值算法,可能就需要10个点。一般采样率是带宽的4-5倍就可以比较准确地再现波形。

泰克的TDS3000B系列是“实时采样”示波器,即,它的单次带宽(捕获单次信号的能力)=重复带宽,您所说的另一种示波器的单次带宽显然不到100MHz,您可以看一下它的指标。

31.示波器指标中的带宽如何理解?

答:带宽是示波器的基本指标,和放大器带宽的定义一样,是所谓的-3dB点,即,在示波器的输入加正弦波,幅度衰减为实际幅度的70.7%时的频率点称为带宽。也就是说,使用100MHz带宽的示波器测量1V,100MHz的正弦波,得到的幅度只有0.707V。这还只是正弦波的情形。因此,我们在选择示波器的时候,为达到一定的测量精度,应该选择信号最高频率5倍的带宽。

32.测量系统的总带宽如何获得?

答:测量系统的总带宽=0.35/上升时间(1GHz以下示波器)。

33.在带宽一定的条件下,采样频率太大是否也没有太大的意义?

答:带宽是限制被测信号高频分量被捕获的基本条件。使用泰克的示波器每个被测信号周期只需2.5个点就能够最大限度的重构波形。其它一些示波器需要大于4个样点/周期,即100MHZ带宽示波器单次采集至少需要400MS/s的采样率,有些示波器甚至需要10个点(线性内插技术)才能保证采集信号有意义。

34.所谓高斯响应示波器和平坦响应示波器各有何优缺点和适合的领域?

答:在示波器的规范中并没有平坦相应和高斯相应的指标。在示波器中会出现类似的比较或探讨,可能有如下原因:

众所周知,示波器是时域的仪器,从泰克发明第一台可触发的模拟示波器以来,示波器的带宽一直是最重要的指标,它是指示波器内部的前置放大器的模拟带宽。但是,示波器带宽的定义却是频域的定义,即正弦波幅度衰减到-3dB点时的频率点。一个复杂高速信号含有丰富的频谱分量,如果需要精确测量信号,必须知道它们的每一个频谱分量的幅度和相位,所以示波器的幅频特性和相频特性非常重要。从最近几年的发展来看,目前数字示波器的带宽越做越高,从泰克2000年推出TDS7000 4GHZ带宽示波器,2001年推出TDS6000 6GHZ 带宽示波器,2003年推出TDS7704B 7GHZ带宽示波器,到最近TDS6804B 8GHZ带宽示波器,带宽几乎每年都在提升。当示波器带宽到达几个GHZ时,前置放大器作为模拟器件,保证良好的幅频和相频特性越来越难,泰克是掌握这一最关键技术的唯一公司。有些厂商无法做到,就不得不采用其它的一些方法来修补模拟器件带宽的不足,获得更高的带宽,频响曲线自然发生变化。

随着目前各种高速信号越来越多,信号速率越来越快,对实时示波器提出了新的要求,示波器厂商的数字示波器中也出现了一些新的技术,最显著的是示波器通过数字信号处理技术(DSP)来得到更好的性能。DSP就在数字示波器主要应用包括:

?增强带宽

?更快的上升时间

?增益和波形校准与改善

?幅度和相位的改善

?光参考接收机归一化

其中泰克的第三代示波器(DPO)就是DSP技术的最好体现。合理的利用DSP可以提升示波器测试的信号保真度。但是,DSP技术的使用会是每一个示波器的使用者产生迷惑,特别是在“带宽是否可以通过DSP可以提升”,“示波器的带宽是模拟带宽,和DSP技术有何关系”,“当前的示波器带宽到底是模拟带宽还是DSP带宽?”“DSP技术带来的负面效应是什么?”

在泰克最新的TDS6804B 8GHZ带宽的示波器中的模拟带宽是7GHZ,通过DSP增强后的带宽是8GHZ,为了保证每一个测试人员对这两种方式的理解,在TDS6804B中可以打开和关闭DSP的带宽增强功能。泰克将DSP增强带宽带来的优点和问题告诉每一个测试人员,帮助测试人员理解模拟带宽和DSP增强带宽的测试结果,更好的进行高速信号测试。

35.除高斯响应示波器和平坦响应示波器之外,还有基于其它响应的示波器吗?

答:示波器前置放大器的频响特性是决定测试结果的最关键因素,它由模拟器件决定。关键在于用何种方法来获得足够的频响。

36.以前在用TDS744,TDS745等示波器时,使用的是无源探头(如P6139A,带宽500M)。在购买了有源探头(P6237)之后, 从测试波形来看(特别是测高频信号时),两者的测试结果差异较大. 从探头参数得知, 有源探头的输入电容<1pF,而无源探头则为10pF左右. 这样看来应该是有源探头的测试结果更能反映信号真实的情况. 既然无源探头对高频信号衰减很大, 那么500M的带宽有什么意义呢? 如何根据测试情况来选择使用有源或无源探头?

答:您的P6139A探头加上泰克的500MHz示波器典型带宽值还是可以达到500MHz,但是正如您所说,其输入电容不同,这一电容将产生对于待测信号的负载效应,造成信号振铃,形状发生改变,因此这个时候使用有源探头时能反映信号的真实情况。实际上,使用探头不光要考虑带宽,所有这些因素我们在测量高频信号的时候都要考虑:

?带宽/上升时间

?动态范围

?负载效应

?接地效应

?共振效应

尤其P6139A时您还要考虑地线的影响,探头上的接地线也会带来振铃,测量高频信号的时候应该尽量缩短地线的长度。

另外,您使用的P6247是有源差分探头,共模的影响也可能是一个因素。

选择无源探头主要是因为其动态范围大,比如P6139A可以测量从毫伏到几百伏的信号,而P6247只能测量+-8.5V的信号。另外有源探头价格也是一个因素。

37.实验时,示波器接地线后,导致MOsfet炸掉,现在将示波器都剪掉了地线。这是什么原因?

答:为保证测试中的人身安全以及获得良好的测量效果,一般示波器的所有探头的地线都与机壳连接在一起,并连接到示波器电源线的地线。因此,您在电源中测量MOSFET管波形的时候,如果其中任何一个点都不是地,就会产生问题,如下图所示。

剪断地线可以防止对MOSFET管测试中的短路问题,但是也会带来一些其它的测试问题,比如示波器机壳带电,示波器机壳分布参数对测量信号造成影响等。解决的办法是使用差分探头,比如泰克的P5205,可以测量所谓的2个测试点都不是地的差分信号。

38.用示波器抓取数据时,发现存储的文本里只有当前屏幕的数据,且是按照resolution为时间间隔的。如何利用软件实时处理数据(matlab?),如何抓到更多数据?

答:泰克示波器采用压缩屏幕的显示风格,即屏幕显示的波形为采集下来的所有数据,配合TDS5000B的multiViewZoom功能,可以方便显示所有波形。

泰克TDS5000B,TDS6000,TDS7000B,TDS8000B系列示波器都采用完全开放的WINDOWS平台,支持当前所有的流行工具,象Matlab,LabView,VB,VC,.NET,MicroSoft Office VBA等等,可以灵活进行数据分析和处理。

这些分析工具还可以直接安装在示波器里面,构成一台集数据采集,分析,显示,处理的仪器。单次采集更多的数据,需要示波器配备更深的存储深度,象TDS5000B系列通用示波器可以支持到16M内存。

39.影响示波器工作速度的因素有哪些?

答:实际上任何一台示波器的原理都差不多,前端是数据采集系统,后端是计算机处理。影响速度主要有两方面,一是从前端数采到后端处理的数据传输,一般都是用PCI总线,此乃传输瓶颈, 但已有新技术可以突破;另一个是后端的处理方式,提高处理速度可以通过数据分包共享来实现。

40.我们的应用通常会捕获2M甚至更多的数据进行分析, 且采样率通常会高达10GS/S, 但在进行参数测试和FFT等分析时总是显得很慢, 为什么?

答:处理的数据量大,速度自然会慢。要想获得大数据量的高速实时FFT分析,除非采用专用FFT处理器,但成本较高。

41.使用泰克的TDS2014数字示波器抓一个并口的时序时,总能测到能量很强的50Hz交流,而测不到信号,但是示波器的地和所测并口的地是一致的,怎么办?

答:可以从以下几方面入手:

①检查示波器是否很好的接地或采用隔离变压器隔离;

②附近是否有较强50Hz信号感应;

③在较强干扰环境下,应注意并口的驱动能力及工作频率与测试操作选择是否合适。若只看到50Hz干扰正

弦波,且波形较规则,则应考虑并口可能未工作;

④检查一下探头尖是否损坏了;

⑤建议把用不着的外设都拨掉,也有可能从显示器上来的;

⑥如果示波器用了很久,就要考虑底线是否正常,就是那个小夹子。把探头取下,用万用表量一量。

42.要解决抗电源干扰问题,想测量总电源的干扰信号串入到弱信号放大器电源的情形。结果,即使示波器探头和地连在一起,都有干扰信号,不管测哪里都一样。干扰信号是音频。这是为什么?

答:要注意的问题有:

①示波器的接地问题,示波器的机壳和探头的参考地线都是连接地线的,因此良好的接地是测量干扰的首要条件;

②示波器参考地线引入的干扰问题,由于普通探头通常都有一段接地线,会与待测点构成一个类似环形天线的干扰路径,引入比较大的干扰,因此要尽量减少这一干扰,可以采用的方法是将探头帽拿掉,不使用探头上引出的地线,而直接使用探头尖端和探头内的地点接触待测点进行测量;

③使用差分测量的方法,消除共模噪声。泰克提供一系列的差分探头,比如专门针对小信号的ADA400A可以测量到几百微伏,用于高速信号测量的P7350提供高达5GHz的带宽;

④在泰克的很多示波器里提供高分辨率采集(Hi-Res)的信号捕获模式,可以过滤信号上叠加的随机噪声。

43.在EMC试验中有时候会出现指示表短暂的指示消失现象,使用示波器进行检测,发现试验过程中示波器有屏幕整个晃动的现象。试验的项目是EFT(瞬变脉冲串抗扰度试验),如何解释和怎样在试验中消除这种现象?

答:EFT有时会对示波器造成干扰,造成误触发,可尝试使用示波器的高频抑制触发模式,限制示波器带宽等办法。

44.为什么示波器有时候抓不到经过放大后的电流信号?

答:如果信号的确存在,但示波器有时能抓到,有时抓不到,这可能和示波器的设置有关系。通常若您可将示波器触发模式设置成Normal ,触发条件设置成边沿触发,并将触发电平调到适当值,然后将扫描方式设置成单次方式,如果这种方式还不行,通常仪器可能出了问题。45.新型数字示波器怎样用于单片机开发呢?

答:单片机电路开发过程中,一般来讲所用的元件和芯片本身都没有问题,有问题的往往是他们之间相互通信和预想的不同,单片机中,常见的总线是SPI,I2C,USB,LIN,CAN, 54621A和54621D示波器本身支持串行信号的触发功能,可直接调试串行总线上的通信情况,另外,若您使用DSP结合MCU开发电路板,可能牵涉到软硬件联调,这时您可以用54621D的数字逻辑通道连接到控制线或数据、地址线上,借以判断在特定的操作条件或子程序运行下,电路是否能正常工作。而且其每通道2M点的存储深度非常有助于分析问题的原因,观察长时间的串行信号,观察握手时序等。而且其放大功能,可将信号放大数万倍以观察细节。

54621A的价格应在US$2500左右,54621D的价格应该在低于US$4000。您可以访问https://www.sodocs.net/doc/a916520497.html,/find/mso

https://www.sodocs.net/doc/a916520497.html,/find/test 下载相关的许多应用文章。

46.新型数字示波器54621A和54621D在检测时是否对(Inter-IC)总线的不同信号和不同速率有影响呢?

答:I2C Bus信号一般工作速率不超过400Kbit/s,最近也出现了几Mbit/s的芯片,54621A和54621D在设置触发条件时,无需顾及不同速率的影响,但对其它总线,如CAN总线,您先要在示波器上设置CAN总线当前的实际工作速率以便示波器能正确解协议,并正确触发。

47.除示波器54621A和54621D外,还有什么其他仪器可以检测和分析Inter-IC总线信号?

答:想对Inter-IC总线信号进行进一步的分析,如协议级的分析,可使用安捷伦的逻辑分析仪,但相对来说,价格比54621A/D要高。

48.数字示波器的各种触发的应用,比如说边沿触发,毛刺触发和脉宽触发等,它们各自适合测试那种信号?

答:①edge trigger ,边沿触发,可设触发电平,上升沿或下降沿。边沿触发也称为基本触发。

②advanced trigger,即高级触发,里面含概各种不同的触发功能,可以根据被测信号的特征,设置相应的触发条件,定位感兴趣的波形。

高级触发是电路调试的关键。在电路调试过程中,如果事先不了解被测信号可能的问题,可以先使用泰克数字荧光示波器,利用400,000/秒波形捕获速度,迅速发现电路中的各种问题,再配合不同的高级触发功能来进行故障的细节定位,这样可以缩短您的调试周期。49.关于毛刺测量,以前请教过相关的技术人员,得到的答复是,示波器所能捕捉的最小毛刺就是示波器的采样速率。是否所有的示波器都遵循这一规律?此时示波器的前置滤波器不会对它有影响吗?

答:不能断言所有的示波器都是这样。比如,有些示波器达到1GS/s,带宽只有60MHz,显然,1ns的毛刺不可能捕捉到。其实捕捉毛刺的能力除了带宽,采样率,还取决于波形捕获率,即每秒能够捕捉的波形数量,详情请参见泰克关于DPO的应用文章。

50.在使用示波器时如何消除毛刺?

答:如果毛刺是信号本身固有的,而且想用边沿触发同步该信号(如正弦信号),可以用高频抑制触发方式,通常可同步该信号。如果信号本身有毛刺,但想让示波器虑除该毛刺,不显示毛刺,通常很难做到。

可以试着使用限制带宽的方法,但不小心可能也会把信号本身虑掉一部分信息。若使用逻辑分析仪器,一般来说,使用状态采集的方法,有些在定时方式下采集到的毛刺,就看不到了。

51.在实际工作中,当碰到突发的毛刺信号,如何捕捉和测试?

答:比如我们在进行时钟测试时,经常会碰到偶发毛刺信号,该信号将会对我们的电路产生误动作,因此捕获该信号成为测试的关键,由于事先我们无法判断该毛刺为正还是为负,因此我们须先利用TDS5000示波器的数字荧光功能即快速波形捕获模式结合无限余辉查看毛刺特征,然后利用示波器的高级触发功能——脉宽触发依照信号特征,如:小于正常时钟脉冲宽度触发。

52.毛刺/脉宽触发的应用场合有哪些?

答:毛刺/脉宽触发一般有两种典型应用场合,一是同步电路行为,如利用它来同步串行信号,或对于干扰非常严重的应用,无法用边沿触发正确同步信号,脉宽触发就是一个选择;另一是用来发现信号中的异常现象,如因干扰或竞争引起的窄毛刺,由于该异常是偶发显现,必须用毛刺触发来捕获(另一种方法是峰值检测方式,但峰值检测的方法有可能受其最大采样率的限制,同时,一般是能看,不能测)。若被测对象的脉冲宽度是50ns,而且该信号没有任何问题,也就是说,没有因干扰,竞争等问题引起的信号畸变或更窄的,用边沿触发就可同步该信号,无需使用毛刺触发。有不少用户将脉宽触发设置为10ns ~ 30ns,幸运的是,5462x和546?x是业界难得的能完成该操作的仪器。若想验证该10MHz方波中有无异常脉冲,包括比50ns窄很多的脉冲,就会用到脉宽或毛刺触发, 也就有可能会用到5ns 的设置。

53.安捷伦的数字示波器有没有DPO功能?

答:DPO是一个专用名词,只有一个示波器公司使用该名词,安捷伦对应的功能叫MegaVision,和DPO相同之处是:①可以直接信号中的异常现象。②波形捕获率远高于普通数字存储示波器。不同之处:①发现异常信号后,MegaVision可对该异常直接放大并观察信号细节。②MegaVision示波器的实时采样率突破1.25GSa/s极限,可达2GSa/s(如546?xA/D示波器)甚至更高。③MegaVision示波器是为需要深存储的应用场合优化的,当示波器存储深度>10K,甚至100K, 2M时,其波形刷新率是业界及其领先的。

54.如果依据信号上升时间确定了带宽后,按照该带宽确定采样率的原则仅仅是为了实现无采样混叠误差吗?

答:确定带宽后再确定采样率,业界的一些公式,的确确定采样率的原则是为了实现无采样混叠误差,但它是泛泛的评估说法,具体还要看您被测对象的特征,因为最高的指标往往是在特定条件下给出的,未必满足您的测试应用。

55.示波器如何显示两个采样点之间的波形?

答:示波器的显示方式有多种:点显示、正弦内插显示、直线连接显示;示波器的缺省显示方式通常为矢量连接显示方式,有的示波器仅支持直线连接方式;无论是直线连接还是正弦内插,在两个实际采样点之间提供的信息都不是实际采集的,由于直线连接方式可能会导致显示出现突变,如在一正弦波的波峰采集一个点,两边的波谷各采集一点,会显示出三角波,而用正弦内插显示出来仍是正弦波,所以,有些应用文章中的说法是:采用直线连接,对采样率的要求更高,如10倍的关系(以真实再现波形);采用正弦内插,对采样率要求稍低以下,也有文章说,2.5倍就可以,工程上一般说4倍以上,也有5倍,6倍的说法。

56.PCB板上的高速信号特征:156.25MHZ差分时钟信号,Rise/Fall Time(20%~80%)<100ps,jitter

tolerance(p-p<30ps,RMS<2ps),skew(+ vs.-)<20ps,请问需要多高带宽的示波器才能精确测量?测量误差可达多少?

答:对于156.25MHz 差分时钟信号,Rise/Fall Time(20%~80%)<100ps ,若您想精确测试该上升时间,如3%的测试精度,0.4/100ps *1.4 = 5.6GHz 带宽示波器及其探头系统,若10%精度可接受,0.4/100ps*1.2 = 4.8GHz 带宽示波器及其探头系统。注意若您使用差分探头,您要确保,从被测点算起,整个示波器的带宽是5.6GHz, 幸运的是目前安捷伦推出了7GHz带宽的差分探头。同时,54855A本身的上升时间指标实测是65ps , 说明书上给出72ps的指标。jitter tolerance(p-p<30ps,RMS<2ps) , 要精确测量抖动指标,要求示波器本身的抖动指标要更高,54855A本身的触发抖动指标是1ps RMS ,比业界同类产品好7倍,另一相关指标是Delta Time meas. Accuracy (peak) 是± [ (7.0 ps) + (1 x ppm * |reading|) ],好过同类产品2倍以上,这和它真正使用20GSa/s的A/D有关,它消除了使用多个(10GSa/s A/D 或5GSa/s A/D) 拼凑成一个20GSa/s所带来的误差。

57.在选择示波器时,一般考虑的多的是带宽。那么,在什么情况下要考虑采样速率?

答:取决于被测对象,在带宽满足的前提下,希望最小采样间隔(采样率的倒数)能够捕捉到您需要的信号细节。业界有些关于采样速率经验公式,但基本上都是针对示波器带宽得出的,实际应用中,最好不用示波器测相同频率的信号。若您在选型,对正弦波,选择示波器带宽是被测正弦信号频率的3倍,以上,采样率是带宽的4到5倍,实际上是信号的12到15倍,若是其它波形,要保证采样率足以捕获信号细节。若您正在使用示波器,可透过以下方法验证采样率是否够用将波形停下来,放大波形,若发现波形有变化(如某些幅值),采样率就不够,否则无碍。也可用点显示来分析,采样率是否够用。

58.100MHz的模拟示波器可以较清楚看到寄生波形,而100MHz的数字示波器却看不到(仅能看到波形加粗)?

答:此现象和示波器显示有关,模拟示波器上看到的迹线一般较细,它通过垂直偏转器直接将电压打到屏幕上,而且扫描速率和波形刷新率都很快。数字示波器是通过A/D将波形电压量化,存到内存中,处理之后再显示,数字示波器屏幕的显示分辨率是有限的,通常为6?0点或1000点,若您将示波器的存储深度(记录长度)设置成10K或2M, 这意味着,要让内存中10K或2M点的信息量通过6?0个点或1000个点来反映,无论算法有多好,都会带来一定的显示误差,波形加粗的程度和存储深度是相关的,这些问题是数字示波器特有的问题,另外数字示波器缺省显示方式为矢量显示方式,即会在两个采样点之间以线性算法,或正弦内插算法插入一些点,模拟示波器没有这些问题。您可试着将示波器记录长度改为500点,并将矢量显示改为点显示,观察数字示波器每次采样实际得到的数据,调整时基,可以清楚得看到这些点,即使使用矢量显示,线会变细些。仅从仪器角度出发,另外测量小信号,使用1:1得探头得结果,可能会比10:1探头更好些。另外,模拟示波器没有采样率得概念,只有扫描速率概念,使用数字示波器,采样率很多时候需考虑。

59.模拟和数字示波器在观察波形的细部时,那个更有优势(例如:在过零点和峰值时,观察1%以下的寄生波形)?

答:观察1%以下的寄生波形,无论是模拟示波器还是数字示波器,观察其精度都不是很好,模拟示波器的垂直精度未必比数字示波器更高,如某500MHz带宽的模拟示波器垂直精度是+/-3%, 并不比数字示波器(通常为1~2%精度)更具优势,而且对细节,数字示波器的自动测量功能比模拟示波器的人工测量更精确。

60.数字示波器一般提供在线显示均方根值,它的精度一般是多少?

答:示波器的幅值测量精度,很多人用A/D位数来衡量,实际上,随着您所用的示波器带宽,实际的采样率设置等,会有变化,若带宽不够,本身带来的幅值测量误差就很大,若带宽够了,采样设置很高,实际的幅值测量精度就不如采样率低的时候的精度(您有时可参考示波器的用户手册,它可能会给出不同采样率下,示波器的A/D实际有效位数);总的来讲,示波器测量幅值,包括均方根值的精度往往不如万用表,同样,测量频率,它不如频率计数器。

61.如何捕捉并重现稍纵即失的瞬时信号?

答:将示波器设置成单次采集方式(触发模式设置成Normal ,触发条件设置成边沿触发,并将触发电平调到适当值,然后将扫描方式设置成单次方式),如果使用的是安捷伦5462xA/D,546?xA/D,5483xB/D,5485xA,这些仪器都支持MegaZoom功能,就是说,可在观察信号全局的同时,对局部细节进行放大观察,或者通过移动屏幕的方式,或者通过双时基显示功能来完成。注意示波器的存储深度将决定所能采集信号的时间,和能用到的最大采样速率。

62.安捷伦的哪种示波器能够测试频率为500M的载波信号?

答:如果仅测载波信号本身,通常载波信号为正弦波,推荐使用1.5GHz示波器(安捷伦54845B),使用BNC电缆连接被测对象,可得到~94.6%的上升时间测量精度。若必须使用探头,推荐使用1157A 有源探头(2.5GHz带宽)。如果使用500MHz带宽的示波器,即使使用BNC电缆,最好情况下得到的幅度测量误差是29.3%,上升时间测量精度是58.6%。

63.示波器标称为60MHZ,是否可以理解为它最大可以测到60MHZ?

答:60MHz带宽示波器,并不意味着可以很好地测量60MHz的信号,根据示波器带宽的定义,如果输入峰峰值为1V的60MHz的正弦波到60MHz带宽的示波器上,从示波器上将看到0.707V的信号(30%幅值测量误差)。

6?.用标称为60MHZ的示波器测4.1943MHZ的方波时测不到,为什么?

答:如果要测试的是方波,选择示波器的参考标准是信号的上升时间,若示波器带宽=0.35/信号上升时间* 3,则上升时间测量误差为5.4%左右。

示波器的探头带宽也很重要,如果使用的示波器探头包括其前端附件构成的系统带宽很低,将会使示波器带宽大大下降。如若您使用20MHz带宽的探头,则能实现的最大带宽是20MHz。如果在探头前端使用连接导线,会进一步降低探头性能(但对~4MHz方波,不应有太大影响,因为速度不是很快) 。

另外,查看一下示波器使用手册,有的厂家新推出的示波器,在1:1设置下,其实际带宽将锐减到<=6MHz,对于~4MHz的方波,其三次谐波是12MHz,其五次谐波是20MHz,若带宽降到6MHz,对信号幅值衰减很大,即使能看到信号,也绝对不是方波,而是幅值被衰减了的正弦波。当然,测不出信号的原因可能有多种,如探头接触不好,但该现象很容易被排除。建议可以用BNC电缆连接一函数发生器,检验该示波器本身有没有问题,探头有没有问题,如有问题,可和厂家直接联系。

65.怎样测量时钟的稳定度?

答:假设使用的是5483xB/D、548xxA 、5484xB或5485xA ,可以用其标准配置的直方图方式测量,其时钟边沿或幅值的抖动情况,具体可参见安捷伦的应用文章:“Jitter Analysis Techniques Using an Agilent Infiniium Oscilloscope”(P/N:5988-6109EN),可测量其最坏情况下的抖动情况。对于5485xA,若您希望更加强大的抖动分析功能,其配有专门的抖动分析软件,提供功能十分强大的抖动分析,具体可参见5485x示波器的Datasheet,更详细的信息,可致电安捷伦。

66.使用安捷伦示波器精确测量PLL中周期抖动有什么方法和技巧?

答:如果用的是5483xB/D、548xxA 、5484xB和5485xA , 可以用其标准配置的直方图方式测量,其时钟边沿或幅值的抖动情况,具体可参见安捷伦的应用文章“Jitter Analysis Techniques Using an Agilent Infiniium Oscilloscope”(P/N:5988-6109EN),可测量其最坏情况下的抖动情况。对于5485xA,如果希望更加强大的抖动分析功能,其配有专门的抖动分析软件,提供功能十分强大的抖动分析,具体可参见https://www.sodocs.net/doc/a916520497.html,/find/test 5485x示波器的Datasheet,更详细的信息,可致电安捷伦。提醒在使用示波器时,要注意其本身的抖动相关指标是否满足测试需求,如示波器本身的触发抖动指标等,同时要注意使用不同的探头和探头连接附件时,若不能保证示波器的系统带宽,测量结果会不准确。

67.如何使用安捷伦示波器测量PLL的Settle time?

答:可使用安捷伦548xx系列示波器+USB-GPIB 82357A 适配器+软件选件来完成。也可使用安捷伦的较低价位的调制域分析仪来完成。

68.设计一个PLL,,如何测量PFD(频率鉴相器)的死区?

答:可以将示波器的一个通道连接到参考信号,另一通道连到反馈信号,设置示波器的触发条件为建立保持时间触发,这时,在调整示波器建立保持时间设置的同时,调整参考信号,直到失锁,这时的建立保持时间设置就对应您的PFD死区。理论上,认为失锁会在两个时刻发生,一是在初始工作时间,两个信号相差(频差)超过PLL的捕捉带宽;另一始在跟踪过程种,反馈信号变化过大,使两个信号相差超过PLL的跟踪带宽会失锁。安捷伦所有548xx 系列示波器都可完成该测量(在带宽满足的前提下)。

69.使用安捷伦设备如何测试光信号?

答:安捷伦有全套测试方案测量光信号,从光源、光谱仪、光万用表、光示波器、光波长计等,如果想用实时示波器测量光信号,可使用光电转换器结合示波器完成测量。

70.如何使用示波器测量电源纹波?

答:可以先用示波器将波形整个波形捕获,然后将关心的纹波部分放大来观察和测量(自动测量或光标测量),同时还利用示波器的FFT 功能从频域分析。

通常若不太清楚被测对象细节(幅值,频率等)的情况下,可使用”AutoScale”按钮,观察到信号的大概,再调整水平控制旋钮和垂直控制旋钮,以得到最佳的显示(如,幅值尽量满屏显示),再用Zoom功能将波形作满平放大显示,测电源纹波时,可将纹波部分用Zoom功能放大来分析;另外,可能会考虑从频域角度分析电源,观察其谐波和杂波情况,为此,可让示波器显示尽量多个周期信号,将示波器的存储深度仅可能用到最大,采样率设置成适当的数值,以保证波形不失真,这样得到的频率分辨率为采样率除以当前存储深度设置,观察各次谐波及其与基波的幅度差。另外,若使用MatLab软件,可利用MatLab软件的强大功能对捕获的信号数据进行更加深入的分析。546xx、548xx都标准配置有和计算机相连的软件,直接将数据取到计算机中,以进一步分析,当然,也可将Matlab软件直接装到548xx 中。

若已经知道电路的参数,可直接调整示波器设置,让其工作在合适的采样率和垂直刻度下。

71.开关电源输出电压的纹波是一个重要的指标,如何正确使用示波器来测量这个指标?

答:纹波的定义是附着于直流电平之上的包含周期性与随机性成分的杂波信号,英文称为PARD (Periodic And Random Deviation)。它的定义是杂波的峰峰值。测量纹波要注意的事项:示波器探头地线会带来很大纹波,应该拔掉地线直接使用探头内地线进行测量。当然,最好的测量方法是使用50欧姆终端电阻,用BNC电缆直接联结到示波器,这里应该注意该50欧姆电阻要考虑功耗,可能要大功率电阻。相关的标准要求,比如是否要分出周期性工频纹波和开关纹波,高频噪声等。再比如,测量频率是否要限制在20MHz以下。72.测纹波时有很大一部分是50赫兹的周期性尖脉冲,负载电流越大,脉冲幅度越大,有哪些具体的解决办法?

答:在泰克功率测量系统中,当进行纹波测量时,我们可以选择工频纹波测试或开关纹波测试,这样就可自动滤掉不相关频率的纹波,比如:选择测试200KHz的纹波,那么示波器将会自动对其他频率成分进行滤波。

73.测量纹波时怎样去除在纹波上的噪声,比如工频噪声?

答:纹波上的噪声可通过TDS5000示波器在捕获模式中的高分辩率捕获模式就可以去除这些随机的噪声。纹波分两种一种是工频的,100HZ,一种是开关纹波。TEK推出的TDSPWR2就能把这两种纹波分离后分别测量得出结果。

74.精确测试开关电源的纹波与噪音时,是否要在专门的实验室里才可以?

答:当然如果有专门的实验室进行纹波测量是最理想的。在不具备这个条件的时候应当注意的问题有:

①示波器应该有良好的接地;

②如果测量标准有带宽限制的要求,应该打开TDS430A中的20MHz带宽限制;

③使用示波器的交流耦合;

④使用BNC电缆,并用TDS430A的50欧姆输入阻抗档进行测量(这时可能需要50欧姆的大功率负载,BNC适配器或者制作测试夹具)为提高测量精度,不应该使用示波器的探头,示波器探头的地线会引入比较大的噪声。

75.如何使用示波器测量一些低纹波电源的输出纹波值?比如测量1.8V的输出纹波,一般都标称输出纹波小于20mV,如何用示波器来验证?而普通示波器即使直接探头接探头地夹的噪声就有二三十毫伏了。

答:这个的问题很有代表性。要用到高共模抑制比的电压差分探头,它能工作在高噪声环境中。

76.怎样用数字示波器查看和读出所显示的波形的周期?

答:所有的数字示波器都支持波形周期测量,从提高测试精度的角度出发,如果使用的是5462x/546?x (546?5除外),可在其测量参数中选择Counter,其内嵌硬件频率计数器会被启动进行精确的频率测量(5 digit),若使用的是其他型号示波器,尽量让示波器屏幕显示一个周期的信号,幅值尽量满刻度,这时测量精度一般较好,可以用示波器的自动测量功能,也可用光标手动测量。

77.在开发当中碰到一个问题,在样板机上加改功能,检测样板的声频,数据输出,触发信号等等,检测的结果跟设计的结果差不多一样,为什么样板声音清晰,显示准确,而成品的声音有时候是可以接受,但是有时候不行?

答:实际被测对象的声音有时可以接受,有时不行,但示波器上的波形显示看不出什么问题,或示波器显示数据和被测对象上的数据相差很远。往往是示波器和您的被测对象没有同步造成的。可尝试下面的方法:声音信号通常为低速信号,可让示波器工作在滚动方式下,观察信号出现问题时,手动停止波形采集,并进行分析。

在时域中观察声音信号往往不太全面,安捷伦的动态信号分析仪在很多时候是更好的选择,但若没有该仪器,可结合示波器的FFT功能从频域观察。

尝试用示波器的触发功能,若手边有混合信号示波器(54xxxD),可结合其逻辑通道定义触发条件(如类似逻辑分析仪的状态触发,顺序触发)。

78.如何tds3012示波器进行时钟抖动测试?

答:在泰克的开放平台示波器中(比如TDS7000,TDS5000)有专门的抖动测量软件,可以进行全面的抖动测量(比如Rj,Dj等)。在TDS3012中只能通过无限余辉对信号进行比较长时间的累计测量。另外,一般频率比较高的时钟才需要测量抖动。一般示波器测量信号的原则是:示波器的带宽应该是信号最高频率的5倍,如果上升时间比较快的方波可能需要示波器带宽是信号频率的10倍甚至更高。所以建议采用更高带宽,开发平台的示波器。

79.在AC/DC开关电源中如何用示波器进行功率因数测量?

答:其实使用示波器测量功率因数就是测量电压与电流之间的相位差即cosφ,同时泰克TDS5000功率测试系统也自动对PFC的相关参数进行测量(如:THD,True Power,Apparent Power,Power Factor等)。

80.用泰克示波器的FFT功能可以看到开关电源的辐射的频率及幅度,但是这里面的幅度的值与认证中心的值的概念是一样吗?假如不是,怎样转换?而且,假如在看波形时选不同的V/DIV,在FFT状态下有不同的幅度,是否正常?---我用的型号是TDS1012。

答:使用示波器的FFT功能测得的幅值只能作为定性的分析,而不能作为定量的分析,因此只具备参考价值,如果希望对频谱幅度进行分析可选择Blackman-Harris窗口,这样效果会好一些;当转换V/div时一定会对FFT的幅值产生影响,因为这是受到示波器本身的ADC 的分辨率限制,所以为了提高测量精度,一般会选择将波形尽可能占满整个屏幕(但决不能超出屏幕),也就是选择较小的V/div档位。81.选择什么型号的示波器可有效提高设计效率?

答:示波器发展到现阶段,已把数据分析提高到重要的位置。使用示波已不仅仅是在调试中观察波形,更重要的是能很好的在设计中分析计算器件参数,帮助大家优化设计方案。选择什么样的示波器最适合要结合您所要观察分析的信号决定。

82.如何用示波器测试视频参数(包括视频输出电平、水平清晰度、亮度幅频响应、色度幅频响应、亮度信噪比、色度信噪比、亮度非线形失真等等视频参数)?

答:泰克TDS3000B系列示波器加上TDS3VID或TDS3SDI以及TDS5000系列示波器均提供强大的视频测量功能,甚至包括模拟HDTV 功能,以及内置矢量示波器能力,帮助你去分析各种视频参数。

83.在高频端,如何判断示波器探头本身的阻抗对信号的影响?

答:示波器的探头都有特定的指标,可以参照探头的等效阻抗-频率图确定探头在频率点的等效阻抗。关于探头,泰克有专门的文章叫做《探头ABC》。

84.为什么用泰克示波器测试30MHz时钟的波形振铃要比安杰仑的大的多(示波器探头是250MHz的)?

答:测量状态转换时,只需采用示波器的自动触发方式,将电压和电流的波形设置为比较理想的显示方式。如果使用TDS5000,还可调节resolution旋钮将采样率调至合适档位(一般为信号频率的10倍左右)。

然后利用PWR2软件对被测数据进行自动计算。对于MOSFET我们选择Vds和Ids作为被测信号IGBT选择Vce和Ice作为被测信号。当用数字示波器测试开关电源时, 可否预先设置限制参数(如测试时间,每次采样数)如何用泰克示波器实现对开关电源状态变换的测试。连接方式(可举例),示波器按键的设置,必要的注意事项。

85.在设计软开关PWM变换器时(如PWM半桥开关变换器),怎样用示波器观察MOSFET Vt/It 轨迹?

答:首先示波器要有通道间的时延校正功能,这样进行相关数学运算时才能保证基本的准确性。使用高压差分电压探头及电流探头测量。TEK推出的功率测试方案中就可以动态的观察MOSFET的整个工作过程。

86.输出电容和输出电感的选择应该根据负载的供电需求确定,那对于L和C值都应该按照datasheet上的确定的公式套用吗?如果按照公式推算出来的值在实际应用中出现了问题,那么我们应该根据什么来更换呢?

答:不同拓朴的输出扼流圈及输出滤波电容的计算公式是不同的,应该按自己所选的电路结构选择合适的计算公式。输出电容的大小主要由输出纹波电压要抑制为几毫伏决定。这就要计算出ESR,然后可按厂家提供的DATASHEET选择。但选电容时还要考虑负载的变化、电流变化范围、输出电感感量等等,因为它们会使电容特性改变。

87.目前,HID疝气灯已经广泛用在一些高档轿车大灯上,但在HID灯安定器的高压电路设计中,发现由于高压回收速度不够快,造成有时点灯不畅。如何解决?

答:HID疝气灯一般都有一个二次击穿的过程,然后大灯趋于稳定的工作状态;首先要对二次击穿进行有效的控制方可保证其稳定工作,量测二次击穿只需使用TDS5000的长记录长度,进行单次触发捕获其波形,然后分别测量一次击穿和二次击穿的峰值电压以及其脉冲宽度,再测量两次击穿脉冲间的时间即可,根据实际状况看看以上参数是否满足设计要求。

88.如果使用探头和虚拟仪器,可以在PC机上显示出波形。同时,各种各样的计算都可以轻松实现。TEK5000系列和虚拟仪器有何本质区别?

答:DS5000虽然是一台基于Windows 2000的示波器,但实际上它是分成两个重要部分的,首先他具有一个真正意义上的示波器采集和处理的部分,这部分的数据处理是通过示波器本身的一个专业处理器进行的,而Windows2000的计算机平台只是对示波器采集下来的数据(内部通过PCI总线通讯)进行一些后台分析计算处理,这部分与示波器本身的显示并无联系。

而所谓的虚拟仪器(大多为PC插卡式的),它通过一个数据采集卡(一般速度很慢)将外界的信号采入计算机内部,通过计算机自身的CPU对数据进行处理,它是一种廉价的解决方案,它的致命弱点是没有任何溯源性(它受计算机主机的影响太大,不同主机导致的测试结果有较大的误差),我们知道测试仪器的一致性是决定测试结果成败的关键。

8?.如何减小DC-DC变压器的热损,在设计变压器时应注意那些问题?对变压器的外围电路有何要求?

答:应遵循磁通复位的原则。设计变压器无非要选择磁芯规格及尺寸、计算占空比、磁感应增量、原、副边的匝数。在实验中校对最坏情况下的磁饱和的情况。

90.在开关电源的设计中常会遇到的棘手问题是效率问题。而整机的效率很大程度上取决与开关管的损耗,在我们的电路和器件选定后,开关管的开关波形测量很重要,可以根据它的数据来判断和改善开关工作状态。那么在利用示波器进行这项测试时应该如何正确操作和注意哪些问题呢?

答:开关电源中有两大主题:提高效率和提高可靠性。效率就要测损耗,损耗主要集中在开关管和磁性元件上,为此我们应该通过示波器测量开通损耗、截止损耗、导通损耗,同样的对变压器和电感能测量其磁芯损耗和动态电感。

91.在实际工作中,需要对开关振荡信号,视频信号等进行测试和分析,该如何进行?

答:TEK的TDS5000系列示波器能很轻松的对这两类信号进行测量分析。

对于开关电源你所说的驱动信号,我们的TDSPWR2提供了四种分析:占空比趋势分析,开关频率趋势分析。

宽度及周期趋势分析:TDS5000示波器更具有丰富的视频触发,能应用多种制式,能单独对场,并行进行触发。

92.在反激式开关电源电源用一种变压器算法,总是需要再进行好多次的调整。反激式开关电源有没有一种比较通用的变压器参数计算方法?

答:变压器的设计虽然通过理论计算,但因为磁芯,绕制方法等的差异性,仍需要多次试验调整。一般是先计算原边电感,根据输出功率来选磁芯材料与骨架尺寸,然后根据手册确定一些如磁芯截面积等参数等。单端设计变压器就是要让磁芯的磁通复位。

93.使用TDS3032B和THS710示波器,怎样将一次性随机出现的信号完整地捕捉并存储下来,然后重显分析?

答:如果测的所谓随机信号为一个单次信号,那么只要设置与该信号相匹配的垂直和水平刻度,调整好触发电平,使用单次触发等待信号出现即可,然后利用SAVE/RECALL将它存入ref里即可随时调出;若是该信号为重复信号中出现的某种异常,则可先Autoset,然后将获取模式设为快速500点显示,调整余辉至无限即可。

94.开关电源在低温下启动(如:-20℃以下)有什么特殊的要求?

答:关键是器件选择的温度范围。比如电容、MOSFET、二极管等等。

95.开关电源总会有电磁辐射,同时越有可能受到其他电器设备的干扰。怎样做才能达到期即不受其他电器的干扰,又有效地方志器向外辐射呢?

答:开关电源因工作在高电压大电流的开关状态下,其引起的电磁兼容性问题是相当复杂的。从整机的电磁兼容性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合和电磁波耦合几种。电磁兼容产生的三个要素为:干扰源、传播途径及受干扰体。共阻抗耦合主要是干扰源与受干扰体在电气上存在共同阻抗,通过该阻抗使干扰信号进入受干扰对象。线间耦合主要是产生干扰电压及干扰电流的导线或PCB线,因并行布线而产生的相互耦合。电场耦合主要是由于电位差的存在,产生的感应电场对受干扰体产生的耦合。

磁场耦合主要是大电流的脉冲电源线附近产生的低频磁场对干扰对象产生的耦合。而电磁波耦合,主要是由于脉动的电压或电流产生的高频电磁波,通过空间向外辐射,对相应的受干扰体产生的耦合。实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已。从电磁兼容性的三要素讲,要解决开关电源的电磁兼容性,可从三个方面入手。

1)减小干扰源产生的干扰信号;

2)切断干扰信号的传播途径;

3)增强受干扰体的抗干扰能力。

在解决开关电源内部的电磁兼容性时,可以综合运用上述三个方法,以成本效益比及实施的难易性为前提。对开关电源产生的对外干扰,如电源线谐波电流、电源线传导干扰、电磁场辐射干扰等,只能用减小干扰源的方法来解决。

一方面,可以增强输入输出滤波电路的设计,改善有源功率因数校正(APFC)电路的性能减少开关管及整流续流二极管的电压电流变化率,采用各种软开关电路拓扑及控制方式等。

另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理。而对外部的抗干扰能力,如浪涌、雷击应优化交流输入及直流输出端口的防雷能力。通常,对1.2/50μs开路电压及8/20μs短路电流的组合雷击波形,因能量较小,可采用氧化锌压敏电阻与气体放电管等的组合方法来解决。

减小开关电源的内部干扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几个方面入手:

?注意数字电路与模拟电路PCB布线的正确区分、数字电路与模拟电路电源的正确去耦;

?注意数字电路与模拟电路单点接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻干扰、减小地环的影响;

?布线时注意相邻线间的间距及信号性质,避免产生串扰;减小地线阻抗;减小高压大电流线路特别是变压器原边与开关管、电源滤波电容电路所包围的面积;

?减小输出整流电路及续流二极管电路与直流滤波电路所包围的面积;减小变压器的漏电感、滤波电感的分布电容;采用谐振频率高的滤波电容器等。

TEK推出的功率测试方案就可以对电流谐波按EN61000-3-2标准进行预先一致性测试。

96.SOA测试是通过什么数据得到的,可以通过示波器的什么测量方法得到该数据?

答:SOA就是安全工作区域测量,它是用来判断功率器件的可靠性的,当出现短路或启动加电等时,超过安全工作区域的可能是仅有的几个周期,而且这也是不易被察觉的,但器件受到的影响不至于损坏,但对器件来说也是一种积累,器件的裕量可能不够了。

97.用示波器如何测试抖动分量?

答:确定性抖动可以用示波器测量出来,在示波器上可以读出上升/下降沿的时间宽度,根据信号周期可以换算成UIp-p即是抖动的峰值幅度,如下图。更详细的内容可以参考示波器厂家如泰克的相关资料。

98.如何区分模拟带宽和数字实时带宽?

答:带宽是示波器最重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子K相关(数字实时带宽=最高数字化速率/K),一般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK公司的TES520B的带宽为500MHz,实际上是指其模拟带宽为500MHz,而最高数字实时带宽只能达到400MHz远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会给测量带来意想不到的误差。

99.示波器是否可作为数字化仪使用?

答:最快的示波器和数字化仪通常都采用并行的闪速转换器和8位的分辨率。8位或256级数字化足够表达一个比较平滑和容易了解的波形显示。因此,为何不用数字存储示波器(DSO)作为数字化仪,特别对于高速信号,两种仪器都难以获得8位以上的分辨率。事实上,这样做的结果是满意的,但是也有例外。示波器是非连续采集仪器而数字化仪可以不是那样。示波器捕获信号后再捕获更多信号之前要有地方放置数据,除非采用类似电视帧速率的连续波形采集把数据存人像素映像。这样的采集和等效显示率很高,但数据格式使进一步的外部分析数据量非常巨大。除上述特殊处理外,示波器只能以很低速度连续采集和显示信号。

数字化仪可获得连续的100MS/s或更高的吞吐率,只受存储器总线速度的限制。例如一种PCI总线的数字化插卡,数据传输率达到

100MB/s,PCI总线可工作至66MS/s(132MB/s)。示波器的吞吐率受较慢、低的I/O能力的数据处理速度的限制。速度较慢的数字化仪和数据记录器可将数据直接写人硬盘,存档几GB的数据,而示波器一般最高只有16MB。如果从另一方面看数据传输率,许多应用只

需要捕捉偶发性数据,但这些突发信号可能很接近。这时快速地传输数据记录就十分重要,这类信号有高重复脉冲频率(PRF)的扫描雷达、时间分辨的超声声纳、飞行时间的质谱仪、以及核子计数等应用。

100.什么是组合示波器?

答:组合示波器是一种把模拟示波器和数字存储示波器(DSO)两者的能力和优点结合在一起的示波器。当组合示波器被设置成DSO时,用户可以用它来进行自动参数,测量,存贮采集的波形进而制作硬考贝;同时,在需要的时候还能具有模拟示波器的无限分辨率以及熟悉而可信的波形显示,并且使用组合示波器时,不管信号重复速率的高低,都可获得最亮的显示。

关于示波器的带宽

关于示波器的带宽 汪进进 美国力科公司深圳代表处 带宽被称为示波器的第一指标,也是示波器最值钱的指标。 示波器市场的划分常以带宽作为首要依据,工程师在选择示波器的时候,首先要确定的也是带宽。在销售过程中,关于带宽的故事也特别多。 通常谈到的带宽没有特别说明是指示波器模拟前端放大器的带宽,也就是常说的-3dB截止频率点。 此外,还有数字带宽,触发带宽的概念。 我们常说数字示波器有五大功能,即捕获(Capture),观察(View),测量(Measurement),分析(Analyse)和归档(Document)。 这五大功能组成的原理框图如图1所示。 图1,数字示波器的原理框图 捕获部分主要是由三颗芯片和一个电路组成,即放大器芯片,A/D芯片,存储器芯片和触发器电路,原理框图如下图2所示。被测信号首先经过探头和放大器及归一化后转换成ADC可以接收的电压范围,采样和保持电路按固定采样率将信号分割成一个个独立的采样电平,ADC将这些电平转化成数字的采样点,这些数字采样点保存在采集存储器里送显示和测量分析处理。 图2,示波器捕获电路原理框图

示波器放大器的典型电路如图3所示。这个电路在模拟电路教科书中处处可见。这种放大器可以等效为RC低通滤波器如图4所示。 由此等效电路推导出输出电压和输入电压的关系,得出理想的幅频特性的波特图如图5所示。 图3,放大器的典型电路 图4,放大器的等效电路模型 图5,放大器的理想波特图

至此,我们知道带宽f2即输出电压降低到输入电压70.7%时的频率点。 根据放大器的等效模型,我们可进一步推导示波器的上升时间和带宽的关系式,即我们常提到的0.35的关系:上升时间=0.35/带宽,推导过程如下图6所示。 需要说明的是,0.35是基于高斯响应的理论值,实际测量系统中这个数值往往介于0.35-0.45之间。在示波器的datasheet上都会标明“上升时间”指标。 示波器测量出来的上升时间与真实的上升时间之间存在下面的关系式。 在对快沿信号测试中,需要通过该关系式来修正实际被测信号的上升时间。 Measured risetime(tr)2 = (tr signal)2+(tr scope)2+(tr probe)2 图6,示波器上升时间和带宽的关系 示波器前端放大器幅频特性的波特图是新示波器发布的“出生证”。 示波器每年需要进行校准,波特图是第一需要校准的数据。示波器波特图的测量方法如图7所示。 信号源从10MHz频率开始逐渐递增发送一定幅值的正弦波送到功分器,功分器将输入的信号能量等分为二后通过等长的线缆分别送到示波器和功率计。 功分器和线缆是无源器件,可以严格定标,信号源本身的幅频特性不可以作为定标仪器,需要通过功率计实测的能量来作为示波器的输入幅值的定标值。 有时候客户会对示波器的波特图很感兴趣,直接用信号源连接到示波器来评估示波器的波特图,在带宽超过1GHz时这种方法是很不严谨的。需要用功率计来作为定标工具! 2006年二月份的EDN杂志中有文章介绍。 https://www.sodocs.net/doc/a916520497.html,/article/CA6305348.html#Calibrating 此外,在计量波特图时需要对示波器每个档位都进行计量,最终产生的波特图是所有档位的结果叠加在一起的。波特图的计量是需要半天时间完成的,并不是想象中那么轻松的工作。如图8所示是力科SDA9000的波特图,我特地将Excel中大量数据显示给大家以使大家对校准的严谨性有深刻认识。 其垂直轴是

通信常识:波特率、数据传输速率与带宽的相互关系

通信常识:波特率、数据传输速率与带宽的 相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间内能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率范围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T 为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间内载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为: Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】 香农定理是在研究信号经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,它描述有限带宽、有随机热噪声信道的最

示波器主要技术指标及选择资料

精品文档 一、数字示波器的主要性能指标在选择数字示波器时,我们主要考虑其是否能够真实地显示被测信号,即显示信号与被测信号的一致性。数字示波器的性能很大程度上影响到其实现信号完整性的能力,下面根据其主要性能指标进行详细分析。示波器最主要的技术指标是带宽、采样率和存储深度 1、带宽如图1所示,数字示波器带宽指输入不同频率的等幅正弦波信号,当输出波形的幅度随频率变化下降到实际幅度的70.7%时的频率值(即f-3dB)。带宽决定了数字示波器对信号的基本测量能力。随着信号频率的增加,数字示波器对信号的准确显示能力下降。实际测试中我们会发现,当被测信号的频率与数字示波器带宽相近时,数字示波器将无法分辨信号的高频变化,显示信号出现失真。例如:频率为100MHz、电压幅度为1V的信号用带宽为100MHz的数字示波器测试,其显示的电压只有0.7V左右。图2为同一阶跃信号用带宽分别为4GHz、1.5GHz和300MHz 的数字示波器测量所得的结果。从图中可以看出,数字示波器的带宽越高,信号的上升沿越陡,显示的高频分量成分越多,再现的信号越准确。实际应用中考虑到价

(数字示波格因素器带宽越高价格经过实践越贵),我们经验的积累,发现只要数字示波器带宽为被测信号最高频率的倍,即可获得3-5的精2%3%到±±满足一般的测度,示波器所试需求。能准确测量的频大家都遵率范围,循测量的五倍法示波器所需带则:被测信号的最宽=使,高信号频率*5用五倍准则选定的示波器的测量误差将不会超过,对大多-2%+/的操作来说已经足够。 、采样率,2指数字示波器对信号采样的频率,精品文档. 精品文档 表示为样点数每秒(S/s)。示波器的采样速率越快,所显示的波形的分辨率和清晰度就越高,重

MHz与Mbps之间的关系

MHz与Mbps之间的关系 概念分析 随着网络的普及、综合布线的应用日趋广泛,传输等级也愈来愈高,从3类到4类再到5类,到目前已有6类布线产品投放市场。描述语定义这些等级的主要参数就是传输带宽(MHZ)。 与此同时,网络应用也层出不穷。传输介质从10Base5(粗缆)、10Base2(细缆)、 10BaseT(双绞线)、10BaseFL(光纤) 到100BaseTX(STP/UTP)、100BaseT4(4/5类UTP)、100BaseFX(光纤),到目前千兆快速网业已出现。用来描述这些应用得主要参数则是速率(Mbps)。 事实上,申农公式早已概括出带宽B和速率C 之间的关系: C=B*Log(1+SNR) 式中B为信道带宽,所谓带宽是指能够以适当保真度传输信号的频率范围,其单位似Hz,它是信道本身国有的,与所载信号无关。SNR为信噪比,它由系统的发收设备以及传输系统所处的电磁环境共同决定。而速率C是一个计算结果,它由B和SNR共同决定,其单位为bps,在概念上表征为每秒传输的二进制位数。 可见,给定信道,则带宽B也随之给定,改变信噪比SNR可得到不同的传输速率C 。MHz与Mbps有着一对多的关系,即同样带宽可以传输不同的位流速率。同时,Mbps是依赖于应用的;而MHz则与应用无关。 技术探讨 如果要给与打一个形象的比喻,那么汽车时速与引擎转速恰到好处。当给定旋转速度,在齿轮已知的情况下可以计算出汽车的速度。在这个类比当中,齿轮起了一个桥梁的作用。事实上,齿轮之于汽车和引擎就如编码系统之于速率和带宽。 编码是为计算机进行信息传输而被采用的。通过对信息进行编码,许多技术上的问题,比如同步、带宽受限等都可以得到解决。编码对于信息的可靠传输是至关重要的。 目前有两种基本的编码系列。第一种是每N位添加一个同步位,以使同步成为可能(如当N=1时,为Manchester编码;当N=4时,为4B5B编码),但这需要一个比原来更大的带宽。而且同步位越多,带宽需要越大。为了减小带宽,采用每7位添加一个同步位(即 7B8B 编码)的编码系统是可能的,但随之而来的是,当传输较长一串相同类型的位流时,同步就变得非常困难了。

WCDMA中3.84M码片速率的由来

wcdma 频率规划根据工信部规定,中国联通可用的频段是 1940MHz-1955MHz(上行) 2130MHz -2145MHz(下行) 上下行各15MHz。 WCDMA的频点称为UARFCN(UTRA Absolute Radio Frequency Channel Number,UTRA绝对频点号)。 2.1GHz频段上行频点号为9612~9888,下行频点号为10562~10838, 频点号除以5 就可以得到频点中心对应的频率值(以MHz为单位)。 每个频点间隔为200kHz,与GSM系统兼容。 当然每个频点的带宽远超过200kHz,这与CDMA的频点编号方式类似。 目前联通WCDMA系统下行第一频点号为10713(中心频率2142.6MHz),第二频点号 为10688,第三频点号为10663。 上行频点号分别为9763(中心频率1952.6MHz)、9738以及9713。 WCDMA 码片速率= 3.84MHz 扩频因子= 4 则符号速率= 960Kbps 码片速率 = 1秒钟传送的比特数 3.84M个 3gpp规定wcdma的UU口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个码片。因此1帧包含的比特数=2560*15=38400bit 因为1帧=10ms 所以码速率 =2560*15/10ms=2560*15/0.01s=2560*15*100=3840000=3.84*1000*1000 =3.84Mbit/S 因此 空口速率3.84Mb/S是由wcdma的帧结构所决定的。 3gpp规定wcdma的UU口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个 码片。 如此算来,2560*15/10ms即3840/ms换算成标准速率格式即3.84Mb/s。 我们知道wcdma是无线频带传输,即数字基带信号要经过调制变频到合适的频点上、在一 定的频带范围内来传输的。

网络带宽与下载速度之间的关系

网速与下载速度之间的关系 1. “位(bit)”和“字节(B)”之间的关系 位(bit):位是计算机中存储数据的最小单位,指二进制数中的一个位数,其值为“0”或“1”。 字节(byte):字节是计算机存储容量的基本单位,一个字节由8位二进制数组成。在计算机内部,一个字节可以表示一个数据,也可以表示一个英文字母,两个字节可以表示一个汉字。 1024个字节称为1K字节(1KB),1024K个字节称为1兆字节(1MB),1024M 个字节称为1吉字节(1GB)。 所以,字节和位之间的换算是8进制,即1B=8bit。 2.“网速”与“下载速度”之间的关系 网速:在计算机网络或者是网络运营商中,一般,宽带速率的单位用bps(或b/s)表示;bps表示比特每秒即表示每秒钟传输多少位信息,是bit per second的缩写。在实际所说的1M带宽的意思是1Mbps(是兆比特每秒Mbps不是兆字节每秒MBps)。 下载速度:下载速度指的是Byte/s。下载软件时常常看到诸如下载速度显示为128KBps(KB/s),103KB/s等宽带速率大小字样,这指的是(字节/秒),即Bps。 实际书写规范中B应表示Byte(字节),b应表示bit(比特),但在平时的实际生活中有的把bit和Byte都混写为b ,如把Mb/s和MB/s都混写为Mb/s,导致人们在实际计算中因单位的混淆而出错。 3. 计算光纤传输的真实速度 使用光纤连接网络具有传输速度快、衰减少等特点。以10M光纤为例计算一下它的下载速度是多少?一般情况下?“10M”指的是10240kbit/s(10.240Mb/s

即10M)。 换算成下载速度:10.240Mb/s=(10.240/8)MB/s=1.28 MB/s 在实际的情况中。理论值最高为1.28 MB/s。排除网络损耗以及线路衰减等原因因此真正的下载速度可能还不到1.28 MB/s 不过只要是1MB/s左右都算正常(实际网络损耗约为12%)。 4. 计算内网的传输速度 经常有人抱怨内网的传输的数度慢,那么真实情况下的10/100M网卡的速度应该有多快?网卡的100Mbps同样是以bit/s来定义的。 所以100Mb/S=102400Kbit/s=(102400/8)KByte/s=12800KByte/s 在理论上1秒钟可以传输12.8MB的速据考虑到干扰的因素每秒传输只要超过10MB就是正常了。现在出现了1000Mbps的网卡那么速度就是128MB/S 。 5.宽带上行与下行 上行速率:从你的电脑上传的速度,也就是别人从你的电脑进行通讯的速率。下行速率:你从网络主机下载的速度。

WCDMA考试试题复习资料

4月份WCDMA考试试题 一、填空题(30分) 1.无线环境中的衰落主要包括___阴影衰落___、___快衰落_ _、___空间衰落_ 。 阴影衰落:由障碍物阻挡造成,服从对数正态分布,慢衰落。 快衰落:移动台附近的散射体(地形,地物和移动体等)引起的多径传播信号在接收点相叠加,造成接收信号快速起伏的现象。 2. 假设机站天线的发射功率为43dBm,则对应____20_____W。公式要记住!! 3. 小区搜索分三步,第一步是利用PSCH信道的_PSC _获得时隙同步;第二步是利用SSCH 信道的_SSC _获得帧同步和主扰码组组号;第三步是利用_CPICH _信道获得该小区所使用的主扰码。 SCH:同步信道 PSCH:物理同步信道;SSCH:辅同步信道;CPICH:公共导频信道。 4. 对下行扰码而言,使用长扰码,范围从0到2^24-1,但为了加速小区搜索的过程,仅有8192 个码可以使用,分为512 个组,总共有 512 个主扰码。 手机扰码是每部手机唯一拥有的号码。 5. WCDMA系统带宽是 5MHZ ,码片速率为 3.84Mchips 。 一帧的时长为10ms,一帧有15个时隙,一个时隙有2560个码片,所以算出来是3.84Mchip/s . 6. 常见的覆盖问题有覆盖空洞、覆盖盲区、越区覆盖、导频污染、上下行不平衡等。 ★覆盖盲区:由于相邻两个基站站址相距较远(受障碍物的影响),导致其信号覆盖区不交叠,出现信号覆盖盲区。这种问题容易通过DT(路测)、CQT(呼叫质量测试)或用户投诉反映出来。 ★越区覆盖:如果基站的覆盖区域超过了规划预期的范围,就会在其他基站的覆盖区域内形成不连续的主导区域,形成越区覆盖。 ★导频污染:即在某一点存在过多的强导频却没有一个足够强的主导频的时候,即定义为导频污染。 ★上下行不平衡:指目标覆盖区域内,上下行对称业务出现下行覆盖良好而上行覆盖受限(如UE的发射功率达到最大仍不能满足上行BLER要求),或上行覆盖良好而下行覆盖受限(表现为下行专用信道码发射功率达到最大仍不能满足下行BLER要求)的情况。上下行覆盖不平衡的问题容易导致掉话。 7.多址技术有时分多址、频分多址和码分多址;双工技术有时分双工 和频分双工。 8、 WCDMA系统中,语音采用卷积编码,数据采用 Turbo 编码,信令采用的是卷积编码 9、 WCDMA容量是一个“软容量”,上行链路极限容量一般是受限于干扰,下行容量受限于功率。 10、WCDMA系统中,核心网CN与无线接入网UTRAN之间的接口定义为Iu接口。 Iu接口负责核心网(CN)和RNC(无线网络控制器)之间的信令交互。Iub是RNC和NODE-B之间的接口,

示波器测量之带宽与采样率

在具体测试过程中,示波器到底选择多少带宽比较合适呢? 首先,看下面的实例。 从上图可以看出,带宽越大,所能显示的信号频率分量越丰富,也就能更加接近真实的信号波形。 1、示波器带宽的精确计算 可按照以下步骤来完成计算: a、判断被测信号的最快上升/下降时间 b、判断最高信号频率f f=0.5/RT(10%~90%) f=0.4/RT(20%~80%) c、判断所需的测量精确度 所需精确度高斯频响最大平坦频响 20%BW=1.0*fBW=1.0*f 10%BW=1.3*fBW=1.2*f 3%BW=1.9*fBW=1.4*f d、计算所需带宽。 举例说明: 判断一个高斯响应示波器在测量被测数字信号时所需的最小带宽,其中被测信号最快上升时间为1ns(10%~90%): f=0.5/1ns=500MHz 若要求3%的测量误差:所需示波器带宽=1.9*500MHz=950MHz 若要求20%的测量误差:所需示波器带宽=1.0*500MHz=500MHz 因此,决定示波器带宽的重要因素是:被测信号的最快上升时间。 示波器的系统带宽由示波器带宽和探头带宽共同决定: a、高斯频响:具备高斯频响的示波器,按照10%到90%的标准衡量,上升时间约为0.35/fBW 系统带宽2=示波器带宽2+探头带宽2

b、最大平坦频响:系统带宽=Min{示波器带宽,探头带宽} 例如:1GHz带宽的示波器,配置1GHz带宽的无源探头,若它们的频响为高斯频响,则系统带宽为:700MHz左右。 2、影响示波器带宽的因素 通常,这些因素有:采样率、频响曲线。 a、频率曲线 频响曲线如下图所示。 带宽 被测信号的频率→ b、采样率 根据Nyquist采样定律,采样频率必须2倍于信号最高频率,即: Fs>2*fmax 才能保证信号可以被无混叠的重构出来。 (1)对于理想砖墙频响来说,采样率=示波器带宽*2,即可重构出信号。但是该情况在真实世界中是不存在的,大多数示波器的频响都是介于理想砖墙频响和高斯频响之间。 (2)对于高斯频响,采样率=示波器带宽*4,可对被测信号中的大部分频率成分进行无混叠重构。通常实际示波器的频响大多比高斯频响陡一点。 (3)对于最大平坦频响,采样率=示波器带宽*2.5,即可对被测信号中的大部分频率成分进行恢复。目前一些高端示波器都可以做到利用2.5倍带宽的采样率来完成信号重构。 是不是采样率越高量测精度越高?

码片速率 解释

.符号速率 符号速率*扩频因子=码片速率,符号速率=码片速率/扩频因子 如: WCDMA, 码片速率= 3.84 MHz ,扩频因子=4 ,则符号速率=960kbps. CDMA 1X, 码片速率=1.2288MHz,扩频因子=64,则符号速率=19.2kbps. 符号速率=(业务速率+校验码)*信道编码*打孔率 如: WCDMA ,业务速率=384kbps,信道编码=1/3Turbo码,符号速率=960kbps CDMA 1X ,业务速率=9.6kbps,信道编码=1/3卷积码,符号速率=19.2kbps 2.码片(码元),码片速率,处理增益 系统通过扩频把比特转换成码片。 一个数据信号(如逻辑1或0)通常要用多个编码信号来进行编码,那么其中的一个编码信号就称为一个码片。 如果每个数据信号用10个码片传输,则码片速率是数据速率的10倍,处理增益等于10。 码片相当于模拟调制中的载波作用,是数字信号的载体。 常用的扩普形势是用一个伪随机噪声序列(PN序列)与窄带PSK信号相乘。PN序列通常用符号C来表示,一个PN序列是一个有序的由1和0构成的二元码流,其中的1和0由于不承载信息,因此不称为bit而称为chip(码片)。 要理解“码片”一词,先需要对扩频通信有所了解,我们的信息码,每一个数字都是携带了信息的,具有一定带宽。扩频通信就是用一串有规则的比信息码流频率高很多的码流来调制信息码,也就是说原来的“1”或“0”被一串码所代替。 由于这一串码才能表示一位信息,因此不能说成bit(bit是信息基本单位),所以找了个名词叫chip,这一串码的每一位码字就是一个chip,比如cdma的码片速率就是1.2288Mchip/s。(这个解释最易懂) 码片数率是指扩频调制之后的数据数率,用cps表示(chip per-second) 数据*信道码=chip,chip是最终在空口的物理信道上发送的数据速率单位 WCDMA的码片速率是3.84Mcps, c:chip,即码元。3.84Mcps:每秒3.84M个码元 码片速率是指经过扩频之后的速率,从MAC-d传过来的有效fp bit经过channel coding,帧均衡,速率匹配,复用到CCTrCH后,分成IQ两路,分别进行扩频和加扰的操作。扩频就是将有效bit与扩频码相乘,扩频操作会增加带宽的,扩频后的速率称为码片速率。因为10ms的TTI包含15个slot,每个slot有2560个chips,一算就可得出3.84Mchipps的码片速率 3.业务速率

示波器的三大关键指标

带宽、采样率和存储深度是数字示波器的三大关键指标。相对于工程师们对示波器带宽的熟悉和重视,采样率和存储深度往往在示波器的选型、评估和测试中为大家所忽视。这篇文章的目的是通过简单介绍采样率和存储深度的相关理论结合常见的应用帮助工程师更好的理解采样率和存储深度这两个指针的重要特征及对实际测试的影响,同时有助于我们掌握选择示波器的权衡方法,树立正确的使用示波器的观念。 在开始了解采样和存储的相关概念前,我们先回顾一下数字存储示波器的工作原理。 图1 数字存储示波器的原理组成框图 输入的电压信号经耦合电路后送至前端放大器,前端放大器将信号放大,以提高示波器的灵敏度和动态范围。放大器输出的信号由取样/保持电路进行取样,并由A/D转换器数字化,经过A/D转换后,信号变成了数字形式存入内存中,微处理器对内存中的数字化信号波形进行相应的处理,并显示在显示屏上。这就是数字存储示波器的工作过程。 采样、采样速率 我们知道,计算机只能处理离散的数字信号。在模拟电压信号进入示波器后面临的首要问题就是连续信号的数字化(模/数转化)问题。一般把从连续信号到离散信号的过程叫采样(sampling)。连续信号必须经过采样和量化才能被计算机处理,因此,采样是数字示波器作波形运算和分析的基础。通过测量等时间间隔波形的电压幅值,并把该电压转化为用八位二进制代码表示的数字信息,这就是数字存储示波器的采样。采样电压之间的时间间隔越小,那么重建出来的波形就越接近原始信号。采样率(sampling rate)就是采样时间间隔。比如,如果示波器的采样率是每秒10G次(10GSa/s),则意味着每100ps进行一次采样。

带宽与信道容量与数据传输速率的关系

带宽与信道容量与数据传输速率的关系 2008-04-22 10:16:58| 分类:默认分类|举报|字号订阅 数据传输速率的定义 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为: S=1/T(bps) 其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是,那么信道的数据传输速率为1 000 000bps。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中: 1kbps=10^3 bps 1Mbps=10^6 bps 1Gbps=10^9 bps 带宽与数据传输速率 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则

与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为: Rmax=(bps) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax 与信道带宽B、信噪比S/N的关系为: Rmax=(1+S/N) 式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。

《数据通信基础》习题解析

第二周《数据通信基础》单元测验 一、选择题 1、通信链路的传信速率为4800b/s, 采用八电平传输,则其传码速率为() A.1600波特 B.600波特 C.4800波特 D.1200波特 解析: A、根据传信速率和传码速率在数值上的关系即可求出,有的同学常犯的错误是把关系弄反了,在数值上,传信速率一般是大于等于传码速率。 2、9600bit/s的线路上,进行一小时的连续传输,测试结果为有150比特的差错,问该数据通信系统的误码率是() A.8.68*10-6 B.8.68 *10-2 C. 4.34 *10-2 D.4.34*10-6 解析: D、先计算出一小时内总共传送的比特数,然后再计算出出错的150比特占整个的比例就可以了。 3、CRC循环冗余码中,若生成多项式对应的二进制序列是10011,则该生成多项式是() 解析: B 4、对于带宽为3kHz的无噪声信道,假设信道中每个码元信号的可能状态数为16,则该信道所能支持的最大数据传输率可达() A.48Kbps B.24Kbps C.12Kbps D.96Kbps 解析:B、题目中实际上要求的是无噪声情况下的信道容量,由奈氏定理可以得到该答案。 5、CDMA系统中使用的多路复用技术是() A.码分复用 B.频分复用 C.波分复用 D.时分复用 解析:A、CDMA是码分多址的英文缩写(Code Division Multiple Access),它是在数字技术的分支--扩频通信技术上发展起来的一种崭新而成熟的无线通信技术。CDMA技术的原理是基于扩频技术,即将需传送的具有一定信号带宽信息数据,用一个带宽远大于信号带宽的高速伪随机码(码片序列)进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。接收端使用完全相同的伪随机码(码片序列),与接收的带宽信号作相关处理,把宽带信号换成原来的数据。 6、波特率指的是() A.每秒传输的字节数 B.每秒钟传输信号码元的个数 C.每秒钟可能发生的信号变化的次数D每秒传输的比特 解析:B、单位是波特(Baud),在传输时通常用某种信号脉冲来表示一个0、1或几个0、1的组合。这种携带数据信息的信号脉冲称为信号码元。信号变化的次数不对,是因为连续传输多个相同的码元,信号不变。 7、下列因素中,不会影响信道数据传输速率的是() A.信噪比 B.调制速率 C.信号传播速度 D.带宽 解析:C、一方面,根据求信道容量的公式中可以判断出来;另外一方面,信号传播速度影响的是只是传播时延的大小。 8、假设一个CDMA 通信系统中,某站点被分配的码片序列为00011011,则当它发送了比特“0”的时候,实际在信道上传输的数据序列是() A. 11100100 B. 11100110 C. 11100101 D. 10000100 解析:A 因为在一个CDMA系统中,每个站点被指定一个唯一的m比特代码或码片序列(chip squence)。当发送比特1时,站点送出的是码片序列,若发送比特0时,站点送出的是该码片序列的反码。

关于示波器的采样率-汪进进

关于示波器的采样率汪进进

关于示波器的采样率 采样率(Sampling Rate),顾名思义就是“采样的速率”,就是单位时间内将模拟电平转换成离散的采样点的速率,譬如采样率为4GSa/s就表示每秒采样4G个点。Sa是Samples的缩写。有些示波器厂商写作4GS/s。当然,采用不同量纲的单位就是MSa/s、MS/s,KSa/s、KS/s,Sa/s,S/s。 1,采样过程反应了数字示波器的本质:将模拟信号离散为一个一个的采样点 数字示波器区别于模拟示波器的一个最大不同是将模拟信号进行离散化。我们常说的话是,“在数字世界里,永远只有0和1”。如何将那些各种不同形状的模拟信号转换成为0和1呢? 图1和图2表示了示波器将模拟信号离散化的过程。采样-保持电路根据采样时钟将连续的模拟信号“等时间间隔地”、“实时地”转换为离散的电平,离散的电平再经过模数转换器(ADC)转换为一系列的0和1。对于8位ADC来说,8个连续的0和1组成一个采样点,代表了一个电平值。示波器将这些离散的采样点直接显示或将点和点通过某种方式相连显示为示波器屏幕上的波形。示波器保存的离散的采样点的个数就是“存储深度(memory)”。 INPUT WA VEFORM SA MPLED WA VEFORM SA MPLING CLOCK 图1 采样-保持电路将模拟信号转换成一个一个离散的电平 汪进进 深圳市鼎阳科技有限公司

图2 ADC将模拟信号离散化为0和1组成的采样点 将图1和图2的离散化过程换个示意图来表达,如图3所示,离散的采样点之间的间隔就是采样周期,采样周期的倒数就是采样率。采样率4GSa/s就表示两个采样点之间的间隔为500ps。在“点显示”方式和“线性插值”模式下,将示波器屏幕上的波形展开,有些示波器能看出屏幕上等时间间隔的采样点,打开示波器光标可以测量出两个点之间的间隔即为采样周期。 图3 采样周期表示相邻两个采样点之间的间隔 2,最高采样率 VS当前采样率 在示波器的前面板上通常都会标识采样率,如图4所示是中国首款智能示波器SDS3000系列中的一款SDS3054,她的面板上标识了采样率为 4GS/s,该采样率就是指这台示波器可以工作到的最高采样率。

通信常识:波特率、数据传输速率与带宽的相互关系

通信常识:波特率、数据传输速率与带宽的相互关系

通信常识:波特率、数据传输速率与带宽的 相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间内能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率范围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T 为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间内载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为: Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】

WCDMA的每个信道都是5M带宽吗

WCDMA 的每个信道都是5M带宽吗 wcdma 频率规划根据工信部规定,中国联通可用的频段是1940MHz-1955MHz(上行)、2130MHz -2145MHz(下行),上下行各15MHz。 WCDMA的频点称为UARFCN(UTRA Absolute Radio Frequency Channel Number,UTRA 绝对频点号)。 2.1GHz频段上行频点号为9612~9888,下行频点号为10562~10838,频点除以5就可以得到频点中心对应的频率值(以MHz为单位)。 每个频点间隔为200kHz,与GSM系统兼容。 当然每个频点的带宽远超过200kHz,这与CDMA的频点编号方式类似。 目前联通WCDMA系统下行第一频点号为10713(中心频率2142.6MHz),第二频点号为10688,第三频点号为10663。 上行频点号分别为9763(中心频率1952.6MHz)、9738以及9713。 WCDMA 码片速率= 3.84MHz 扩频因子= 4 则符号速率= 960Kbps 码片速率= 1秒钟传送的比特数 3.84M个

3gpp规定wcdma的UU口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个码片。因此1帧包含的比特数=2560*15=38400bit 因为1帧=10ms 所以码速率= 2560*15/10ms=2560*15/0.01s=2560*15*100=3840000=3.84*1000*1000=3.84Mbit/S 因此 空口速率3。84Mb/S是由wcdma的帧结构所决定的。3gpp规定wcdma的UU 口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个码片。如此算来,2560*15/10ms 即3840/ms换算成标准速率格式即3.84Mb/s。 我们知道wcdma是无线频带传输,即数字基带信号要经过调制变频到合适的频点上、在一定的频带范围内来传输的。 在理想情况下传输一定基带带宽信号用和信号带宽相同的频带带宽就可以了。 实际上,由于形成频带带宽的带通滤波器不可能是理想的矩形,而是常用的钟型,就使得频带带宽要大于基带信号的带宽。 在WCDMA中采用升余弦滚降系数滤波器,滚降系数为0.22, 那么传速率为3.84Mb/s信号的所需带宽为B=3.84(1+0.22)=4.684Mb/s,考虑到频点间要留有一定的保护间隔200K,两头的两个一共是400K,

如何选择合适的示波器带宽

如何选择合适的示波器带宽 来源:安捷伦科技作者:Johnnie Hancock 带宽是大多数工程师在选择一款示波器时首先考虑的参数。本文将为您提供一些有用的窍门,教您如何为您的数字和模拟应用选择合适的示波器带宽。但首先,我们先看看示波器带宽的定义。 示波器带宽的定义 所有示波器都表现出如图1所示的在较高频率处滚降的低通频率响应。大多数带宽参数在1 GHz及以下的示波器通常表现为高斯响应,即具备约从-3 dB频率的三分之一处开始缓慢滚降的特性。而那些带宽规格超过1 GHz的示波器通常则具备最大平坦频率响应,如图2所示。这种频响通常表现为带内响应较平缓,而在约-3 dB频率处滚降较陡。 图1:低通频率响应

图2:最大平坦频率响应 示波器的这两种频率响应各有各的优缺点。具备最大平坦频响的示波器比具备高斯频响的示波器对带内信号的衰减较小,也就是说前者对带内信号的测量更精确。但具备高斯频响的示波器比具备最大平坦频响的示波器对代外信号的衰减小,也就是说在同样的带宽规格下,具备高斯频响的示波器通常具备更快的上升时间。然而,有时对带外信号的衰减大有助于消除那些根据奈奎斯特标准(fMAX < fS)可能造成混迭的高频成分。关于奈奎斯特采样理论更深入的探讨,请参看安捷伦应用笔记1587(Agilent Application Note 1587) 。 不论您手头的示波器具备高斯频响、最大平坦频响还是介于二者之间,我们都将输入信号通过示波器后衰减3 dB时的最低频率视为该示波器的带宽。示波器的带宽和频响可以利用正弦波信号发生器扫频测量得到。信号在示波器-3dB频率处的衰减转换后可表示为约-30%的幅度误差。因此,我们不能奢望对那些主要的频率成分接近示波器带宽的信号进行精确测量。 与示波器带宽规格紧密相关的是其上升时间参数。具备高斯频响的示波器,按照10%到90%的标准衡量,上升时间约为0.35/fBW。具备最大平坦频响的示波器上升时间规格一般在0.4/fBW范围上,随示波器频率滚降特性的陡度不同而有所差异。但我们必须记住的是,示波器的上升时间并非示波器能精确测量的最快的边缘速度,而是当输入信号具备理论上无限快的上升时间(0 ps)时,示波器能够得到的最快边沿速度。尽管实际上这种理论参数不可能测得到,因为脉冲发生器不可能输出边沿无限快的脉冲,但我们可以通过输入一个边沿速度为示波器上升时间规格的3到5倍的脉冲来测量示波器的上升时间。 数字应用需要的示波器带宽 经验告诉我们,示波器的带宽至少应比被测系统最快的数字时钟速率高5倍。如果我们选择的示波器满足这一标准,那么该示波器就能以最小的信号衰减捕捉到被测信号的5次谐波。信号的5次谐波在确定数字信号的整体形状方面非常重要。但如果需要对高速边沿进行精确测量,那么这个简单的公式并未考虑到快速上升和下降沿中包含的实际高频成分。 公式:fBW ≥ 5 x fclk 确定示波器带宽的一个更准确的方法是根据数字信号中存在的最高频率,而不是最大时钟速率。数字信号的最高频率要看设计中最快的边沿速度是多少。因此,我们首先要确定设计中最快的信号的上升和下降时间。这一信息通常可从设计中所用器件的公开说明书中获取。 第一步:确定最快的边沿速度 然后就可以利用一个简单的公式计算信号的最大“实际”频率成分。Howard W. Johnson 博士就此题目写过一本书《高速数字设计》。在书中,他将这一频率成分称为“拐点”频率(fknee)。所有快速边沿的频谱中都包含无限多的频率成分,但其中有一个拐点(或称“knee”),高于该频率的频率成分对于确定信号的形状就无关紧要了。 第二步:计算fknee fknee = 0.5/RT (10% - 90%) fknee = 0.4/RT (20% - 80%) 对于上升时间特性按照10% 到90%阀值定义的信号而言,拐点频率fknee等于0.5除以信号的上升时间。对上升时间特性按照20% 到80%阀值定义的信号而言(如今的器件规范中通常采用这种定义方式),fknee等于0.4除以信号的上升时间。但注意不要把此处的信号上升时间与示波器的上升时间规格混淆了,我们这里所说的是实际的信号边沿速度。

传输带宽计算方法

在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以介绍。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是 512kbps=64kb/s,其下行带宽是2Mbps=256kb/s

例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为512Kbps,10路摄像机所需的数据传输带宽为: 512Kbps(视频格式的比特率)×10(摄像机的路 数)≈5120Kbps=5Mbps(上行带宽) 即:采用CIF视频格式各地方监控所需的网络上行带宽至少为5Mbps; D1视频格式每路摄像头的比特率为1.5Mbps,即每路摄像头所需的数据传输带宽为1.5Mbps,10路摄像机所需的数据传输带宽为: 1.5Mbps(视频格式的比特率)×10(摄像机的路数)=15Mbps(上行带宽) 即:采用D1视频格式各地方监控所需的网络上行带宽至少为15Mbps; 720P(100万像素)的视频格式每路摄像头的比特率为2Mbps,即每路摄像头所需的数据传输带宽为2Mbps,10路摄像机所需的数据传输带宽为: 2Mbps(视频格式的比特率)×10(摄像机的路数)=20Mbps(上行带宽) 即:采用720P的视频格式各地方监控所需的网络上行带宽至少为 20Mbps; 1080P(200万像素)的视频格式每路摄像头的比特率为4Mbps,即每路摄像头所需的数据传输带宽为4Mbps,10路摄像机所需的数据传输带宽为: 4Mbps(视频格式的比特率)×10(摄像机的路数)=40Mbps(上行带宽)

相关主题