搜档网
当前位置:搜档网 › (完整版)有限元法的基本原理

(完整版)有限元法的基本原理

(完整版)有限元法的基本原理
(完整版)有限元法的基本原理

第二章有限元法的基本原理

有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。

2.1等效积分形式与加权余量法

加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。

2.1.1 微分方程的等效积分形式

工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组

12()()()0A A A ?? ?== ? ???

u u u M (在Ω内) (2-1)

域Ω可以是体积域、面积域等,如图2-1所示。同时未知函数u 还应满足边界条件

12()()()0B B B ?? ?== ? ???

u u u M (在Γ内) (2-2)

要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。所以在以上两式中采用了矩阵形式。

以二维稳态的热传导方程为例,其控制方程和定解条件如下:

()()()0A k k q x x y y

φφφ????=++=???? (在Ω内) (2-3)

0()0q B k q n φφφφφ?-=Γ?=??-=Γ???(在上)(在上) (2-4)

这里φ表示温度(在渗流问题中对应压力);k 是流度或热传导系数(在渗流问题中对应流度/K μ);φ和q 是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n 是有关边界Γ的外法线方向;q 是源密度(在渗流问题中对应井的产量)。

在上述问题中,若k 和q 只是空间位置的函数时,问题是线性的。若k 和q 是φ及其导数的函数时,问题则是非线性的。

由于微分方程组(2-1)在域Ω中每一点都必须为零,因此就有

1122()(()())0u d v A u v A u d ΩΩ

Ω≡++Ω≡?

?T V A L (2-5) 其中 12v V v ?? ?= ? ???

M (2-6)

其中V 是函数向量,它是一组和微分方程个数相等的任意函数。

式(2-5)是与微分方程组(2-1)完全等效的积分形式。我们可以说,若积分方程对于任意的V 都能成立,则微分方程(2-1)必然在域内任一点都得到满足。同理,假如边界条件(2-2)亦同时在边界上每一点都得到满足,对于一组任意函数,下式应当成立

1122

()(()())0u d v B u v B u d ΓΓΓ≡++Γ≡??VB L 因此积分形式

()()0u d u d ΓΓ

Ω+Γ=??T T V A V B 对于所有的V 和V 都成立是等效于满足微分方程(2-1)和边界条件(2-2)。我们把(2-7)式称为微分方程的等效积分形式。

2.1.2等效积分的“弱”形式

在一般情况下,对(2-7)式进行分部积分得到另一种形式:

()()()()0T T v d v d ΩΓ

Ω+Γ=??C D u E F u (2-8) 其中C ,D ,E ,F 是微分算子,它们中所包含的导数的阶数较(2-7)式的低,这样对函数u 只需要求较低阶的连续性就可以了。在(2-8)式中降低连续性要求是以提高V 和V 的连续性要求为代价的,由于原来对V 和V (在(2-7)式中)并无连续性要求,但是适当提高对其连续性的要求并不困难,因为它们是可以选择的已知函数。这种降低对函数u 连续性要求的作法在近似计算中,尤其是在有限单元法中是十分重要的。(2-8)式称为微分方程

(2-1)和边界条件(2-2)式的等效积分“弱”形式。值得指出的是,从形式上看“弱”形式对函数u 的连续性要求降低了,但对实际的物理问题却常常较原始的微分方程更逼近真正解,因为原始微分方程往往对解提出了过分“平滑”的要求。

2.1.3 加权余量法

在求解域Ω中,若场函数u 是精确解,则在域Ω中任一点都满足微分方程(2-1)式,同时在边界Γ 上任一点都满足边界条件(2-2)式,此时等效积分形式(2-7)式或(2-8)式必然严格地得到满足。但是对于复杂的实际问题,这样的精确解往往是很难找到的,因此人们需要设法找到具有一定精度的近似解。

对于微分方程(2-1)式和边界条件(2-2)式所表达的物理问题,未知场函数u 可以采用近似函数来表示。近似函数是一族带有待定参数的已知函数,一般形式是

1n

i i i u u N a Na =≈==∑ (2-9)

其中,i a 是待定参数;i N 是试探函数(或称基函数、形函数),为已知函数,它取自完全的函数序列,是线性独立的。所谓完全的函数系列是指任一函数都可以用此序列表示。近似解通常选择使之满足强制边界条件和连续性的要求。例如当未知函数u 是压力时,可取近似解

11221n

n n i i i u N u N u N u N u ==+++=∑L

其中i a 是待定参数,共有n 个。

显然,在通常n 取有限项数的情况下近似解是不能精确满足微分方程(2-1)式和边界条件(2-2)的,它们将产生残差R 及R

();()A Na R BA Na R ==

残差R 及R 亦称为余量。在(2-7)式中我们用个规定的函数来代替任意函数v 及v ,即

11221n

n n i i i u N u N u N u N u ==+++=∑L

可以得到近似的等效积分形式

()()0(1~)j j W A Na d W B Na d j n ΩΓΩ+Γ==?? (2-10)

亦可以写成余量的形式

0(1~)j j W Rd W Rd j n ΩΓΩ+Γ==?? (2-11)

(2-10)式或(2-11)式的意义是通过选择待定系数i a ,强迫余量在某种平均意义下等于零。j W 和j W 称为权函数。余量的加权积分为零就得到了一组求解方程,用以求解近似解

的待定系数a ,从而得到原问题的近似解答。求解方程(2-10)的展开形式是

11

()()0W A Na d W B Na d ΩΓΩ+Γ=?? 22

()()0W A Na d W B Na d ΩΓΩ+Γ=?? L L L

()()0n n

W A Na d W B Na d ΩΓΩ+Γ=?? 其中若微分方程组A 的个数为1m ,边界条件B 的个数为2m ,则权函数(1,,)j W j n =L 是1m 阶的函数列阵,(1,,)j W j n =L 是2m 阶的函数列阵。

当近似函数所取试探函数的项数n 越多,近似解的精度将越高。当项数n 趋于无穷时,近似解将收敛于精确解。

对应于等效积分“弱”形式(2-8)式,同样可以得到它的近似形式

()()()()0(1,,)T T j j d d j n ΩΓΩ+Γ==??C W D Na E W F Na L (2-12)

采用使余量的加权积分为零来求得微分方程近似解的方法称为加权余量法。加权余量法是求微分方程近似解的一处种有效方法。常用的权函数的选择有以下几种:

(1)配点法,这种方法相当于简单地强迫余量在域内n 个点上等于零;

(2)子域法,该方法的实质是强迫余量在n 个子域j Ω的积分为零;

(3)最小二乘法,此方法实质是使得近似解和权函数组成的泛函取最小值;

(4)力矩法,该方法是强迫余量的各次矩等于零,通常又称此法为积分法;

(5)伽辽金法(Galerkin )。

加权余量法可以用于广泛的方程类型,选择不同的权函数,可以产生不同的加权余量法;通过采用等效积分的“弱”形式,可以降低对近似函数连续性要求当近似函数满足连续性和完备性要求、试探函数的项数不断增加时,近似解可趋近于精确解。由于Galerkin 具有广泛的适用性,因此,下面简单介绍其基本原理:

取j j W N =,在边界上j j j W W N =-=-,即简单地利用近似解的试探函数序列作为权函数。近似积分形式可以写成

11()()0(1,,)n n j i i j i i i i d B d j n ΩΓ==Ω+Γ==∑∑??T T

N A N a N N a L (2-13)

由(2-9)式,可以定义近似解u %的变分u δ%为

1122n n u N N N δδδδ=+++%L a a a 其中i δa 是完全任意的。(2-13)式可更简洁地表示为

()()0d B d δδΩΓΩ+Γ=?

?T T u A u u u %%%% 对于近似积分的“弱”形式(2-12)式则有 ()()()()0d d δδΩΓ

Ω+Γ=??T T C u D u E u F u %%%%

我们将会看到,在很多情况下,采用伽辽金法得到的求解方程的系数矩阵是对称的,这是在用加权余量法建立有限元格式时几乎毫无例外地采用伽辽金法的主要原因,而且当存在相应的泛函时,伽辽金法与变分法往往导致同样的结果。

2.2变分原理

讨论一个连续介质问题的变分原理首先要建立一个标量泛函∏,它由积分形式确定

,,,,d d x x

∏ΩΓ??????=Ω+Γ ? ???????

??u u F u E u L L (2-14) 其中,u 是未知函数,F 和E 是特定的算子,Ω是求解域,Γ是Ω的边界。∏称为未知函数的泛函,它随函数u 的变化而变化。连续介质问题的解u 使泛函∏对于微小的变化u δ取驻值,即泛函的“变化”等于零

0δ∏= (2-15)

这种求得连续介质问题解的方法称为变分原理或变分法。

如前所述,连续介质问题中经常存在着和微分方程及边界条件不同的,但却是等价的表达形式,变分原理是另一种表达连续介质问题的积分表达形式。在用微分公式表达时,问题的求解过程是对具有已知边界条件的微分方程或微分方程组进行积分。在经典的变分原理表达中,问题的求解过程是寻求使得具有一定已知边界条件的泛函(或泛函系)取驻值的未知函数(或函数系)。这两种表达形式是等价的,一方面满足微分方程及边界条件的函数将使泛函取极值或驻值,另一方面从变分的角度来看,使泛函取极值或驻值的函数正是满足问题的控制微分方程和边界条件的解。

应注意到,经常有些物理问题可以直接用变分原理的形式来叙述,如表述力学体系平衡问题的最小位能原理和最小余能原理等,但是并非所有以微分方程表达的连续介质问题都存在这种变分原理。

研究表明,原问题等效积分的Galerkin 提法等效于它的变分原理,即原问题的微分方程和边界条件等效于泛函的变分等于零,亦即泛函取驻值。反之,如果泛函取驻值则等效于满足问题的微分方程和边界条件,而泛函可以通过原问题的等效积分的Galerkin 提法而得到。Galerkin 法的适用性比变分原理要强,原因是对于有的微分方程很难找到。

对应的泛函或根本找不到泛函,这时变分原理不适用,但Galerkin 法仍然适用。

如前所述,无论是加权余量法还是变分原理,虽然可以得到微分程的近似解,但是由于它是在全求解域中定义近似函数,因此实际应用中会遇到两方面的困难

(1)在求解域比较复杂的情况下,选取满足边界条件的试探函数,往往会产生难以克制的困难,甚至有时做不到。

(2)为了提高近似解的精度,需要增加待定参数,即增加试探函数的项数,这就增加了求解的繁杂性。而且由于试探函数定义于全域,因此不可能根据问题的要求,在求解域的不同部位对试探函数提出不同精度的要求,往往由于局部精度的要求使整个问题的求解增加许多困难。

变分有限元法和加权余量有限元法就是分别以变分原理和加权余量法为理论基础,通过对求解区域进行单元剖分,把整个的求解区域剖分成有限的小区域子域,然后在子域内定义近似函数(近似解),因此称为变分有限元法和加权余量有限元法。变分有限元法和加权余量有限元法虽然在本质上与变分法和加权余量法是类似的,但由于近似函数在子域(单元)上定义,因此可以克服上述两方面的困难,并由于和现代计算机技术的结合,使得有限元法成为对物理、力学以及其它科学技术领域问题进行分析、求解的有效工具。 2.3 有限元方法的一般步骤

在有限元法中,把所研究的连续介质表示为一些小部分(称为有限元)的集合。这些单元可认为是一些称为结点的指定结合点处彼此连接的。这些结点通常是置于单元的边界上,并认为相邻单元就是在这些边界上与它相连接的。由于不知道连续介质内部的场变量(在固体力学中如位移、应力,在渗流问题中如压力、饱和度)真实的变化,因此,我们假设有限元内场变量的变化可以用一种简单的函数来近似。这些近似函数(也称为插值模式)可由场变量在结点处的值确定。当对整个连续介质写出场方程组(如平衡方程组)时,新的未知量就是场变量的结点值。求解场方程组(通常以矩阵方程形式表示),即得到场变量的结点值。一旦知道了这些结点值,则可由近似函数确定整个单元集合体的场变量。

有限元法求解一般的连续介质问题时,总是依次逐步进行的。以与时间无关的物理问题为例,说明有限元法的基本步骤见图2-2。

(1)结构或求解域的离散化。有限元法的第一步,是把求解域分割成许多小部分或称为单元,因而对于一个具体的有限元分析问题,首先要用适当的有限元把结构进行剖分,并确定单元的数量、类型、大小和布置。

(2)选择适当的插值模式。由于在任意给定的约束作用下,问题的准确解为未知,因此,我们假设用单元内的一些适当解来近似未知解。从计算的观点看,假设的解必须简单,而且应当满足一定的收敛性要求。通常,把解的插值模式取为多项式形式。

(3)单元分析。即进行单元刚度矩阵和载荷向量的推导。根据假设的插值模式,利用平衡条件或适当的变分原理,就可以推导出单元e 的刚度矩阵e K 和载荷向量e F ,形成单元平衡方程。

e e e K P F =

(4)总体合成。集合各单元方程以得到总的平衡方程(组)。由于结构是由若干个有限元组成的,因此,应当把各个单元刚度矩阵和载荷向量按适当方式进行集合,从而建立如下形式的总的平衡方程:

KP F =

其中,K 称为集合刚度矩阵,或称总体刚度矩阵;P 是整体结构的结点参数向量,F 是它的结点载荷向量。在不同领域的问题中,P 所代表的物理量含意不同,如在固体力学问题中P 代表结点处的位移,在渗流力学问题中P 代表结点处的压力,在热学问题中P 代表结点处的温度。

图2-2 有限元分析的一般过程

(5)引入约束条件。在总体平衡方程的基础上,按问题的边界条件修改总的平衡方程。考虑了边界条件后,可以把平衡方程表示为

KP F

(6)方程求解。对上述方程进行求解,对于线性问题可以很容易地解出向量P,而对非线性问题则要经过一系列的步骤才能求得解答,每一步都要对刚度矩阵K和载荷向量F 进行修正。

(7)计算其它参数。在直接求得结点变量后,可由此计算其它参数,对于渗流问题可求压力梯度和流量对于热学问题,可求温度梯度和传热量如对于固体力学问题,可求应变和

应力等。

机械原理基本概念

(2)运动副是两构件通过直接接触形成的可动联接。(3)两构件通过点或线接触形成的联接称为高副。一个平面高副所引入的约束数为1。(4)两构件通过面接触形成的联接称为高副,一个平面低副所引入的约束数为2。(5)机构能实现确定相对运动的条件是原动件数等于机构的自由度,且自由度大于零。(6)虚约束是对机构运动不起实际约束作用的约束,或是对机构运动起重复约束作用的约束。(7)局部自由度是对机构其它运动构件的运动不产生影响的局部运动。(8)平面机构组成原理:任何机构均可看作是由若干基本杆组依次联接于原动件和机架上而构成。(8)基本杆组的自由度为0。(1)瞬心是两构件上瞬时速度相等的重合点-------即等速重合点。(2)两构件在绝对瞬心处的速度为0。(3)相构件在其相对瞬心处的速度必然相等。(4)两构件中若有一个构件为机架,则它们在瞬心处的速度必须为0。(5)用瞬心法只能求解机构的速度,无法求解机构的加速度。(1)驱动机械运动的力称为驱动力,驱动力对机械做正功。(2)阻止机械运动的力称为阻抗力,阻抗力对机械做负功。(1)机械的输出功与输入功之比称为机械效率。(2)机构的损失功与输入功之比称为损失率。(3)机械效率等于理想驱动力与实际驱动力的比值。(4)平面移动副发生自锁条件:作用于滑块上的驱动力作用在其摩擦角之内。(5)转动副发生自锁的条件:作用于轴颈上的驱动力为单力,且作用于轴颈的摩擦圆之内。(1)机构平衡的目的:消除或减少构件不平衡惯性力所带来的不良影响。(2)刚性转子总可通过在转子上增加或除去质量的办法来实现其平衡。(3)转子静平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零(或质径积矢量和为零)。(4)对于静不平衡转子只需在同一个平面内增加或除去平衡质量即可获得平衡,故称为单面平衡。(5)对于宽径比b/D<0.2的不平衡转子,只做静平衡处理。(6)转子动平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零,以及这些惯性力所构成的力矩矢量的和也为零。(7)实现动平衡时需在两个平衡基面增加或去除平衡质量,故动平衡又称为双面平衡。(8)动平衡的转子一定是静平衡的,反之则不然。(9)转的许用不平衡量有两种表示方法:许用质径积+许用偏心距。(1)机械运转的三阶段:启动阶段、稳定运转阶段、停车阶段。(2)建立机械系统等动力学模型的等效条件:瞬时动能等效、外力做功等效。(3)机器的速度波动分为:周期性速度波动和非周期性速度波动。(4)周期性速度波动的调节方法:安装飞轮。(5)非周期性速度波动的调节方法:安装调速器。(6)表征机械速度波动程度的参量是:速度不均匀系数δ。(8)飞轮调速利用了飞轮的储能原理。(9)飞轮宜优先安装在高速轴上。(10)机械在安装飞轮后的机械仍有速度波动,只是波动程度有所减小。(1)铰链四杆机构是平面四杆机构的基本型式。(2)铰链四杆机构的三种表现形式:曲柄摇杆机构、双曲柄机构、双摇杆机构。(3)曲柄摇杆机构的功能:将曲柄的整周转动变换为摇杆的摆动或将摇杆的摆动变换为曲柄的回转。(4)曲柄滑动机构的功能:将回转运动变换为直线运动(或反之)。(5)铰链四杆机构存在曲柄的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆或机架。(6)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆。(7)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为机架。(8)铰链四杆机构成为又摇杆机构的条件:不满足杆长条件;或者是满足杆长条件但最短杆为连杆。(9)曲柄滑块机构存在曲柄的条件是:曲柄长度r+偏距r小于等于连杆长度l(12)曲柄摇杆机构以曲柄为原动件时,具有急回性质。(13)曲柄摇杆机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(14)曲柄滑块机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(15)偏置曲柄滑块机构以曲柄为原动件时,具有急回性质。(16)对心曲柄滑块机构不具有急回特性。(17)曲柄导杆机构以曲柄为原动件时,具有具有急回性质。(18)连杆机构的传动角越大,对传动越有利。(19)连杆机构的压力角越大,对传动越不利。(20)导杆机构的传动角恒为90o。21)曲柄摇杆机构以曲柄为主动杆时,最小传动角出现在曲柄与机架共线的两位置之一。(22)曲柄摇杆机构以摇杆为主动件,当从动曲柄与连杆共线时,机构处于死点位置。(23)当连杆机构处于死点时,机构的传动角为0。(1)凸轮机构的优点是:只要适当地设计出凸轮轮廓曲线,就可使打推杆得到各种运动规律。(2)凸轮机构的缺点:凸轮轮廓曲线与推杆间为点、线接触,易磨损。(3)常用的推杆运动规律:等速运动规律、等加速等减速运动规律、余弦加速度运动规律、正弦加速度运动规律、五次多项式运动规律。(4)采用等速运动规律会给机构带来刚性冲击,只能用于低速轻载。(5)采用等加速等减速运动规律会给机构带来柔性冲击,常用于中速轻载场合。(6)采用余弦加速度运动规律也会给机构带来柔性冲击,常用于中低速重载场合。(7)余弦加速度运动规律无冲击,适于中高速轻载。(8)五次多项式运动规律无冲击,适于高速中载。(9)增大基圆半径,则凸轮机构的压力角减少。(10)对凸轮机构进行正偏置,可降低机构的推程压力角。(11)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径大于理论廓线上的最小曲率半径,将使工作廓线出现交叉,从而使机构出现运动失真现象。(12)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径等于理论廓线上的最小曲率半径,将使凸轮廓线出现变尖现象。(1)圆锥齿轮机构可实现轴线相交的两轴之间的运动和动力传递。(2)蜗

有限元基础知识归纳

有限元知识点归纳 1.、有限元解的特点、原因? 答:有限元解一般偏小,即位移解下限性 原因:单元原是连续体的一部分,具有无限多个自由度。在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。 2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49 (1)在节点i处N i=1,其它节点N i=0; (2)在单元之间,必须使由其定义的未知量连续; (3)应包含完全一次多项式; (4)应满足∑Ni=1 以上条件是使单元满足收敛条件所必须得。可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。 4、等参元的概念、特点、用时注意什么?(王勖成P131) 答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。即: 为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即: 其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。称前者为母单元,后者为子单元。 还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。 5、单元离散?P42 答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。每个部分称为一个单元,连接点称为结点。对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。这种单元称为常应变三角形单元。常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。 6、数值积分,阶次选择的基本要求? 答:通常是选用高斯积分 积分阶次的选择—采用数值积分代替精确积分时,积分阶数的选取应适当,因为它直接影响计算精度,计算工作量。选择时主要从两方面考虑。一是要保证积分的精度,不损失收敛性;二是要避免引起结构总刚度矩阵的奇异性,导致计算的失败。

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

元法概念意义与应用

元法概念意义与应用 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

有限元法概论、意义 与应用 班级: 2013信息姓名:张正 学号 指导老师:曾伟梁 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式往往是不可能的。近年来在计算机技术

有限元知识点汇总

有限元知识点汇总 第一章 1、何为有限元法?其基本思想是什么? 》有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法。 》基本思想:化整为零,化零为整 2、为什么说有限元法是近似的方法,体现在哪里? 》有限元法的基本思想是几何离散和分片插值; 》用离散单元的组合来逼近原始结构,体现了几何上的近似;用近似函数逼近未知量在单元内的真实解,体现了数学上的近似;利用与问题的等效的变分原理建立有限元基本方程,又体现了明确的物理背景。 3、单元、节点的概念? 》单元:把参数单元划分成网格,这些网格就称为单元。 》节点:网格间相互连接的点称为节点。 4、有限元法分析过程可归纳为几个步骤? 》3大步骤;——结构离散化;——单元分析;——整体分析。 5、有限元方法分几种?本课程讲授的是哪一种? 》有限元方法分3种;——位移法、力法、混合法。 》本课程讲授的:位移法 6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点?》弹性力学的基本变量是——{外力、应力、应变、位移} 》几何方程——{描述弹性体应变分量与位移分量之间关系的方程} 》物理方程——{描述应力分量与应变分量之间的关系} 》虚功方程——{描述内力和外力的关系的方程} 》弹性矩阵特点——{ } 7、何为平面应力问题和平面应变问题? 》平面应力问题——{满足(1)几何条件——所研究的是一根很薄的等厚度薄板,即一个方向上的几何尺寸远远小于其余两个面上的几何尺寸;(2)载荷条件——作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面上无外力作用} 》平面应变问题——{满足(1)几何条件——所研究的是长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变;(2)载荷条件——作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力} 第二章 7、形函数的特点? 》1形函数Ni再节点i处等于1,在其他节点上的值等于0,对于Nj、Nm也有同样的性质。》2在单元内任一点的各形函数之和等于1,即Ni+Nj+Nm=1 8、单元刚度矩阵的性质? 》1 K^e中每个元素都有明确的物理意义,每个元素都是一个刚度系数,他是单位节点位移分量所引起的节点力分量 》2 k^e是对称矩阵,具有对称性。 》3 K^e的每一行或每一列元素之和为零,是奇异矩阵

基本概念与原理:溶液

基本概念与原理:溶液 主要考点: 1.常识:温度、压强对物质溶解度的影响;混合物分离的常用方法 ① 一般固体物质.... 受压强影响不大,可以忽略不计。而绝大部分固体随着温度的升高,其溶解度也逐渐升高(如:硝酸钾等);少数固体随着温度的升高,其溶解度变化不大(如:氯化钠等);极少数固体随着温度的升高,其溶解度反而降低的(如:氢氧化钙等)。 气体物质.... 的溶解度随着温度的升高而降低,随着压强的升高而升高。 ② 混合物分离的常用方法主要包括:过滤、蒸发、结晶 过滤法用于分离可溶物与不溶物组成的混合物,可溶物形成滤液,不溶物形成滤渣而遗留在滤纸上; 结晶法用于分离其溶解度受温度影响有差异的可溶物混合物,主要包括降温结晶法及蒸发结晶法 降温结晶法用于提取受温度影响比较大的物质(即陡升型物质),如硝酸钾中含有少量的氯化钠; 蒸发结晶法用于提取受温度影响不大的物质(即缓升型物质),如氯化钠中含有少量的硝酸钾; 2.了解:溶液的概念;溶质,溶剂的判断;饱和溶液与不饱和溶液的概念、判断、转换的方法;溶解度的概念;固体 溶解度曲线的应用 ① 溶液的概念就是9个字:均一的、稳定的、混合物。溶液不一定是液体的,只要同时满足以上三个条件的物质, 都可以认为是溶液。 ② 一般简单的判断方法:当固体、气体溶于液体时,固体、气体是溶质,液体是溶剂。两种液体相互溶解时,通常把量多的一种叫做溶剂,量少的一种叫做溶质。当溶液中有水存在的时候,无论水的量有多少,习惯上把水看作溶剂。通常不指明溶剂的溶液,一般指的是水溶液。 在同一个溶液中,溶质可以有多种。特别容易判断错误的是,经过化学反应之后,溶液中溶质的判断。 ③ 概念:饱和溶液是指在一定温度下,在一定量的溶剂里,不能再溶解某种物质的溶液。还能继续溶解某种溶质的溶液,叫做这种溶质的不饱和溶液。 在一定温度下,某溶质的饱和溶液只是说明在该温度下,不能够继续溶解该物质,但还可以溶解其他物质,比如说,在20℃的饱和氯化钠溶液中,不能再继续溶解氯化钠晶体,但还可以溶解硝酸钾固体。 判断:判断是否是饱和溶液的唯一方法:在一定温度下,继续投入该物质,如果不能继续溶解,则说明原溶液是饱和溶液,如果物质的质量减少,则说明原溶液是不饱和溶液。 当溶液中出现有固体时,则该溶液一定是该温度下,该固体的饱和溶液。 转换:饱和溶液与不饱和溶液的相互转换: 改变溶解度,实际一般就是指改变温度,但具体是升高温度还是降低温度,与具体物质溶解度曲线有 ④ 溶解度曲线的意义: 饱和溶液 不饱和溶液 增加溶剂,增加溶解度 减少溶剂,增加溶质,减少溶解度

有限元基本概念

弹性力学基本假设 这些基本假设包括:理想弹性体假设和微小位移假设。是弹性力学讨论问题的基础 其中理想弹性体假设包括:连续性、均匀性、各向同性和完全弹性假设。 微小位移假设是指形变量远小于物体的尺寸。 绝对坐标法总结 (1)这个例子中所有杆件在绝对坐标系中运算。但单元一多,就重复了 (2)整体刚度矩阵的求解是利用“含同一个节点的所有单元在该节点处的位移相同”和“节点处载荷是所有含该节点单元的相应节点的节点力的总和”来求得(3) 一般情况下,当用统一的整体坐标系计算繁杂时,常在单元计算时采用自己的局部坐标系,然后通过坐标变换,集成到整体刚度矩阵中去,使运算过程简捷 首先,要建立结构外部载荷与结构内部应力的关系(平衡方程) 外部载荷包括集中力、表面力和体积力。这就是静力学平衡问题,要建立静力学平衡方程 其次,从物理学的角度,建立材料应力与应变之间的关系(物理方程) 这是材料的本构关系,描述材料在不同环境下的力学性质 最后,从几何学方面入手,建立应变与位移(变形)之间的关系 这一关系不涉及产生变形的原因。相应的方程称为几何方程

()() ()110 11 210 2121x x y y z z xy xy yz yz xz zx E μμ εσμμεσμμεσμγτμγτμγτ--????????????--????????--????=?????? +?????? ??????+??????+?????? ? ?

这就是应力边界条件 看到第二章2!!!! 如果在质点系的任何虚位移上,质点系的所有约束反力的虚功之和等于零,则称这种约束为理想约束 可能功:当给出系统的一组可能位移时,作用在系统上的力将因作用点发生位移而做功,这种功就称为可能功,或虚功 虚位移原理:平衡状态中,弹性体上外力在可能位移上所作的功等于外力引起的应力在相应的虚应变上所作的功。 在发生虚位移时,若总势能改变为正(即总势能增加),则总势能为极小,反之为极大。由于稳定平衡系统要发生虚位移时,总需要外力做正功。所以在平衡位置时,势能取极小值。 力法: 力法是以应力分量为未知量进行求解 但在3个平衡方程中有6个应力分量,不能直接从中解出所有6个应力分量。需要在给定的应力边界条件下,由平衡方程和应力协调方程联合求解偏微分方程组 位移法: 以三个位移分量作为未知量求解,将物理方程和平衡方程由位移来表示,以满足位移边界条件和变形协调条件为前提 位移-力法(混合法): 用3个位移,6个应力分量将物理方程中的应变消去,再利用协调方程和边界条件求解 x yx zx xy y zy xz yz z l m n X l m n Y l m n Z στττστττσ?++=?? ++=??++=??

有限元分析基本理论问答 基础理论知识

1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. ?梁单元和平面钢架结构单元的自由度由什么确定 答:每个节点上有几个节点位移分量,就称每个节点有几个自由度 6. ?简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。 7. 有限元法基本方程中的每一项的意义是什么 答:整个结构的节点载荷列阵(外载荷、约束力),整个结构的节点位移列阵,结构的整体刚度矩阵,又称总刚度矩阵。 8. 位移边界条件和载荷边界条件的意义是什么 答:由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。 9. ?简述整体刚度矩阵的性质和特点 答:对称性;奇异性;稀疏性;对角线上的元素恒为正。 11. 简述整体坐标的概念 答:单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’Y’Z’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。 13. 简述平面钢架问题有限元法的基本过程 答:力学模型的确定,结构的离散化,计算载荷的等效节点力,计算各单元的刚度矩阵,组集整体刚度矩阵,施加边界约束条件,求解降价的有限元基本方程,求解单元应力,计算结果的输出。 14. 弹性力学的基本假设是什么。 答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。 15.弹性力学和材料力学相比,其研究方法和对象有什么不同。 答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。因此,弹性力学的研究对象要广泛得多。研究方法:弹性力学和材料力学

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

有限元原理与步骤

2.1.1 有限元法基本原理(Basic Theory of FEM) 有限元法的基本思想是离散的概念,它是指假设把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连。根据物体的几何形状特征、载荷特征、边界约束特征等,选择合适的单元类型。这样组成有限的单元集合体并引进等效节点力及节点约束条件,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体[24][25]。 有限元法从选择基本未知量的角度来看,可分为三类:位移法、力法和混合法。以节点位移为基本未知量的求解方法称为位移法;以节点力为基本未知量的求解方法称为力法;一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。由于位移法通用性强,计算机程序处理简单、方便,成为应用最广泛的一种方法[26]。 有限元法的求解过程简单、方法成熟、计算工作量大,特别适合于计算机计算。再加上它有成熟的大型软件系统支持,避免了人工在连续体上求分析解的数学困难,使其成为一种非常受欢迎的、应用极广泛的数值计算方法[27]。 2.1.2 有限元法基本步骤(Basic Process of FEM) 有限元法求解各种问题一般遵循以下的分析过程和步骤[28][29]: 1. 结构的离散化 结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网格划分。离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果是近似的。显然,单元越小(网格越密)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此结构的离散化是有限元法的核心技术之一。有限元离散过程中又一重要环节是单元类型的选择,这应根据被分析结构的几何形状特点、载荷、约束等因素全面考虑。 2. 位移模式的选择 位移模式是表示单元内任意点的位移随位置变化的函数,位移模式的选择是有限元特性分析的第一步。由于多项式的数学运算比较简单、易于处理,所以通常是选用多项式作为位移函数。选择合适的位移函数是有限元分析的关键,它将决定有限元解的性质与近似程度。位移函数的选择一般遵循以下原则(有限元解的收敛条件):

有限元--命令流与部分基础知识

一、命令流 举例: 有一长为 100mm 的矩形截面梁,截面为 10X1mm ,与一规格为 20mmX7mmX10mm 的实体连接, 约束实体的端面, 在梁端施加大小为 3N 的 y 方向的压力, 梁与实体都为一材 料,弹性模量为 30Gpa ,泊松比为 0.3 。本例主要讲解梁与实体连接处如何利用耦合及约束 方程进行处理。 命令流如下: FINI /CLE LSEL,S,LOC,X,21,130 ! 选择梁线 LATT,1,2,2 ! 指定梁的单元属性 LESIZE,ALL,,,10 !指定梁上的单元份数 LMESH,ALL !划分梁单元 VSEL,ALL !选择所有实体 VATT,1,1,1 ! 设置实体的单元属性 ESIZE,1 !指定实体单元尺寸 MSHAPE,0,2D ! 设置实体单元为 2D MSHKEY,1 !设置为映射网格划分方法 VMESH,ALL ! 划分实体单元 ALLS !全选 FINI !退出前处理 /FILNAME,BEAM_AND_SOLID_ELEMENTS_CONNECTION ! 定义工作文件名 /TITLE,COUPLE_AND_CONSTRAINT_EQUATION ! 定义工作名 /PREP7 ET,1,SOLID95 ET,2,BEAM4 MP,EX,1,3E4 MP,PRXY,1,0.3 R,1 R,2,10.0,10/12.0,1000/12.0,10.0,1.0 BLC4,,,20,7,10 WPOFFS,0,3.5 WPROTA,0,90 VSBW,ALL WPOFFS,0,5 WPROTA,0,90 VSBW,ALL WPCSYS,-1 K,100,20,3.5,5 K,101,120,3.5,5 L,100,101 !进入前处理 !定义实体单元类型为 SOLID95 ! 定义梁单元类型为 BEAM4 !定义材料的弹性模量 !定义泊松比 !定义实体单元实常数 !定义梁单元实常数 !创建矩形块为实体模型 !将工作平面向 Y 方向移动 3.5 !将工作平面绕 X 轴旋转 !将实体沿工作平面剖开 !将工作平面向 Y 方向移动 !将工作平面绕 X 轴旋转 !将实体沿工作平面剖开 90 度 5 90 度 !将工作平面设为与总体笛卡儿坐标一致 !创建关键点 !创建关键点 !连接关键点生成梁的线实体

化工原理基本概念和原理

化工原理基本概念和原理 蒸馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1.拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A=p A0x A p B=p B0x B=p B0(1—x A) 根据道尔顿分压定律:p A=Py A而P=p A+p B 则两组分理想物系的气液相平衡关系: x A=(P—p B0)/(p A0—p B0)———泡点方程 y A=p A0x A/P———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成; 反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。 2.用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即v A=p A/x A v B=p B/x B 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有:α=v A/v B=(p A/x A)/(p B/x B)=y A x B/y B x A 对于理想溶液:α=p A0/p B0 气液平衡方程:y=αx/[1+(α—1)x] Α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3.气液平衡相图 (1)温度—组成(t-x-y)图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x-y图 x-y图表示液相组成x与之平衡的气相组成y之间的关系曲线图,平衡线位于对角线的上方。平衡线偏离对角线愈远,表示该溶液愈易分离。总压对平衡曲线影响不大。 二、精馏原理 精馏过程是利用多次部分汽化和多次部分冷凝的原理进行的,精馏操作的依据是混合物中各组分挥发度的差异,实现精馏操作的必要条件包括塔顶液相回流和塔底产生上升蒸汽。精馏塔中各级易挥发组分浓度由上至下逐级降低;精馏塔的塔顶温度总是低于塔底温度,原因之一是:塔顶易挥发组分浓度高于塔底,相应沸点较低;原因之二是:存在压降使塔底压

一般有限元原理

一般有限元原理 一、基本理论 有限元单元法是数值计算方法中发展较早、应用最广的一种方法。利用有限元法,可以解决经典的传统的方法难以解决或无法求解的许多实际问题。其优点是部分地考虑边坡岩土体的非均质、不连续的介质特征,考虑岩土体的应力应变特征,可以避免将坡体视为刚体,过于简化边界条件的缺点,能够接近实际从应力应变的角度分析边坡的变形破坏机制。对了解边坡的应力分布及应变位移变化很有利。 有限单元法实质是变分法的一种特殊的有效形式,其基本思想是:把连续体离散化为一系列的连接单元,每个单元内可以任意指定各种不同的力学形态,从而可以在一定程度上更好地模拟地质体的实际情况,特殊的节理元,可以有效地模拟岩土体中的结构面。 在大多数情况下岩土体材料应采用非线形模型,其中包括岩体弹塑性、蠕变、不抗拉特性以及结构面性质的影响。下面简要叙述有限元法的求解过程和原理。 有限单元法的基本原理 1.有限单元法的实施步骤 有限元的重要步骤归纳起来,主要有以下几步: (1)建立离散化的计算模型,包括以一定型式的单元进行离散化,按照求解问题的具体条件确定荷载及边界条件; (2)建立单元的刚度矩阵; (3)由单元刚度矩阵组集总体刚度矩阵,并建立系统的整体方程组; (4)引入边界条件,解方程组,求得节点位移; (5)求各单元的应变、应力及主应力。 2位移模式与单元类型 在一般的有限单元法问题中,我们常以位移作为未知数,称为位移法。为保证解的收敛性,要求位移模式必须满足以下三条: (1)位移模式必须能包含单元的刚体位移。即当节点位移是由某个刚体位移所引起时,弹性体内不会有应变。 (2)位移模式必须能包含单元的常应变,即与位置坐标无关的那部分应变。

建筑力学基本概念和基本原理

建筑力学基本概念和基本原理 一、判断 1、材料的横向变形系数(泊松比)和弹性模量E、剪切模量G都是材料固有的力学性质。 2、一对等大反向的平行力(即力偶)既可使物体发生转动,也可使物体发生移动。 3、铸铁试件压缩破坏是沿45度斜截面被剪断。 4、矩形梁危险截面的最大拉、压应力发生在截面的上下边缘处。 5、梁的合理截面是使大部分材料分布于靠近中性轴(梁的横截面与线应变=0的纵向面的交线)。 6、梁在集中力偶作用处,剪力图有突变。 7、忽略杆件自重,杆件上无荷载,荷载作用于结点上的杆件都是二力杆。 8、作用于弹性体一小块区域上的载荷所引起的应力,在离载荷作用区较远处,基本上只同载荷的主矢和主矩有关;载荷的分布情况只影响作用区域附近的应力分布,这就是圣维南原理。 9、轴向拉(压)直杆的斜截面只有正应力,没有剪应力。 10、铸铁和砖石、混凝土等材料的抗拉能力远小于抗压能力。 11、某T形铸铁梁最大弯矩为正(截面下侧受拉、上侧受压),该T形梁应该正放而不是倒放。 12、某矩形钢筋混凝土梁最大弯矩为负(截面上侧受拉、下侧受压),钢筋应该配置在截面的下侧。 13、杆件某截面内力反映的是该截面处两部分杆件因为外力作用发生小变形而产生的相互作用,内力成对出现、等大反向,因此求内力要用截面法。 14、构件的内力与横截面的尺寸大小和材料的力学性质都有关。 15、应力是内力的分布集度。 16、平面一般力系向平面内某点平移的简化结果可能有三种情形:平衡状态、合力不为零、合力矩不为零。 17、各种材料对应力集中的敏感程度相同。 18、当某力的作用线通过某点时,该力对该点存在力矩。 19、因为杆件受到外力作用发生的变形是小变形,所以求支座约束力和杆件内力时,杆件都使用原始尺寸。 20、杆件的稳定性是针对细长压杆的承载能力,此时稳定性要求超过强度要求。 二、填空 1. 理想弹性体模型包括四个基本简化假设:假设、假设、假设、线弹性假设;在变形体静力学分析中,对所研究的问题中的变形关系也作了一个基本假设,它是假设。

有限元法中的几个基本概念

诚信·公平·开放·共赢 Loyalty Fair Opening Win-win 有限元法中的几个基本概念 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。 这些单元仅在顶角处相互联接,称这些联接点为结点。 离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。 通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。 在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰富了文本编辑功能,改善了用户的视觉体验,方便用户快速便捷的对脚本或程序进行编辑、编译与调试。其中并行版在前后处理上进行了相应的改进。

有限元分析的概念和理论

第五章有限元素方法

§5.1有限元素方法的基本思想 有限元素法是一套求解微分方程的系统化数值计算方法。它比传统解法具有理论完整可靠,物理意义直观明确,适应性强,形式单纯、规范,解题效能强等优点。 从数学上来说, 有限元素方法是基于变分原理。它不象差分法那样直接去解偏微分方程, 而是求解一个泛函取极小值的变分问题。有限元素法是在变分原理的基础上吸收差分格式的思想发展起来的。 采用有限元素法还能使物理特性基本上被保持, 计算精度和收敛性进一步得到保证。 有限元素法优点: - 降低实验所需成本 - 減少試验对象的变异困难 - 方便参数控制 - 可获得实验无法获得的信息

有限元素法基本概念: 元素(element),节点(node),连結元素 有限元素法的基本思想: ?实际的物理問題很难利用单一的微分方程式描述,更无法順利求其解析解. ?有限元素法是将复杂的几何外型結构的物体切割成许多简单的几何形状称之为元素. ?元素与与元素间以“节点”相连. ?由于元素是简单的几何形状,故可以順利地写出元素的物理方程式,並求得节点上的物理量. ?采用內插法求得元素內任意点的物理量.

§5.2二维场的有限元素方法 1. 场域划分的约定 三角形元素。三角形元素越小,场域的分割就越细,计算的精度就会越高。因而在实际应用中是按精度的要求来决定场域内各处三角形元素的大小。 一般规定每个三角形元素的三个边的边长尽量地接近,尽量避免三角形元素具有大的钝角,一般最长的一条边不得大于最短边的三倍。 在分割场域时要求各三角形元素之间只能以顶点相交,即两相邻的三角形元素有两个公共的顶点及一条等长的公共边。不能把一个三角形的顶点取在另一个三角形的边上。 划分时还应当注意要尽量地使由相邻边界节点之间的线段所近似构成的曲线足够光滑。 如果在场域D内有不同的介质,则需要将介质的交面线选为分割线。

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

相关主题