搜档网
当前位置:搜档网 › 中考圆总复习(整理)

中考圆总复习(整理)

中考圆总复习(整理)
中考圆总复习(整理)

中考圆总复习(整理)

一、选择题

1.(2017贵州遵义市第8题)已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()

A.18πcm2B.27πcm2C.18cm2D.27cm2

2.(2017湖北黄石市第9题)如图,已知⊙O为

四边形ABCD的外接圆,O为圆心,若∠BCD=120°,

AB=AD=2,则⊙O的半径长为()

A.32

2B.6C.

3

2

D.23

3. (2017云南省第14题)如图,B、C是⊙A上的两点,

AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点. 若∠BFC=20°,则∠DBC=( )

A.30° B.29° C.28° D20°

4.(2017山东潍坊第10题)如图,四边形ABCD为⊙O的

内接四边形.延长AB与DC相交于点G,CD

AO⊥,垂足为E,

连接BD,?

=

∠50

GBC,则DBC

∠的度数为

(). A.50° B.60° C.80° D.85°

5. (2017山东潍坊第12题)点C A 、为半径是3的圆周上两点,点B 为?AC 的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆直径的三等分点上,则该菱形的边长为( ). A.5或22 B.5或32 C.6或22 D.6或32

6.(2017内蒙古包头第9题)如图,在△ABC 中,

AB =AC ,∠ABC =45°,以AB 为直径的⊙O 交BC

于点D ,若BC =42,则图中阴影部分的面积为( )

A .π+1

B .π+2

C .2π+2

D .4π+1

7.(2017玉林崇左第11题)如图,大小不同的两个磁块,

其截面都是等边三角形,小三角形边长是大三角形边长

的一半,点O 是小三角形的内心,现将小三角形沿着大

三角形的边缘顺时针滚动,当由①位置滚动到④位置时,

线段OA 绕点O 顺时针转过的角度是( )

A.240°

B.360°

C.480°

D.540°

8.(2017玉林崇左第12题)如图,AB 是O ⊙的直径,

,AC BC 分别与O ⊙相交于点,D E ,连接DE ,

现给出两个命题:

② AC AB =,则DE CE =;

②若45C =∠°,记CDE △的面积为1S ,

四边形DABE 的面积为2S ,则12S S =,那么( )

A.①是真命题,②是假命题

B.①是假命题,②

是真命题

C.①是假命题,②是假命题

D.①是真命题,②是真命题

9.(2017山东淄博市第9题)如图,半圆的直径BC

恰与等腰直角三角形ABC的一条直角边完全重合,

若BC=4,则图中阴影部分的面积是()

A.2+πB.2+2πC.4+πD.2+4π

10.(2017四川乐山市第7题)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB.CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()

A.2米B.2.5米C.2.4米D.2.1米

11.(2017吉林第6题)如图,直线l是⊙O的切线,

A为切点,B为直线l上一点,连接OB交⊙O于点C.

若AB=12,OA=5,则BC的长为()

A.5 B.6 C.7 D.8

12.(2017湖南永州第7题)小红不小心把家里的一块圆形玻璃打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是( )

A.AB,AC边上的中线的交点

B.AB,AC边上的垂直平分线的交点

C.AB,AC边上的高所在直线的交点

D.∠BAC与∠ABC的角平分线的交点

13.(2017吉林长春市第7题)如图,点A,B,C在⊙O上,

∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,

则∠D的大小为()

A.29°B.32°C.42°D.58°

14.(2017陕西省第9题)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,

在△ABP中,PB=AB,则PA的长为()

A.5B.53

C.52D.53

15.(2017辽宁葫芦岛第8题)如图,

点A、B、C是⊙O上的点,∠AOB=70°,

则∠ACB的度数是()

A.30°B.35°C.45°D.70°

16.(2017江苏南通市第6题)如图,圆锥的底面半径为2,

母线长为6,则侧面积为()

A.4πB.6πC.12πD.16π

17.(2017江苏南通市第9题)已知∠AOB,作图.

步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交

OA 、OB 于点P 、Q ;

步骤2:过点M 作PQ 的垂线交

?PQ 于点C ;

步骤3:画射线OC .

则下列判断:①?PC =oCQ ;②MC ∥OA ;③OP=PQ ; ④OC 平分∠AOB ,其中正确的个数为( )

A .1

B .2

C .3

D .4

二、填空题

1.(2017贵州遵义市第17题)如图,AB 是⊙O 的直径,

AB=4,点M 是OA 的中点,过点M 的直线与⊙O 交于C ,

D 两点.若∠CMA=45°,则弦CD 的长为 . 2.(2017辽宁营口第15题)如图,将矩形ABCD 绕点C 沿

顺时针方向旋转90°到矩形A B C D ''''的位置,

2,4AB AD ==,则阴影部分的面积为 .

3.(2017湖北恩施第15题)如图5,在Rt ABC △中,30BAC =∠°,

以直角边AB 为直径作半圆交AC 于点D ,以AD 为边作等边ADE △,

延长ED 交BC 于点F ,23BC =,则图中阴影部分的面积为 . (结果不取近似值)

4.(2017内蒙古包头第17题)如图,点A 、B 、C 为

⊙O 上的三个点,∠BOC =2∠AOB ,∠BAC =40°,

则∠ACB = 度.

5.(2017浙江温州第13题)已知扇形的面积为,

圆心角为120°,则它的半径为________.

6.(2017湖南永州第16题)如图,四边形ABCD 是

⊙O 的内接四边形,点D 是的中点,点E 是上

的一点,若∠CED =40°,则∠ADC =________度.

7. (2017湖南永州第17题)如图,这是某同学用纸板

做成的一个底面直径为10cm ,高为12cm 的无底

圆锥形玩具(接缝忽略不计),则做这个玩具所需纸板

的面积是_____________cm 2(结果保留).

8.(2017湖北荆门市第17题)已知:如图,ABC ?内接于O e ,

且半径OC AB ⊥,点D 在半径OB 的延长线上,

且030,2A BCD AC ∠=∠==,则由?BC ,线段CD 和

线段BD 所围成图形的阴影部分的面积为____________.

9.(2017福建宁德市第15题)将边长为2的

正六边形ABCDEF 绕中心O 顺时针旋转α度与

原图形重合,当α最小时,点A 运动的路径长为 .

10.(2017湖北鄂州市第14题)已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为 .

11.(2017贵州贵阳市第13题)如图,正六边形ABCDEF

内接于⊙O,⊙O的半径为6,则这个正六边形的边心距

OM的长为.

12.(2017吉林长春市第12题)如图,则△ABC中,

∠BAC=100°,AB=AC=4,以点B为圆心,BA长为半径

作圆弧,交BC于点D,则的长为.(结果保留π)

13.(2017江苏淮安市第16题)如图,在圆内接

四边形ABCD中,若∠A,∠B,∠C的度数之比

为4:3:5,则∠D的度数是°.

14.(2017江苏泰州市第12题)扇形的半径为3cm,弧长为2πcm,则该扇形的面积为cm2.

15.(2017江苏泰州市第15题)如图,

在平面直角坐标系xOy中,点A、B、P的

坐标分别为(1,0),(2,5),(4,2).若

点C在第一象限内,且横坐标、纵坐标均为整数,

P是△ABC的外心,则点C的坐标为.

16.(2017湖北鄂州市第14题)已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.

17.(2017江苏南通市第13题)四边形ABCD内接于圆,若∠A=110°,则∠C=度.

18.(2017云南省第5题)如图,边长为4的

正方形ABCD外切于⊙O,切点分别为E、F、G、H.

则图中阴影部分的面积为 .

19.(2017吉林第13题)如图,分别以正五边形ABCDE

的顶点A,D为圆心,以AB长为半径画?BE,oCE.

若AB=1,则阴影部分图形的周长为(结果保留π).

20.(2017湖北黄石市第13题)如图,

已知扇形OAB的圆心角为60°,扇形的

面积为6π,则该扇形的弧长为.

三、解答题

1.(2017贵州遵义市24题)如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.

(1)求证:四边形ACBP是菱形;

(2)若⊙O半径为1,求菱形ACBP的面积.

2.(2017辽宁营口第23题)如图,点E在以AB为直径的O

e上,点C是?BE的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是O

e的切线;

(2)若

4

cos,15

5

CAD BF

∠==,求AC的长.

3.(2017湖北黄石市第21题)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.

(1)求证:DB=DE;

(2)求证:直线CF为⊙O的切线.

4. (2017山东潍坊第22题)(本题满分8分)如图,AB为半圆O的直径,AC 是⊙O的一条弦,D为?BC的中点,作AC

DE⊥,交B的延长线于点F,连接DA. (1)求证:EF为半圆O的切线;(2)若3

DA,求阴影区域的面积.

=DF

6

=

(结果保留根号和π)

5.(2017湖北恩施第23题)如图,AB、CD是O

⊙的弦,且

⊙的直径,BE是O ∥,过点C的切线与EB的延长线交于点P,连接BC.

BE CD

(1)求证:BC平分ABP

∠;

(2)求证:2

=?;

PC PB PE

(3)若4

⊙的半径.

BE BP PC

-==,求O

6.(2017内蒙古包头第24题)如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.

(1)求证:AE?EB=CE?ED;

(2)若⊙O的半径为3,OE=2BE,

9

5

CE

DE

,求tan∠OBC的值及DP的长.

7.(2017浙江温州第24题)(本题14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.

(1)当∠APB=28°时,求∠B和的度数;

(2)求证:AC=AB。

(3)在点P的运动过程中

①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的

MQ的值;

②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG 的面积之比.

N

C

E

D

M

A

B

P

8.(2017玉林崇左第23题)如图,AB是O

⊙的直径,AC是上半圆的弦,过点C作O

⊙的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与O

⊙交于点F,设DAC

∠,CEA

∠的度数分别是,a b.

(1)用含a的代数式表示b,并直接写出a的取值范围;

(2)连接OF与AC交于点'O,当点'O是AC的中点时,求a,b的值.

9.(2017湖南益阳市第20题)(本小题满分10分)如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.

(1)求证:CD是⊙O的切线;

(2)若⊙O的半径为3,CD=4,求BD的长.

10.(2017山东淄博市第23题)如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.

(1)求证:△BFN∽△BCP;

(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);

②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.

11.(2017四川乐山市第24题)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.

(1)试判断PD与⊙O的位置关系,并说明理由;

(2)若点C是弧AB的中点,已知AB=4,求CE?CP的值.

12.(2017湖南永州第24题)(本小题满分10分)如图,已知AB 是⊙O 的直径,过O 点作OP ⊥AB ,交弦AC 于点D ,交⊙O 于点E ,且使∠PCA =∠ABC .

(1)求证:PC 是⊙O 的切线;

(2)若∠P =60°,PC =2,求PE 的长.

13.(2017湖北荆门市第22题)已知:如图,在ABC ?中,

090,C BAC ∠=∠的平分线AD 交BC 于点D ,过点D 作DE AD ⊥交AB 于点E ,以AE 为直径作O e .

(1)求证:BC 是O e 的切线;

(2)若3,4AC BC ==,求BE 的长.

14.(2017福建宁德市第23题)如图,BF为⊙O的直径,直线AC交⊙O于A,B两点,点D在⊙O上,BD平分∠OBC,DE⊥AC于点E.

(1)求证:直线DE是⊙O的切线;

(2)若 BF=10,sin∠BDE=,求DE的长.

15.(2017湖北鄂州市第22题)(本题满分9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点. ⊙O的切线MA与FB的延长线交于点M;P 为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA =PD,AD的延长线交⊙O于点E.

(1)求证:= ;

(2)若ED、EA的长是一元二次方程x2-5x+5=0的两根,求BE的长;

(3)若MA =6, , 求AB的长.

16.(2017贵州贵阳市第22题)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.

(1)求∠AFE的度数;

(3)求阴影部分的面积(结果保留π和根号).

17.(2017陕西省第23题)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时.

(1)求弦AC的长;

(2)求证:BC∥PA.

18.(2017辽宁葫芦岛第24题)如图,△ABC内接于⊙O,AC是直径,BC=BA,在∠ACB的内部作∠ACF=30°,且CF=CA,过点F作FH⊥AC于点H,连接BF.

(1)若CF交⊙O于点G,⊙O的半径是4,求的长;

(2)请判断直线BF与⊙O的位置关系,并说明理由.

19.(2017江苏淮安市第25题)如图,在△ABC中,∠ACB=90°,O是边AC 上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.

(1)试判断直线EF与⊙O的位置关系,并说明理由;

(2)若OA=2,∠A=30°,求图中阴影部分的面积.

20.(2017江苏泰州市第24题)如图,⊙O的直径AB=12cm,C为AB延长

线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.

(1)求证:点P为?BD的中点;

(2)若∠C=∠D,求四边形BCPD的面积.

21.(2017湖北鄂州市第22题)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.

(1)求证:;

(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.

22.(2017江苏南通市第24题)如图,Rt△ABC中,∠C=90°,BC=3,点O

在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,求弦BE的长.

中考数学圆知识点归纳

圆知识点归纳 一、圆的定义。 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素。 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质。 1、圆的对称性。 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: ? 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 ? 平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设⊙O 的半径为r ,OP=d 。 7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。 (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距 离相等。 (直角三角形的外心就是斜边的中点。) 8、直线与圆的位置关系。d 表示圆心到直线的距离,r 表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; d = r 点P 在⊙O 上 d < r (r > d 点P 在⊙O 内 d > r (r

中考数学专题训练圆专题复习

——圆 ◆知识讲解 一.圆的定义 1、在一个平面内,线段OA绕着它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。 2、圆是到定点的距离等于定长的所有点的集合。 3、确定一个圆需要两个要素:一是位置二是大小,圆心确定其位置,半径确定其大小。 4、连接圆上任意两点的线段叫弦,经过圆心的弦叫直径。圆上任意两点间的部分叫做圆弧,简称弧。以A、B为端点的弦记作“圆弧AB”,或者“弧AB”。大于半圆的弧叫作优弧(用三个字母表示,如ABC)叫优弧;小于半圆的弧(如AB)叫做劣弧。 二、垂直于弦的直径、弧、弦、圆心角 1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弦。 2、垂径定理逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 3、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。 在同圆或等圆中,等弧所对的圆心角相等。 在等圆中,弦心距相等的弦相等。 三、圆周角 1、定义:顶点在圆上,并且角的两边和圆相交的角。 2、定理:一条弧所以的圆周角等于这条弧所对的圆心角的一半。 3、推论:(1)在同圆或等圆中,同弧或等弧所以的圆周角相等。 (2)直径所对的圆周角是直角,90°的圆周角所对的弦是直径。 四、点和圆的位置关系 1、设⊙O的半径为r,点到圆心的距离为d。 则d>r ?点在圆外,d=r ?点在圆上,d

中考圆知识点经典总结

圆知识点学案 考点一、圆的相关概念 1、圆的定义 在一个平面,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。 2、圆的几何表示 以点O为圆心的圆记作“⊙O”,读作“圆O” 考点二、弦、弧等与圆有关的定义 (1)弦 连接圆上任意两点的线段叫做弦。(如图中的AB) (2)直径 经过圆心的弦叫做直径。(如途中的CD) 直径等于半径的2倍。 (3)半圆 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。 (4)弧、优弧、劣弧 圆上任意两点间的部分叫做圆弧,简称弧。 弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。 大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示) 考点三、垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。 垂径定理及其推论可概括为: 过圆心 垂直于弦 直径平分弦知二推三 平分弦所对的优弧 平分弦所对的劣弧 考点四、圆的对称性 1、圆的轴对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。 2、圆的中心对称性 圆是以圆心为对称中心的中心对称图形。 考点五、弧、弦、弦心距、圆心角之间的关系定理

1、圆心角 顶点在圆心的角叫做圆心角。 2、弦心距 从圆心到弦的距离叫做弦心距。 3、弧、弦、弦心距、圆心角之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。 推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 考点六、圆周角定理及其推论 1、圆周角 顶点在圆上,并且两边都和圆相交的角叫做圆周角。 2、圆周角定理 一条弧所对的圆周角等于它所对的圆心角的一半。 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 考点七、点和圆的位置关系 设⊙O的半径是r,点P到圆心O的距离为d,则有: dr?点P在⊙O外。 考点八、过三点的圆 1、过三点的圆 不在同一直线上的三个点确定一个圆。 2、三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆。 3、三角形的外心 三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。 4、圆接四边形性质(四点共圆的判定条件) 圆接四边形对角互补。 考点九、直线与圆的位置关系 直线和圆有三种位置关系,具体如下: (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(市西城区)如果圆柱的高为20厘米,底面半径是高的 4 1,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在 的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(市区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(市区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么 此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘米和 17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(市)如图,⊙O 为△ABC 的切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

2018届中考数学复习《圆的有关性质》专项训练题含答案

2018届初三数学中考复习 圆的有关性质 专项复习练习 2. 如图,AB 是OO 的直径,BOCD ^DE / C0D= 34°,则/AEO 勺度数是() 3. 如图是以厶ABC 的边AB 为直径的半圆 Q 点C 恰在半圆上,过 C 作CD L AB 3 交AB 于 D,已知cos / AC 3 , BC= 4,贝卩AC 的长为() 5 20 16 A. 1 B. 20 C . 3 D. § 4. 已知OO 的直径CD= 10 cm, AB 是OO 的弦,AB!CD 垂足为M 且AB= 8 cm, 则AC 的长为() A. 2 5 cm B . 4命 cm C. 2 5 cm 或 4 5 cm D . 2 3 cm 或 4 3 cm A. 51° B. 56 5. 如图,在O Q 中,QALBC / AQB= 70°,则/ ADC 勺度数为( 1.如图,已知O O 的半径为13,弦AB 长为24,则点O 到AB 的距离是() C. / () D B

A. 30° B . 35° C . 45° D . 70° 6. 如图,00的直径AB垂直于CD / CAB= 36°,则/ BCD勺大小是() A. 18° B . 36° C . 54° D . 72° 7. 如图,已知OO为四边形ABCD勺外接圆,O为圆心,若/ BCD= 120°, AB= AD= 2,则00的半径长为( 8. 如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB= CD= 0.25 米, BD= 1.5米,且AB CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是() A. 2 米 B . 2.5 米C . 2.4 米D . 2.1 米 9. 如图,AB是00的直径,弦CDLAB于点E, / CDB= 30°, O O的半径为5 cm 则圆心O到弦CD的距离为() A 晋 B. f C. 3 D. 2、 3 3 fi R D

中考数学圆的知识点总结

2019年中考数学圆的知识点总结 一、圆及圆的相关量的定义(28个) 1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。 3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。 6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。 7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。 二、有关圆的字母表示方法(7个)

圆--⊙半径—r 弧--⌒直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个) 1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离): P在⊙O外,POP在⊙O上,PO=r;P在⊙O内,PO 2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。 5.一条弧所对的圆周角等于它所对的圆心角的一半。 6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 7.不在同一直线上的3个点确定一个圆。 8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。 9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB

天津市2020版中考数学专题练习:圆50题_含答案

、选择题: 1. 如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 3. 已知圆内接正三角形的边心距为 1,则这个三角形的面积为( ) A .2 B .3 C .4 D .6 4. 如图,点 A , B , C ,在⊙ O 上,∠ ABO=32°,∠ ACO=38°,则∠ BOC 等于 ( 6.如图, ⊙O 是△ ABC 的外接圆 ,弦AC 的长为 3,sinB=0.75, 则⊙ O 的半径为( ) 圆 50 题 垂直,在测直径时,把 A . O 点靠在圆周上,读得刻度 OE=8个单位, 12 个单位 B . 10 个单位 C CD 是⊙ O 的两条弦,连结 AD 、BC .若∠ BCD=70°, OF=6个单位,则圆的直径为 ( 1 个单位 D . 15 个单位 则∠ BAD 的度数为( 2. 如图, AB 、 A . 40° B .50° C . 60° D . 70° B .70° C .120° D . 140° 5. 如图 , 点 A,B,C 在⊙ O 上, ∠A=36° , ∠ C=28° , 则∠ B=( A.100 B.72 C.64 D.36 OA 、 OB 在 O 点钉在一起,并使它们保持

AD 切⊙ O 于点 A ,点 C 是弧 BE 的中点,则下列结论不成立的是( B . EC=B C C .∠ DAE=∠ABE D .AC ⊥OE 10. 如图 , △ABC 中,AB=5,BC=3,AC=4, 以点 C 为圆心的圆与 AB 相切 ,则⊙ C 半径为( 11. 数学课上,老师让学生尺规作图画 Rt △ABC ,使其斜边 AB=c ,一条直角边 BC=a ,小明的作法如图所 示, 你认为这种作法中判断∠ ACB 是直角的依据是( ) A.4 B.3 C.2 D. OB=6cm,高 OC=8cm 则. 这个圆锥的侧面 积是 7. 如图,圆锥的底面半径 22 A.30cm 2 B.30 π cm 2 C.60 2 π cm D.120cm 9. 如图,AB 是⊙ O 的直径 ,C 、D 是⊙ O 上两点 , 分别连接 AC 、BC 、CD 、OD .∠ DOB=140° A.20° B.30 C.40 D.70 ,则∠ ACD (= B.2.5 C.2.4 D.2.3

中考圆知识点总结复习(经典推荐)打印版

初中数学——《圆》 【知识结构】 ????? ??????? ? ? ? ?? ? ? ????? ??????? ? ? ? ?? ? ?? ? ? ???????????????????????????? ???????????????????????????????????????????? ???????? ?? ????????? ?? ??侧面积、全面积计算侧面展开图定义圆柱和圆锥形面积计算圆面积、扇形、组合图形周长计算圆周长、弧长、组合图画法应用边长、面积的计算计算半径、边心距、中心角计算概念正多边形正多边形与圆内含 内切相交外切外离圆和圆的位置关系切割线定理及推论相交弦定理及推论相交性质判定相切相离直线和圆的位置关系反证法点的轨迹圆内接四边形圆周角定理距之间的关系圆心角、弧、弦、弦心垂径定理及推论基本性质三点定圆定理点与圆的位置关系定义圆的有关性质圆

一、圆及与圆相关的概念 二、圆的对称性 (1)圆既是轴对称图形,又是中心对称图形。 (2)对称轴——直径所在的直线,对称中心——圆心。 三、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; 知2推3定理:①AB是直径②AB CD ⊥③CE DE =④弧BC=弧BD⑤弧AC=弧AD 推论2:圆的两条平行弦所夹的弧相等。 四、圆心角定理 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 知1推3定理: ①AOB DOE ∠=∠;②AB DE =;③OC OF =;④弧BA=弧BD 五、圆周角定理 1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 2、推论: 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角 所对的弧是等弧; 2 对的弦是直径。 3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角 三角形。 六、圆内接四边形 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内 对角。 七、点与圆的位置关系 1、点在圆内? d r ?点A在圆外; 八、三点定圆定理——三角形外接圆 1、三点定圆:不在同一直线上的三个点确定一个圆。 2、三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外 接圆。 3、三角形的外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。 九、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r

中考数学培优专题复习圆的综合练习题附详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S △CDO = 1 2 ×6×4=12, ∴平行四边形OABC 的面积S=2S △CDO =24. 2.已知 O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA ,

中考复习圆专题所有知识点和题型汇总全

《圆》题型分类资料 一.圆的有关概念: 1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有() A. 1个 B.2个 C.3个 D.4个 2.下列命题是假命题的是() A.直径是圆最长的弦B.长度相等的弧是等弧 C.在同圆或等圆中,相等的圆心角所对的弧也相等 D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。 3.下列命题正确的是() A.三点确定一个圆B.长度相等的两条弧是等弧 C.一个三角形有且只有一个外接圆D.一个圆只有一个外接三角形 4.下列说法正确的是( ) A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半 C.长度相等的弧所对的圆周角相等D.直径所对的圆周角等于90° 5.下面四个图中的角,为圆心角的是( ) A.B.C.D. 二.和圆有关的角: 1. 如图1,点O是△ABC的内心,∠A=50 ,则∠BOC=_________ 图1 图2 2.如图2,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( ) A.116° B.64° C. 58° D.32° 3. 如图3,点O为优弧AB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为

A 图3 图4 4. 如图4,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°, 那么∠BDC=_________度. 5. 如图5,在⊙O中,BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=. A 图5 图6 6. 如图6,A,B,C,是⊙O上的三个点,若∠AOC=110°,则∠ABC=°. 7.圆的内接四边形ABCD中,∠A:∠B:∠C=2:3:7,则∠D的度数为。 8. 若⊙O的弦AB所对的劣弧是优弧的 1 3 ,则∠AOB= . 9.如图7,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=________ A 图7 图8 10.如图8,△ABC是O的内接三角形,点C是优弧AB上一点(点C不与A,B重合),设OABα ∠=,Cβ ∠=(1)当35 α=时,求β的度数; (2)猜想α与β之间的关系为 11.已知:如图1,四边形ABCD内接于⊙O,延长BC至E,求证:∠A+∠B C D=180°,∠DCE=∠A; 如图2,若点C在⊙O外,且A、C两点分别在直线BD的两侧,试确定∠A+∠BCD与180°的大小关系;

中考数学圆专题练习

中考数学圆 专题练习-- 一、选择题 1.(2010年 湖里区 二次适应性考试)已知半径分别为5 cm 和8 cm 的两圆相交,则它们的圆心距可能是( ) A .1 cm B .3 cm C .10 cm D .15 cm 答案:C 2.(2010年教育联合体)如图,已知AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,则下列结论 正确的个数是( ) ①AD ⊥BC ,②∠EDA =∠B ,③OA = 1 2AC ,④DE 是⊙O 的切线. A .1个 B .2个 C .3个 D .4个 答案:D 3.(2010安徽省模拟)如图,AB 是⊙O 的直径,点D 、E 是圆的三等分点,AE 、BD 的延长线交于点C ,若CE=2,则 ⊙O 中阴影部分的面积是( ) A .433π- B .2 3π C .2 23 π- D .1 3 π 答案:A 4.(2010年重庆市綦江中学模拟1).在直角坐标系中,⊙A 、⊙B 的 位置如图所示.下列四个点中,在⊙A 外部且在⊙B 内部的是( ) A.(1,2) B.(2,1). C.(2,-1). D.(3,1) 答案C 5.(2010年聊城冠县实验中学二模)如下图,将半径为2cm 的圆形纸片 第4题图 O D B C E A 第3题 A O B C D E

折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A .2cm B .3cm C .32cm D .52cm 答案C 6.(2010年广州市中考六模)、如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为( ) A. 2 9cm π B. 2 18cm π C. 2 27cm π D. 2 36cm π 答案:B 7.(2010年广州市中考六模)如图,已知⊙O 的弦AB 、CD 相交于点E , 的度数为60°, 的度数为100°,则∠AEC 等于( ) A. 60° B. 100° C. 80° D. 130° 答案:C 8.(2010年广西桂林适应训练)如图,圆弧形桥拱的跨度AB = 12米,拱高CD =4米,则拱桥的半径为( ). A.6.5米 B.9米 C.13米 D.15米 答案:A 9.(2010年广西桂林适应训练)如图,BD 是⊙O 的直径,∠CBD=30o , 则∠A 的度数为( ).[来 A.30o B.45o C.60o D.75o 答案:C 10.(2010山东新泰)已知⊙O 1的半径为5cm ,⊙O 2的半径为3cm ,圆心距O 1O 2=2,那么⊙O 1与⊙O 2的位置关系是( ) A .相离 B .外切 C .相交 D .内切 答案:D 11.(2010年济宁师专附中一模)如图,A B C D ,,,为⊙O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路 7题图 8题图 9题图

初三数学圆知识点总结

初三数学圆知识点总结 一、本章知识框架 二、本章重点 1.圆的定义: (1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆. (2)圆是到定点的距离等于定长的点的集合. 2.判定一个点P是否在⊙O上. 设⊙O的半径为R,OP=d,则有 d>r点P在⊙O 外; d=r点P在⊙O 上; d

(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心. 在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等. (2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. 垂径定理及推论: (1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (3)弦的垂直平分线过圆心,且平分弦对的两条弧. (4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. (5)平行弦夹的弧相等. 5.三角形的内心、外心、重心、垂心 (1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示. (2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示. (4)垂心:是三角形三边高线的交点. 6.切线的判定、性质: (1)切线的判定: ①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离d等于圆的半径的直线是圆的切线. (2)切线的性质: ①圆的切线垂直于过切点的半径. ②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心. (3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长. (4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 7.圆内接四边形和外切四边形 (1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角. (2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系: 设⊙O 半径为R,点O到直线l的距离为d. (1)直线和圆没有公共点直线和圆相离d>R. (2)直线和⊙O有唯一公共点直线l和⊙O相切d=R. (3)直线l和⊙O 有两个公共点直线l和⊙O 相交dr),圆心距.

中考专题训练 阿氏圆

在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆. 如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P构成的图形为圆. 以下给出两种证明 法一:构造角分线 先复习两个定理 (1)角平分线定理:如图,在△ABC中,AD是∠BAC的角平分线,则AB:AC=DB:DC. 证明:利用等积法 ,即AB:AC=DB:DC (2)外角平分线定理:如图,在△ABC中,外角CAE的角平分线AD交BC的延长线于点D,则AB:AC=DB:DC. 证明:在BA延长线上取点E使得AE=AC,连接BD,则△ACD△△AED(SAS),CD=ED且AD平分△BDE,则DB:DE=AB:AE,即AB:AC=DB:DC. 接下来开始证明:如图,PA:PB=k,作△APB的角平分线交AB于M点,根据角平分线定理,MA:MB=PA:PB=k,

故M 点为定点,即△APB 的角平分线交AB 于定点; 作△APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA:NB=PA:PB=k ,故N 点为定点,即△APB 外角平分线交直线AB 于定点; 又△MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆. 中考专题训练 阿氏圆模型 阿氏圆(阿波罗尼斯圆): 已知平面上两定点A 、B ,则所有满足 ) (1≠=k k PB PA 的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆. 在初中的题目中往往利用逆向思维构造“斜A ”型相似(也叫“母子型相似”)+两点间线段最短,解决带系数两线段之和........ 的最值问题. 观察下面的图形,当P 在⊙O 上运动时,用PA 、PB 的长在不断的发生变化,但PB PA 的比值却始终保持不变. 解决阿氏圆问题,首先要熟练掌握母子型相似三角形的性质和构造方法. 那么如何应用“阿氏圆”的性质解答带系数的两条线段和的最小值呢?我们来看一道基本题目: 例.已知∠ACB=90°,CB=4,CA=6,∠C 半径为2,P 为圆上一动点. (1)求BP AP 2 1 +的最小值为 . (2)求 BP AP +3 1 的最小值为 .

2018 初三数学中考复习 圆 专题复习训练题及答案

2018 初三数学中考复习 圆 专题复习训练题 一、选择题 1.如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵ ,∠AOB =60°,则∠BDC 的度数是( D ) A .60° B .45° C .35° D .30° 2.如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连接BD ,AD.若∠ACD =30°,则∠DBA 的大小是( D ) A .15° B .30° C .60° D .75°

3.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=3,则阴影部分的面积是( C ) A. 3 2 B. π 6 C. 3 2 - π 6 D. 3 3 - π 6 4.已知⊙O的半径为10 cm,弦AB∥CD,AB=12 cm,CD=16 cm,则AB和CD 的距离为( C ) A.2 cm B.14 cm C.2 cm或14 cm D.10 cm或20 cm 5.如图,从一块直径为24 cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( C )

A.12 cm B.6 cm C.3 2 cm D.2 3 cm 二、填空题 6.如图,⊙O的直径CD=20 cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6 cm,则AB的长为__16__cm. 7.如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=__125°.

初中圆的知识点归纳

初中圆的知识点归纳 Prepared on 24 November 2020

《圆》章节知识点复习 一、点与圆的位置关系 1、点在圆内 ? d r < ? 点C 在圆内; 2、点在圆上 ? d r = ? 点B 在圆上; 3、点在圆外 ? d r > ? 点A 在圆外; 二、直线与圆的位置关系 1、直线与圆相离 ? d r > ? 无交点; 2、直线与圆相切 ? d r = ? 有一个交点; 3、直线与圆相交 ? d r < ? 有两个交点; 三、圆与圆的位置关系 外离(图1)? 无交点 ? d R r >+; 外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 四、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ① AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相 B A D

等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 五、圆心角定理 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =; ③OC OF =;④ 弧BA =弧BD 六、圆周角定理 1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠ 2、圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠ 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。 即:在⊙O 中,∵AB 是直径 或∵90C ∠=? ∴90C ∠=? ∴AB 是直径 推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 即:在△ABC 中,∵OC OA OB == ∴△ABC 是直角三角形或90C ∠=? B A B A O

2020中考数学 专题练习:圆的综合题(含答案)

2020中考数学 专题练习:圆的综合题(含答案) 类型一 与全等结合 1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC = 2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵ 上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数; (2)当点P 移动到劣弧CB ︵ 的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等. 第1题图 (1)解:∵AC =2,OA =OB =OC =1 2 AB =2,

∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =1 2∠AOC =30°, 又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°, ∴∠ACD =∠DCO -∠ACO =90°-60°=30°; 第1题解图 (2)证明:如解图,连接PB ,OP , ∵AB 为直径,∠AOC =60°, ∴∠COB =120°, 当点P 移动到CB ︵ 的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形,

∴OC =CP =OB =PB , ∴四边形OBPC 为菱形; (3)证明:∵CP 与AB 都为⊙O 的直径, ∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中, ? ????AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL). 2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ; (3)若sin B =4 5 ,求cos ∠BDM 的值. 第2题图 (1)证明:如解图,连接OD ,

中考数学《圆》专项训练及答案解析

中考数学《圆》专项训练及答案解析 1.(2018?鞍山)如图,四边形ABCD内接于⊙O,AC与BD为对角线,∠BCA=∠BAD,过点A 作AE∥BC交CD的延长线于点E. (1)求证:EC=AC. (2)若cos∠ADB=,BC=10,求DE的长. 解:(1)证明:∵BC∥AE, ∴∠ACB=∠EAC, ∵∠ACB=∠BAD, ∴∠EAC=∠BAD, ∴∠EAD=∠CAB, ∵∠ADE+∠ADC=180°,∠ADC+∠ABC=180°, ∴∠ADE=∠ABC, ∵∠EAD+∠ADE+∠E=180°,∠BAC+∠ABC+∠ACB=180°, ∴∠E=∠ACB=∠EAC, ∴CE=CA. (2)解:设AE交⊙O于M,连接DM,作MH⊥DE于H. ∵∠EAD=∠CAB,

∴=, ∴DM=BC=10, ∵∠MDE+∠MDC=180°,∠MDC+∠MAC=180°, ∴∠MDE=∠CAM, ∵∠E=∠CAE, ∴∠E=∠MDE, ∴MD=ME=10,∵MH⊥DE, ∴EH=DH, ∵∠ADB=∠ACB=∠BAD=∠E, ∴cos∠E==, ∴EH=4, ∴DE=2EH=8. 2.(2018?河池)如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE. (1)求证:CD是⊙O的切线; (2)若AB=4,BD=3,求CD的长. (1)证明:连接OC, ∵DE⊥AE, ∴∠E=90°, ∴∠EDC+∠ECD=90°, ∵∠A=∠CDE, ∴∠A+∠DCE=90°, ∵OC=OA, ∴∠A=∠ACO,

∴∠ACO+∠DCE=90°, ∴∠OCD=90°, ∴OC⊥CD, ∴CD是⊙O的切线; (2)解:∵AB=4,BD=3, ∴OC=OB=AB=2, ∴OD=2+3=5, ∴CD===. 3.(2018?朝阳)如图,AB是⊙O的直径,AC是⊙O的弦,OD⊥AB,OD与AC的延长线交于点D,点E在OD上,且CE=DE. (1)求证:直线CE是⊙O的切线; (2)若OA=,AC=3,求CD的长. (1)证明:连接OC, ∵OD⊥AB, ∴∠AOD=90°, ∴∠D+∠A=90°, ∵OA=OC, ∴∠A=∠ACO,

相关主题