搜档网
当前位置:搜档网 › 二氧化硅

二氧化硅

二氧化硅
二氧化硅

二氧化硅与信息材料

学习目标:

知道二氧化硅的一些性质及硅单质的制备,了解二氧化硅和单晶硅的用途。

一、二氧化硅(酸性氧化物)

1.存在形式:沙子、石英、水晶、硅藻土

2.性质:

【设疑】盛放氢氧化钠溶液的玻璃试剂瓶不能用玻璃塞,你知道是什么原因吗?【强调】氢氧化钠与玻璃中二氧化硅反应,生成硅酸钠,具有粘性,容易把瓶子和塞子粘住,不容易打开。

3.空间结构:立体网状结构

结构单元:正四面体

SiO2用途非常广泛,可用于制作光学镜片、石英坩埚等

二.光导纤维

【板书】三、硅

1.硅的制备

制粗硅:2C+SiO2高温Si+2CO↑

硅提纯:Si+2Cl2高温SiCl4(400—500 ℃)

SiCl4+2H2高温Si+4HCl

2.硅的物理性质

(1)灰黑色,有金属光泽,硬而脆的固体

(2)熔、沸点高、硬度大,难溶于水

(3)晶体硅是良好的半导体材料

3.硅的化学性质

(1)常温下,性质稳定,与氧气、氯气、硝硫酸等都很难反应(2)加热高温条件下,与氧气、氯气等反应。

Si + O

2高温

SiO

2

Si + 2Cl

2 高温

SiCl

4

(液态)

(3)与碱液(NaOH溶液)反应:Si+2NaOH +H2O ===Na2SiO3+3H2↑

(4)与酸反应:与HF反应:Si + 4HF == SiF4↑+ 2H2↑

4.硅的用途

检测达标:

1.下列关于硅和二氧化硅的性质叙述中正确的是()

A.常温下O

2能把Si氧化成SiO

2

B.SiO

2

是酸性氧化物,能与水反应生成硅酸

C.石英、水晶、海沙的主要成分都是SiO

2 D.硅通常很稳定,不溶于常见的溶液中。

2.要除去SiO

2中混有的少量杂质CaCO

3

,最适宜的试剂是 ( )

A.水

B.盐酸

C.稀硫酸

D.氢氧化钠溶液。3.科学家提出硅是“21世纪的能源”,这主要是由于作为半导体材料的硅在太阳能发电过程中具有重要的作用。下列关于硅的说法中正确的是( ) A.自然界硅的贮量丰富

B.自然界中存在大量单质硅

C.高纯度的二氧化硅被用于制作计算机芯片

D.光导纤维的主要成分是Si

4.二氧化硅是一种熔沸点很高的、硬度很大的氧化物,下列有关二氧化硅用途

的说法不正确的是( )

A.用于制作光学镜片B.制造光导纤维

C.制石英坩埚D.与水直接反应制硅酸

5.玻璃的主要成分之一是二氧化硅,常温下,能跟二氧化硅反应的物质是( ) A.纯碱溶液B.浓硫酸C.氢氟酸D.浓硝酸

6.下列反应中属于氧化还原反应的是( )

A.Si+2NaOH+H2O=Na2SiO3+2H2↑B.PbO+H2SO4=PbSO4+H2O

C.Na2SiO3+6HF=Na2SiF6+3H2O D.SiO2+4HF=SiF4+2 H2O

7.下列物质的主要成分不是SiO2的是

A、水晶

B、石英

C、沙子

D、干冰

8.制备硅单质时,主要化学反应如下:(1)SiO2+2C高温Si+2CO↑(2)Si+2Cl2高温SiCl4(3)SiCl4+2H2高温Si+4HCl

下列对上述三个反应的叙述中,不正确的是()

A.(1)(3)为置换反应

B.(1)(2)(3)均为氧化还原反应

C.(2)为化合反应

D.三个反应的反应物中硅元素均被还原9.下列试剂不能贮存在磨口玻璃塞的试剂瓶里的( )

A.浓硫酸B.NaOH溶液C.盐酸D.硫酸铜溶液10.生石灰中往往含有杂质CaCO3和SiO2,要检验是否存在这两种杂质,最好选用( )A.水 B.盐酸 C.硫酸 D.烧碱

11.下列物质的主要成分不属于硅酸盐的是()

A.水晶

B.陶瓷

C.水玻璃

D.普通玻璃

12.硅被誉为无机非金属材料的主角。下列物品用到硅单质的是()

A.陶瓷餐具

B.石英钟表

C.计算机芯片

D.光导纤维

13.应用带胶塞的玻璃试剂瓶保存的溶液是()

A、硫酸钠溶液

B、水玻璃

C、烧碱

D、浓硫酸

二氧化硅知识点分类

二氧化硅知识点分类 生活中的物质引入二氧化硅 纯净的二氧化硅晶体无色透明,称为水晶。具有彩色环带状或层状的石英晶体,称为玛瑙。 沙子中也存在小粒的石英晶体,是基本的建筑材料。纯净的 SiO 2是现代光学及光纤制品的 基本原料,也是芯片的组成成分;石英、玛瑙可用来制作饰物和工艺品。 硅的广泛存点 壤,约占地壳质量的90%以上. H 区 f — ■

天然二氧化硅 (硅石) J 结晶形:SiQ 无定形:硅藻土 二氧化硅的结构 面体又是通过顶角的氧原子相连接。实际上, SiO 2晶体是由Si 和0的比例所组成的立体网 状结构的晶体。二氧化硅晶体中,硅原子的4个价电子与4个氧原子形成4个共价键, 硅原子位于正四面体的中心,4个氧原子位于正四面体的4个顶角上。二氧化硅是 无定形二氧化硅 114 Mita uu;rar ]>自<R 时朝匸怎 I 4 * .^EJlKS^Ei SAH vl I. ll'l - 中国硅藻土資源丰富」全国询个劄区J 有硅蒸+矿产探明储哥imr 区有 3545L 总保有储量矿右3>B 戒盹“ 仅次于芙国’居眩界S2R-在地区分 布上*以自林最多,占全国储量的54.8%^ 云南.福塞河:地冼之.矿原类型 主要为火山物諒沉枳型矿床f 吉林长白、 山东临ft 、浙江1???市硅離土矿钢和 ft 灌沉叙型(云南寻四川来易硅* i 矿尊)矿床.成旷时代集中在笫三纪 和第四纪』以第三纪为主. Si SiO 2晶体的基本结构是以硅原子为中心,氧原子在 4个顶角上的正四面体结构,而这些正四 氧化硅的存在形式 水晶 玛瑙

硅原子跟四个氧原子形成的四面体结构的原子晶体,二氧化硅晶内Si原子均以sp3杂化,分别与4个O原子成键,构成Si-O四面体并占据四面体中心位置,配位数为4;O位于四面体的角顶。二氧化硅晶体中,由于Si的sp3杂化致使4个Si-O键键能相同,Si-O四面体没有极化和畸变,结构稳定。Si-O四面体通过共用角顶的O连接,在空间形成三维网状结构。 二氧化硅的物理性质 氧化硅的化学性质 ①SiO2是酸性氧化物,但不能与水反应生成H2SiC3 ②SiO2不能与盐酸、硝酸、硫酸等其他酸反应,氢氟酸是唯一与SiO2反应的酸。

单质硅和二氧化硅

单质硅和二氧化硅 【学习目标】 了解硅、二氧化硅的物理性质,掌握其化学性质。 【课前预习案】 一、单质硅与半导体材料 1.无机非金属材料包括、、等。传统无机非金属材料是以为主要成分,主要包括、、。 2.半导体材料特指导电能力介于和之间的一类材料。最早使用的半导体材料是,该材料的化学性质在常温下稳定;现在广泛使用的半导体材料是 3.单质硅: (1)存在和含量:在地壳中,含量居第二位(O、Si、Al、Fe),只有化合态,是构成矿物和岩石的主要成分。有和两种同素异形体。 (2)物理性质:晶体硅是色、有、的固体。单质硅的导电性介于和之间。 (3)化学性质: 常温下,化学性质不活泼,不易与H2、O2、Cl2、H2SO4、HNO3等物质反应,但能与F2、HF、NaOH反应,方程式为:Si+2F2=SiF4; 4HF+Si= SiF4↑+2H2↑; Si+2NaOH+H2O=Na2SiO3+2H2↑ 加热时,能与O2、Cl2、H2、C等非金属反应 Si+O2=== (4)硅的制取:工业制粗硅:化学方程式: 在该反应中,氧化剂是,还原剂。 粗硅的提纯:在高温下让粗硅(Si)与氯气(Cl2)反应,其产物在高温下被氢气(H2)还原而得到较纯的硅,反应方程式为、 (5)硅的用途 硅的用途非常广泛,不但可用于制造、,还用于制造和等,此外,的用途也很广。 二、二氧化硅与光导材料 1.存在:广泛存在于自然界中,、的主要成分就是二氧化硅。 2.物理性质:二氧化硅是由和构成的,硬度,熔、沸 点,难溶于水的固体。 3.化学性质:(1)酸性氧化物: 不溶于水,也不与水反应,可以与NaOH、CaO反应,方程式分别 为:、 (2)常温可与氢氟酸反应(特性) 方程式为,此反应工业上常用来 4.二氧化硅的用途广泛,常被用来制造石英表中的材料和高性能的现代通讯材料。 【探究案】 1、实验室试剂的正确保存非常重要。实验室可用广口瓶贮存固体试剂,细口瓶存放液体试剂,但是有些试剂必须贮存在具橡胶塞的玻璃试剂瓶中。以下物质必须贮存在具有橡

二氧化硅的制备

纳米二氧化硅颗粒的制备与表征 一、实验目的 颗粒。 1、学习溶胶—凝胶法制备纳米SiO 2 颗粒物相分析和粒径测定。 2、利用粒度分析仪对SiO 2 颗粒进行表征。 3、通过红外光谱仪对纳米SiO 2 4、通过热重分析仪测试煅烧温度。 二、实验原理 纳米SiO 具有三维网状结构,拥有庞大的比表面积,表面上存在着大量2 的羟基基团, 亲水性强, 众多的颗粒相互联结成链状,链状结构彼此又以氢键 相互作用,形成由聚集体组成的立体网状结构。 图1 纳米二氧化硅三维网状结构 图2 纳米二氧化硅表面上存在着大量的羟基基团

溶胶凝胶法(Sol-Gel法):利用活性较高的前驱体作为原料,在含水的溶液中水解,生成溶胶,然后溶胶颗粒间进一步发生相互作用,与溶剂共同生成凝胶,干燥后、煅烧获得前驱体相应的氧化物。 第一步水解: 硅烷的水解过程ROH ?→ - + - -2 - ? Si+ OH O Si H OR 第二步缩合: 硅烷的缩聚过程O ?→ ? - - - - - - - + Si O H - Si Si + HO Si2 OH 总反应:ROH - - ? - - - + ?→ Si 22+ Si O O Si2 OR H 硅烷的浓度,硅烷溶液的pH 值,溶剂成分,水解时间与温度均会影响到硅烷的水解缩聚过程。 其中,pH 值能影响硅烷溶液的水解缩聚反应速率。一般认为酸性和碱性条件下均有利于硅烷的水解反应,而碱性条件下更能促进缩聚反应的进行。因此,选择合理的pH 值能控制硅烷的水解与缩合反应速率。 水含量除了影响硅烷的水解与缩聚反应速率外,还影响其溶解性;而醇溶剂对硅烷分子起到助溶与分散的作用,还起到调节水解速率的作用。 三、仪器及试剂 仪器常规玻璃仪器,不同型号移液枪,坩埚,研钵,水浴锅,磁子,磁力搅拌器,烘箱,马弗炉,傅里叶红外光谱仪,差热-热重分析仪,粒度分析仪; 试剂乙醇(AR),去离子水,TEOS,1:1 氨水,浓氨水、浓盐酸,精密pH 试纸。 四、实验步骤 ①Stober 法制备纳米SiO 颗粒 2 取75mL 无水乙醇于烧杯中,加入25mL 去离子水,搅拌使其均匀。向其中加入10mL TEOS,同时搅拌。用1:1 氨水溶液调节硅烷溶液的pH 值至7,搅拌10min。将上述硅烷溶液放入水浴锅中,水温35℃,陈化1h。向溶液中逐滴加

二氧化硅层包裹的ITO纳米线的一步制备和特征描述

毕业设计(论文)外文资料翻译 学院:材料科学与工程学院 专业:金属材料工程 姓名: 学号: 外文出处: Journal of Solid State Chemistry 183 (2010),2490-2495 附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 二氧化硅层包裹的ITO纳米线的一步制备和特征描述 文章信息: 文章历史:2010年6月2日 修改稿收到日期:2010年8月5日 接稿日期:2010年8月7日 网上登稿日期:2010年8月19日 关键字: ITO 纳米线 硅胶 光致发光 生长机制 摘要 新型的In1.94Sn0.06O3(ITO)/非晶的SiOx壳结构可通过简单地热力学蒸发成功制得。研究表明典型的核结构有一个结晶核心,ITO纳米线被非晶SiOx管状结构包裹。假设ITO纳米线成核生长的主要机制为用金催化的蒸发—液态—固态过程,而SiO x壳层也同时生成。本文讨论了在壳结构的外部优先形成SiO x管的可能原因。为研究核心与壳层结构,对其进行室温光致发光测量结果在2.73、3.06和1.65eV三处出现峰值,说明SiO x 壳层存在。 1.简介 ITO广泛应用于各个领域,包括气敏元件[1]、光电池、电变色装备、液晶显示和光电子器件。ITO材料是一种宽禁带半导体,因此可作为光线穿透基础半导体材料的窗口层。另一方面,一维纳米材料和散装材料相比有较特殊的物理化学性质。它们的有限尺寸限制了电子波函数,导致产生量子化能级和光能量传输及光学性能的重大改变。 作为最知名的和广泛使用的透明导电氧化物(TCO),ITO有各种各样的应用现状,做成ITO纳米管会增大它的应用领域。一维形态会增强场发射性质,这将有利于在未来

硅及其二氧化硅

硅及二氧化硅教学设计 硅及其二氧化硅在自然界及地壳中存在广泛,是人类生产生活中重要的物质组成材料,从传统的瓷器到现代的芯片,从珍贵的水晶到普通的玻璃水泥,都含有硅元素。人教版必修一的章节中,重点介绍了单质硅、二氧化硅及常见的硅酸盐等物质。根据新课程标准,特设计以下教学设计。 一、学情分析 学生在学习金属元素的基础上(钠、铝、铁),开始接触并学习非金属元素。对于硅这种元素,学生相对比较陌生。为了让学生从宏观到微观,再从微观到宏观全面系统的认识桂硅元素及其化合物,笔者采用实例教学法。 二、教学与评价目标 1.教学目标 【知识与技能】掌握硅晶体及二氧化硅的结构、用途及理化性质 【过程与方法】 通过学生对硅及二氧化硅结构的认识,能够对物质从宏观上进行辨识和微观上进行探析。 【情感态度与价值观】根据硅及其二氧化硅的性质,能从硅及其二氧化硅的组成和结构来解释一定的宏观现象及反应类型。 2. 评价目标 (1)通过对硅及其二氧化硅性质的描述,诊断并发展学生从微观和宏观两个方面对硅及其二氧化硅性质的认识。 (2)通过对硅及其二氧化硅结构用途的描述,诊断并发展学生认识硅及其二氧化硅对人类生活的重要性。 三、教学与评价思路 四、教学流程 Ⅰ宏观现象 准备手机芯片、电脑芯片、水晶、玻璃、沙子、光缆,让学生认识这些物质并探究组成。 Ⅱ微观本质 化学思维 总结上述物质的组成元素,引出硅单质及二氧化硅,并让学生阅读课本,思考硅及其二氧化硅的结构、性质及用途 Ⅲ问题解决 化学科学价值观 1.硅及二氧化硅的结构。 2.硅及二氧化硅的性质。 3.硅及二氧化硅的用途。

【学习任务1】通过沙子、芯片、玻璃、水晶、光缆等物质,总结构成这些物质的元素; 【评价任务1】诊断并发展学生化学知识的探究水平(定性水平); 学习任务1教学流程图 【学习任务2】学习并探究二氧化硅的结构 【评价任务2】诊断并发展学生对二氧化硅结构的认识,诊断并发展学生对分子式与化学式概念的理解。 学习任务2教学流程图 【学习任务3】硅及其二氧化硅的理化性质 【评价任务3】诊断并发展学生对硅及其二氧化硅性质的掌握 真实情景素材 引发探究 宏观辨识与微观探析 提问:这些物质的组成元素有哪些? 展示实物 提问:硅及其二氧化硅的用途? 学生及教师总结:硅及其二氧化硅的分 布及用途 二氧化硅的结构模型 水的结构模型、二氧化碳的结构模型 总结上述物质结构模型的异同,并思考化学式与分子式的区别 总结化学式与分子式的区别,并熟练掌握二氧化硅的结构 发现问题 找出核心 解决问题 宏观辨识 微观探析

SiO2的制备

改进众所周知的Stober 方法[135],通过正硅酸乙脂(TEOS)在含有水(H2O)、 氨水(NH3OH)的乙醇混合溶液中水解,制备了不同尺寸(300,500,900 和1200 nm) 的二氧化硅(SiO2)微球。通过这种方法制备的二氧化硅(SiO2)微球单分散、尺寸 分布窄、不团聚,尺寸大小依靠反应物的浓度。典型的实验是混合正硅酸乙脂(TEOS)、 水(H2O)、氨水(NH3OH)、乙醇(C2H5OH),在室温下搅拌 4 小时,结果得到白色 的SiO2胶体悬浮液。用离心机把SiO2从悬浮液中离心出来,之后用乙醇洗三次。比 600 nm 大的SiO2,不能直接通过Stober 方法制备,需要种子生长过程。在种子生长 过程,把一定量的SiO2加入NH3,H2O 和C2H5OH 的混合溶液之后,加入TEOS 和水, 这个过程与Stober 相似。表3-1 列出了制备不同尺寸的SiO2的实验条件。 3.2. 2 SiO2@Y2O3:Eu3+ 核壳材料的制备 利用Pechini 型溶胶-凝胶法在SiO2球上包覆Y2O3:Eu3+层,制备SiO2@Y2O3:Eu3+ 核壳发光材料[136-138]。搀杂的Eu3+的浓度占基质Y2O3中Y3+浓度的5%,这是最优化 条件[138]。称取化学计量比的Y2O3 和Eu2O3 (Y1.9Eu0.1O3),用硝酸溶解,冷却到室 温,加入一定量的乙醇和水的混合溶液(其体积比为7:1),加入柠檬酸作为络合 剂,柠檬酸与金属离子的摩尔比为2:1,再加入一定量的聚乙二醇(0.08g/ml)作 为交联剂, 溶液搅拌2 小时形成溶胶,然后在搅拌的条件下加入SiO2 粒子,搅拌5 小时,用离心机把悬浮液离心。所得试样在100 oC 干燥两个小时,然后以每小时120 oC 的升温速度烧结到900 oC,并保留2 小时。这样的过程反复几次,以增加Y2O3:Eu3+ 层的厚度。实验过程如图3-1 所示。为作对比,把包覆之后的溶胶蒸发形成凝胶,烧 结到相应的温度,制备纯的Y2O3:Eu3+粉末。表3-1 制备不同尺寸SiO2 的实验条件:C 是浓度,单位是mol/L, N 是反应次数,t是反应时间 图3-1 核壳SiO2@Y2O3:Eu3+发光粉的制备过程示意图

二氧化硅知识点分类

二氧化硅知识点分类 生活中的物质引入二氧化硅 纯净的二氧化硅晶体无色透明,称为水晶。具有彩色环带状或层状的石英晶体,称为玛瑙。 沙子中也存在小粒的石英晶体,是基本的建筑材料。纯净的SiO2是现代光学及光纤制品的基本原料,也是芯片的组成成分;石英、玛瑙可用来制作饰物和工艺品。

二氧化硅的存在形式 二氧化硅的结构 SiO2晶体的基本结构是以硅原子为中心,氧原子在4个顶角上的正四面体结构,而这些正四面体又是通过顶角的氧原子相连接。实际上,SiO2晶体是由Si和O的比例所组成的立体网状结构的晶体。二氧化硅晶体中,硅原子的4个价电子与4个氧原子形成4个共价键,硅原子位于正四面体的中心,4个氧原子位于正四面体的4个顶角上。二氧化硅是 结晶形:SiO2 无定形:硅藻土 天然二氧化硅 (硅石) 石英 水晶 玛瑙

硅原子跟四个氧原子形成的四面体结构的原子晶体,二氧化硅晶内Si原子均以sp3杂化,分别与4个O原子成键,构成Si-O四面体并占据四面体中心位置,配位数为4;O位于四面体的角顶。二氧化硅晶体中,由于Si的sp3杂化致使4个Si-O键键能相同,Si-O四面体没有极化和畸变,结构稳定。Si-O四面体通过共用角顶的O连接,在空间形成三维网状结构。 二氧化硅的物理性质 二氧化硅的化学性质 ①SiO2是酸性氧化物,但不能与水反应生成H2SiO3 ②SiO2不能与盐酸、硝酸、硫酸等其他酸反应,氢氟酸是唯一与SiO2反应的酸。

③氢氟酸能腐蚀玻璃这一特殊性质可应用于雕刻玻璃。 ④不能用玻璃瓶盛放氢氟酸,而要用塑料瓶。 ⑤制取氢氟酸也不能用玻璃器皿而要用铅皿。 思考:1.为什么实验室中盛放碱液的试剂瓶用橡皮塞而不用玻璃塞? 因为碱液会跟玻璃塞中的SiO2反应,生成的硅酸盐会把试剂瓶和玻璃塞粘连在一起。 SiO2 + 2OH-= SiO32-+H2O 2. SiO2是不是两性氧化物? 课外拓展 二氧化硅的用途 ①信息高速公路的骨架石英光导纤维。

一种合成二氧化硅纳米粒子的新方法

一种合成二氧化硅纳米粒子的新方法 摘要 在溶胶-凝胶过程通过使用超声法,已第一次使用顺序的方法制备单分散的和大小均匀的二氧化硅纳米颗粒。在乙醇介质中,通过水解正硅酸四乙酯(TEOS),得到二氧化硅颗粒,并对不同试剂对粒径的影响进行了详细的研究。各种在 20-460nm范围内的不同大小的颗粒的合成。实验用到试剂:氨水(2.8-28molL-1),乙醇(1-8molL-1),水(3-14molL-1),和TEOS(0.012-0.12molL-1),而粒子的尺寸在扫描电子显微镜(SEM)和透射电子显微镜(TEM)下观察。除了上述的观察,温度对粒径的影响也进行了研究。在本研究中所获得的结果是与利用紫外-可见分光光度法测定的所观察到二氧化硅粒子的电子吸收行为的结果一致。 1、介绍 二氧化硅纳米粒子因为他们容易制备和其在各种工业中的广泛应用,如催化剂,颜料,制药,电子和薄膜基板,电子和热绝缘体,和湿度传感器[1],在科研中占据了突出的位置。这些产品中的一些产品的质量高度依赖于这些粒子的粒径和粒径分布。 Stober 等人[2]在1968年,报道了一项先进的合成球形和单分散二氧化硅纳米粒子的方法,即从从硅醇盐的的乙醇水溶液,在以氨水作为催化剂的存在下,制备从50nm至1μm的不同尺寸范围的具有窄粒度分布的二氧化硅纳米粒子。颗粒的大小取决于硅醇盐和醇的类型。在甲醇溶液中制备的颗粒是最小的,而颗粒尺寸是随着醇的链长增加而增大的。当长链醇被用作溶剂,颗粒尺寸分布也变宽。在此之后,在这一领域[3-11]也进行了大量的研究。在本研究中,主要涉及两种类型的反应:(ⅰ)通过水解形成硅羟基和(ii)硅氧烷桥所形成的缩聚反应: 水解作用:Si–(OR) 4 + H 2 O →Si–(OH) 4 + 4R–OH, 缩合:2Si–(OH) 4→2(Si–O–Si) + 4H 2 O。 缩合速率取决于反应条件,这可能会导致形成一个三维网状的结构,或形成单一的单分散颗粒[12]。对于较大的颗粒的制备,由Bogush等人已经描述了一个种子的生长技术。在该技术中的种子悬浮液利用Stober反应沉淀制得。当反应完成后,TEOS和水以1:2的摩尔比加入到该种子悬浮液中。这种技术的缺点是,如果的TEOS的量超过某一临界值时,会出现第二颗粒群。使用这种技术,可以制备更多的单分散粒子,并且使它们在溶胶中的质量分数增加,但用这种方法,不可能增加超过1微米大小的单分散粒子。电解质对二氧化硅纳米颗粒的大小的影响由Bogush和Zukoski[5]进行了说明,并且在他们的研究中,他们报告说,当电解质(NaCl)的浓度由0增加至10-4M时,颗粒尺寸从340增加至710nm。 黄和同事已经报道,超声处理在反应的过程中,可以显著地增加碳化二亚胺介导的酰胺化作用[13]的产率。鉴于此,在本研究中,我们已经确定了各试剂对粒径的影响,除了温度对超声波处理的影响。据我们所知,这是第一次报道在溶胶-凝胶过程中利用顺序添加方法制备二氧化硅粒子。 2、材料和方法 2、1试剂 正硅酸乙酯(TEOS)(99.99%,Aldrich公司),乙醇(99.99%,Aldrich 公司),和氢氧化铵(28%,Wako),使用时无需任何进一步纯化。整个实验过程中使用的Milli-Q水(18.2 )。 2、2表征

二氧化硅

生产过程大致可分为五个步骤:a、提纯过程b、拉棒过程c、切片过程d、制电池过程e、封装过程。 P型晶体硅经过掺杂磷可得N型硅,形成P-N结。 当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。 一种单晶硅太阳能电池的制造方法,包含:将氢离子或稀有气体离子中的至少一种注入单晶硅基板的工序;以该离子注入面作为贴合面,经由透明导电性粘结剂,粘结该单晶硅基板与该透明绝缘性基板的工序;固化该透明导电性粘结剂成为透明导电性膜,并贴合该单晶硅基板与该透明绝缘性基板的工序;对该离子注入层施予冲击,机械性剥离该单晶硅基板,来形成单晶硅层的工序;以及在该单晶硅层形成pn结的工序。由此提供一种单晶硅太阳能电池,于硅太阳能电池中,为了有效活用其原料(硅)而将光变换层制成薄膜,且变换特性优异,并且因光照射产生的劣化少,所以可使用作为住宅等的采光窗材料的透视型太阳能电池。 一、硅片检测 硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术参数进行在线测量,这些参数主要包括硅片表面不平整度、少子寿命、电阻率、P/N 型和微裂纹等。该组设备分自动上下料、硅片传输、系统整合部分和四个检测模块。其中,光伏硅片检测仪对硅片表面不平整度进行检测,同时检测硅片的尺寸和对角线等外观参数;微裂纹检测模块用来检测硅片的内部微裂纹;另外还有两个检测模组,其中一个在线测试[url=]模组[/url]主要测试硅片体电阻率和硅片类型,另一个模块用于检测硅片的少子寿命。在进行少子寿命和电阻率检测之前,需要先对硅片的对角线、微裂纹进行检测,并自动剔除破损硅片。硅片检测设备能够自动装片和卸片,并且能够将不合格品放到固定位置,从而提高检测精度和效率。 二、表面制绒 单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。 三、扩散制结

二氧化硅和硅

二氧化硅和硅 主备:王胜菊 学习目标: 了解二氧化硅和硅的主要性质 认识二氧化硅在生产、信息技术、材料科学等领域的应用 1.二氧化硅的性质 (1)物理性质: (2)化学性质: ①具有弱氧化性: ②具有酸性氧化物的通性:SiO2是一种,是H2SiO3的酸酐。 CaO+SiO2CaSiO3(炼铁中除炉渣) SiO2+2NaOH Na2SiO3+H2O(盛放碱性溶液的试剂瓶不能用玻璃塞,常用橡皮塞)③与某些盐的反应: Na2CO3+SiO2 CaCO3+SiO2 ④特性:SiO2+4HF SiF4↑+2H2O(腐蚀玻璃)。 (3)SiO2和CO2的性质比较 (4)二氧化硅的用途 ①SiO2是制造光导纤维的主要原料。 ②石英制作石英玻璃、石英电子表、石英钟等。 ③水晶常用来制造电子工业的重要部件、光学仪器、工艺品等。 ④石英砂常用作制玻璃和建筑材料。 4、硅的工业制法及性质 (1)工业制法:工业上用炭自在高温下还原二氧化硅的方法,制得含有少量杂质的粗硅。将粗硅在高温下跟氯气气反应生成四氯化硅,四氯化硅经提纯后,再用氢气还原,就可以得到高纯度的硅。 操作流程:二氧化硅→粗硅→四氯化硅→精硅 (2)物理性质:

(3)化学性质:很稳定 ①常温下不与等反应。 ②加热或高温时有强还原性: ③常温下能与氟气(F2)、氢氟酸(HF)反应: 。 达标检测: 一.选择题(每小题有一个正确答案) 1.下列物质:①氢氟酸;②浓H2SO4;③烧碱溶液;④Na2CO3固体;⑤氧化钙;⑥浓HNO3,其中在一定条件下能与SiO2反应的有() A.①②⑥ B.全部 C.①③④⑤ D.②③⑥ 2.能贮存在具有玻璃塞的磨口试剂瓶里的试剂是() A.HF溶液B.KOH溶液 C.盐酸D.水玻璃 3.熔化烧碱应选用的坩埚是() A.铁坩埚B.玻璃坩埚 C.石英坩埚D.陶瓷坩埚 4.下列物质属于纯净物的是() A. 玻璃 B.水玻璃 C. 二氧化硅 D. 大理石

二氧化硅的工业化生产

二氧化硅的工业化生产 1.1 二氧化硅的种类 二氧化硅也称硅质原料,不仅包括天然矿物,也包括各种合成产品,其产品可分为结晶态和无定形状两类。 二氧化硅天然矿物通常包括结晶态二氧化硅矿物石英砂、脉石英、粉石英和无定形硅矿物硅藻土。 合成产品要紧是白炭黑(无定形二氧化硅),包括气相白炭黑(气相二氧化硅)、沉淀白炭黑(沉淀二氧化硅)。 石英是二氧化硅天然矿物的要紧矿物组分,化学成分为SiO2,玻璃光泽,断口呈油脂光泽。贝壳状断口,莫氏硬度7,密度2.65~2.66 。颜色不一,无色透亮的叫水晶,乳白色的叫乳石英。按其结晶习性分,三方晶系的为低温石英,又叫-石英;六方晶系的为高温石英,又称-石英。 石英砂是一个矿产品的专门名词,它泛指石英成分占绝对优势的各种砂,诸如海砂、河砂、湖砂等。地质学按成因将它们划分为冲积砂、洪积砂、残积砂等。石英砂的矿物含量变化专门大,以石英为主,其次包含各类长石、岩屑、重矿石(石榴子石、电气石、辉石、角闪石、榍石、黄玉、绿帘石、钛铁矿等)以及云母、绿泥石、黏土矿物等。 石英砂岩,是一种固结的砂质岩石,常简称为砂岩,是自然界最常见、最一般的硅质矿物原料之一,其石英和硅质碎屑含量一样在95%以上,副矿物多为长石、云母和黏土矿物,重矿物含量专门少。常见的重矿物有电气石、金红石、磁铁矿等。 石英岩是由石英砂岩或其他硅质岩石通过变质作用而形成的变质岩。脉石英是与花岗岩有关的岩浆热液矿脉,其矿物组成几乎全部为石英。 粉石英是一种颗粒极细、二氧化硅含量专门高的天然石英矿。粉石英这一词过去叫法专门多,它既包括天然的粉石英,同时也包括了由硅质矿物原料(石英岩、脉石英)加工而成的石英细粉。 硅砂是以石英为要紧成分的砂矿飞总称。以天然颗粒状态从地表或地层中产出的硅砂,以及石英岩、石英砂岩风化后呈粒状产出的砂矿称

SiO2层厚度的测量方法

SiO2层厚度的测量方法 【摘要】在半导体平面工艺中,SiO2层薄膜的质量对半导体器件的成品率和性能有重要影响,因而需要对SiO2层薄膜的厚度作必要的检查。SiO2层厚度的测量有多种方法,其中干涉法是生产中较普遍采用的。本论文主要分析了利用干涉原理测量SiO2层厚度的方法,介绍了干涉现象在半导体工艺上的应用。 【关键词】半导体工艺;SiO2薄膜;干涉法;膜厚 0.前言 在半导体工艺中,半导体器件表面需要覆盖着介质膜,用来防止其表面受到杂质离子的污染,从而使半导体器件能够处于稳定的工作状态。二氧化硅(SiO2)膜经实验证实满足作为介质膜所需的基本要求,所以近年来在工业领域得到了广泛地应用。 1.SiO 2层在半导体领域的应用 1.1对杂质的掩蔽作用 由于硼、磷等杂质在二氧化硅中的扩散速率比硅中慢得多,则这些杂质可利用一定厚度的SiO2膜作为扩散时的掩蔽膜,在需要扩散的区域,采用光刻技术。 1.2对半导体器件表面的保护和钝化作用 在硅片表面覆盖一层SiO2膜,将硅片表面和PN结与外界空气隔离开来,就减弱了环境空气对硅片表面状态的影响,从而提高了半导体器件的稳定性和可靠性,起到了钝化硅片表面的作用。 1.3用于半导体器件的电绝缘和隔离 SiO2具有很高的电阻率,是良好的绝缘材料,所以在硅器件中做铝引线与薄膜下面元件之间的绝缘层.还可以利用SiO2的绝缘性能来实现集成电路各元件之间的电隔离,即介质隔离。 1.4用作MOS场效应管的绝缘栅杂质 SiO2膜的厚度和质量直接决定着MOS场效应管的多个电参数。 2.测量SiO2膜层的一般方法 测量SiO2膜层厚度的方法主要有:干涉法、椭圆偏振仪法、双光束分光光度计法、划线法。本论文主要通过分析运用干涉原理测量SiO2层厚度的方法,

二氧化硅的工业化生产

二氧化硅的工业化生产 1.1二氧化硅的种类 二氧化硅也称硅质原料,不仅包括天然矿物,也包括各种合成产品,其产品可分为结晶态和无定形态两类。 二氧化硅天然矿物通常包括结晶态二氧化硅矿物石英砂、脉石英、粉石英和无定形硅矿物硅藻土。 合成产品主要是白炭黑(无定形二氧化硅),包括气相白炭黑(气相二氧化硅)、沉淀白炭黑(沉淀二氧化硅)。 石英是二氧化硅天然矿物的主要矿物组分,化学成分为SiO2,玻璃光泽,断口呈油脂光泽。贝壳状断口,莫氏硬度7,密度2.65~2.66。颜色不一,无色透明的叫水晶,乳白色的叫乳石英。按其结晶习性分,三方晶系的为低温石英,又叫-石英;六方晶系的为高温石英,又称-石英。 石英砂是一个矿产品的专门名词,它泛指石英成分占绝对优势的各种砂,诸如海砂、河砂、湖砂等。地质学按成因将它们划分为冲积砂、洪积砂、残积砂等。石英砂的矿物含量变化很大,以石英为主,其次包含各类长石、岩屑、重矿石(石榴子石、电气石、辉石、角闪石、榍石、黄玉、绿帘石、钛铁矿等)以及云母、绿泥石、黏土矿物等。

石英砂岩,是一种固结的砂质岩石,常简称为砂岩,是自然界最常见、最普通的硅质矿物原料之一,其石英和硅质碎屑含量一般在95%以上,副矿物多为长石、云母和黏土矿物,重矿物含量很少。常见的重矿物有电气石、金红石、磁铁矿等。 石英岩是由石英砂岩或其他硅质岩石经过变质作用而形成的变质岩。脉石英是与花岗岩有关的岩浆热液矿脉,其矿物组成几乎全部为石英。 粉石英是一种颗粒极细、二氧化硅含量很高的天然石英矿。粉石英这一词过去叫法很多,它既包括天然的粉石英,同时也包括了由硅质矿物原料(石英岩、脉石英)加工而成的石英细粉。 硅砂是以石英为主要成分的砂矿飞总称。以天然颗粒状态从地表或地层中产出的硅砂,以及石英岩、石英砂岩风化后呈粒状产出的砂矿称为“天然硅砂”(或简称“硅砂”)。与此对应,将块状石英岩、石英砂岩粉碎成粒状则称“人造硅砂”。 1.2二氧化硅的性质 1.2.1性质 二氧化硅在自然界分布很广,如石英、石英砂等。白色或无色,含铁量较高的是淡黄色。密度2.65~2.66。熔点1670℃(鳞石英);1710℃

纳米二氧化硅的制备

纳米二氧化硅的制备 专业:凝聚态学号:51110602021 作者:张红敏 摘要 本文简单综述了一下纳米二氧化硅的各种制备方法,包括化学沉淀法、气相法、溶胶-凝胶法、微乳液法、超重力法、机械粉碎法,并对未来制备纳米二氧化硅的方法提出了一点展望。 关键词:纳米二氧化硅,制备,展望

1. 引言 纳米二氧化硅为无定型白色粉末,是一种无毒、无味、无污染的无机非金属材料,其颗粒尺寸小,粒径通常为20~200nm,化学纯度高,分散性好,比表面积大,耐磨、耐腐蚀,是纳米材料中的重要一员。由于纳米二氧化硅表面存在不饱和的双键以及不同键合状态的羟基,具有常规粉末材料所不具备的特殊性能,如小尺寸效应、表面界面效应、量子隧道效应、宏观量子隧道效应和特殊光电性等特点[1],因而表现出特殊的力学、光学、电学、磁学、热学和化学特性,加上近年来随着纳米二氧化硅制备技术的发展及改性研究的深入, 纳米二氧化硅在橡胶、塑料、涂料、功能材料、通讯、电子、生物学以及医学等诸多领域得到了广泛的应用。 2. 纳米二氧化硅的制备 经过收集资料,查阅一些教科书籍和文献,发现二氧化硅有各种形形色色不同的制备方法, 主要包括化学沉淀法、气相法、溶胶-凝胶法、微乳液法、超重力法、机械粉碎法等等。现在一个个介绍如下: 2.1. 化学沉淀法 化学沉淀法是目前生产纳米二氧化硅最主要的方法。这种方法的基本原理是利用金属盐或碱的溶解度, 调节溶液酸度、温度、溶剂, 使其产生沉淀, 然后对沉淀物进行洗涤、干燥、热处理制成超细粉体[2]。 可以采用硅酸钠和氯化铵为原料, 以乙醇水溶液为溶剂, 采用化学沉淀法制备得到纳米SiO2[3]。将去离子水与无水乙醇以一定浓度混合盛于三口瓶中, 加入一定质量的硅酸钠和少量分散剂, 置于恒温水浴中, 凋节至40±1℃, 搅拌状态下加入氯化铵溶液, 即出现乳白色沉淀, 洗涤, 抽滤, 100℃烘干,置于马弗炉450 ℃焙烧1h, 得到白色轻质的SiO2 粉末。所得SiO2颗粒为无定形结构, 近似球形, 粒径30~50nm, 部分颗粒间通过聚集相互联结, 表面有蜂窝状微孔。 以水玻璃(模数为3.3)和盐酸为原料[4],在超级恒温水浴中控制在40~50℃左右进行沉淀反应, 控制终点pH 值5~6, 得到的沉淀物采用离心法洗涤去掉Cl-, 然后在110℃下干燥12 h, 再于500℃进行焙烧即可得到产品。制得SiO2粒

硅和二氧化硅

学科:化学 教学内容:硅和二氧化硅 【课前复习】 温故 1.自然界中,C的同素异形体天然存在的有_________、_________,人工制取的有_________、_________等;Si的同素异形体都是人工制取的,有_________、_________两种。 2.金刚石和硅晶体比较。 (1)硬度:金刚石_____硅晶体;(填“大于”或“小于”;下同) (2)熔点:金刚石_____硅晶体; (3)导电性:金刚石_____硅晶体。 知新 3.C、Si同主族,化学性质相似,但也有差别,其中能与NaOH(aq)反应的是_____(写元素符号),化学方程式为______________;能与HF(aq)反应的是_____(写元素符号),反应方程式是____________________。 4.硅的用途十分广泛,作为良好的半导体,硅可用来制造_____、_____、_____等半导体器件,还可制成_____电池。 硅的合金用途也很广,含硅4%(质量分数)的钢可用来制造_____;含硅15%(质量分数)的钢可用来制造_____。 5.CO 2、SiO 2 性质相似,都是酸性氧化物,分别写出它们与足量NaOH(aq)反应的化学 方程式:__________________、__________________;二者差别也很明显,其中能与H 2 O反应的是___________________(写出化学式),反应方程式为____________________。 6.SiO 2与水反应吗?为什么说SiO 2 是酸性氧化物? 7.SiO 2 与硅石、砂石、石英、水晶、玛瑙间有何关系? 【学习目标】 1.初步了解硅在自然界中的存在形态。了解硅元素的常见同素异形体。 2.了解硅的物理性质和主要用途。 3.掌握硅的化学性质和制取方法。这是本节学习的重点内容,也是本章重点之一。 4.了解二氧化硅的存在,知道石英、水晶、硅石与SiO 2 的关系。 5.掌握二氧化硅的化学性质,这是本节、也是本章的学习重点。 6.了解硅酸、原硅酸的性质和制取方法。 7.了解常见硅酸盐的主要用途。 8.理解硅酸盐的氧化物表示方法,知道其化学式中氧化物前计量数的含义。 【基础知识精讲】 一、硅的存在 (1)分布广:地壳中到处都是。

二氧化硅的制备

二氧化硅的制备 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

纳米二氧化硅颗粒的制备与表征 一、实验目的 1、学习溶胶—凝胶法制备纳米SiO2 颗粒。 2、利用粒度分析仪对SiO2 颗粒物相分析和粒径测定。 3、通过红外光谱仪对纳米SiO2 颗粒进行表征。 4、通过热重分析仪测试煅烧温度。 二、实验原理 纳米SiO 具有三维网状结构,拥有庞大的比表面积,表面上存在着大量的 2 羟基基团, 亲水性强, 众多的颗粒相互联结成链状,链状结构彼此又以氢键相互作用,形成由聚集体组成的立体网状结构。 图1 纳米二氧化硅三维网状结构 图2 纳米二氧化硅表面上存在着大量的羟基基团 溶胶凝胶法(Sol-Gel法):利用活性较高的前驱体作为原料,在含水的溶液中水解,生成溶胶,然后溶胶颗粒间进一步发生相互作用,与溶剂共同生成凝胶,干燥后、煅烧获得前驱体相应的氧化物。 第一步水解: 硅烷的水解过程ROH ? ?→ + - -2 - O OH Si H OR Si+ - 第二步缩合: 硅烷的缩聚过程O ? ?→ - - - - - - + - O Si Si - Si H + Si2 OH HO 总反应:ROH - ?→ ? - - - - + O O Si 22+ Si H Si2 OR 硅烷的浓度,硅烷溶液的pH 值,溶剂成分,水解时间与温度均会影响到硅烷的水解缩聚过程。

其中,pH 值能影响硅烷溶液的水解缩聚反应速率。一般认为酸性和碱性条件下均有利于硅烷的水解反应,而碱性条件下更能促进缩聚反应的进行。因此,选择合理的pH 值能控制硅烷的水解与缩合反应速率。 水含量除了影响硅烷的水解与缩聚反应速率外,还影响其溶解性;而醇溶剂对硅烷分子起到助溶与分散的作用,还起到调节水解速率的作用。 三、仪器及试剂 仪器常规玻璃仪器,不同型号移液枪,坩埚,研钵,水浴锅,磁子,磁力搅拌器,烘箱,马弗炉,傅里叶红外光谱仪,差热-热重分析仪,粒度分析仪; 试剂乙醇(AR),去离子水,TEOS,1:1 氨水,浓氨水、浓盐酸,精密pH 试纸。 四、实验步骤 ①Stober 法制备纳米SiO2 颗粒 取75mL 无水乙醇于烧杯中,加入25mL 去离子水,搅拌使其均匀。向其中加入10mL TEOS,同时搅拌。用1:1 氨水溶液调节硅烷溶液的pH 值至7,搅拌10min。将上述硅烷溶液放入水浴锅中,水温35℃,陈化1h。向溶液中逐滴加入浓氨水,使其刚好产生果冻状凝胶为止。静置,至溶液全部转化为凝胶。 前躯体将所得的凝胶捣碎放入烘箱中,烘箱温度为100℃,烘干,即得SiO 2 粉末。 粉末。将粉末碾碎后在300℃煅烧20min 即得SiO 2 ② SiO2颗粒的粒径测试 先将大烧杯中装满水,对大烧杯进行清洗,倒去水。向大烧杯中装入部分水,测试背景。将小烧杯中预先搅拌好的二氧化硅浊液倒入大烧杯中,进行充分混合均匀,对其进行粒径分析。 ③SiO2颗粒红外光谱测试

二氧化硅层包裹的ITO纳米线的一步制备和特征描述

毕业设计(论文)外文资料翻译 学院: 材料科学与工程学院 专业: 金属材料工程 姓名: 学号: 外文出处: Journal of Solid State Chemi stry 183(2010),2490-2495 附件: 1.外文资料翻译译文;2.外文原文。 指导教师评语: 对原文理解基本正确,有些地方语序不符合汉语习惯,需要加强 对外文翻译的训练。 签名: 李建辉 2013年

?附件1:外文资料翻译译文 二氧化硅层包裹的ITO纳米线的一步制备和特征描述 文章信息: 文章历史:2010年6月2日 修改稿收到日期:2010年8月5日 接稿日期:2010年8月7日 网上登稿日期:2010年8月19日 关键字: ITO 纳米线 硅胶 光致发光 生长机制 摘要 Sn0.06O3(ITO)/非晶的SiOx壳结构可通过简单地热力学蒸发成功制新型的In1. 94 得。研究表明典型的核结构有一个结晶核心,ITO纳米线被非晶SiOx管状结构包裹。假设ITO纳米线成核生长的主要机制为用金催化的蒸发—液态—固态过程,而SiO x壳层也同时生成。本文讨论了在壳结构的外部优先形成SiO x管的可能原因。为研究核心与壳层结构,对其进行室温光致发光测量结果在2.73、3.06和1.65eV三处出现峰值,说明SiO x壳层存在。

1.简介 ITO广泛应用于各个领域,包括气敏元件[1]、光电池、电变色装备、液晶显示和光电子器件。ITO材料是一种宽禁带半导体,因此可作为光线穿透基础半导体材料的窗口层。另一方面,一维纳米材料和散装材料相比有较特殊的物理化学性质。它们的有限尺寸限制了电子波函数,导致产生量子化能级和光能量传输及光学性能的重大改变。 作为最知名的和广泛使用的透明导电氧化物(TCO),ITO有各种各样的应用现状,做成ITO纳米管会增大它的应用领域。一维形态会增强场发射性质,这将有利于在未来的纳米线的场发射显示器中的应用。由于ITO著名的金属导电性使其在电子纳米器件上有潜在应用价值。此外,他们有更高的表面体积比,因此使得基于ITO的气体传感器敏感度更高。 为了提高纳米线的功能和防止其被污染,产生了径向异质纳米线。特别是具有非晶态无机聚合物形式硅的纳米结构涂层具有众多优势,包括绝缘特性、防污染、机械和辐射损伤以及防止在液体中聚合的化学稳定性。这个SiO x涂层提供了传统集成电路和制造设备结合的可能性。此外,SiO x表面很容易和各种耦合试剂反应,从而促进了各种特定配体的强烈聚集。在生物相关方面的应用,即使在系统对其晶型响应不良的情况下,非晶态的SiO x仍然显示低毒性。由于其对可见光的吸收和发射透明,这个SiO x涂层并不降低核心材料的固有光学特性。电介质外壳围绕半导体核心的纳米线能够做成纳米线场效应晶体管环绕门。 目前,非晶态SiOx壳包着的晶态ITO纳米线已可制造。被绝缘的管状结构SiO x 包着的ITO纳米线在纳米电子设备连接时非常有用。在色素增强太阳能电池方面,涂有致密而稳定的SiO x等的稳定性好转换效率高的ITO纳米线会广泛用作电极。此外,ITO硅半导体或ITO硅金属结构可通过在核壳结构外形成一个额外的壳来仿制,其会在纳米系统的应用方面有前景。 因为它们非常重要,许多学者已仿制出被SiO x包围的一维材料,有许多类型,例如G e/SiO x、TIO/SiOx、MgO/SiO x和碳纳米管/SiOx。众所周知,这是第一个制备ITO/壳核结构SiO x的论文。此外,之前的大部分制造过程是两步,壳层随后被沉积在处于核心的纳米线上,或者在一步法处理混合粉末时包含Si源。而我们通过已Si衬底作为硅源简单的一步蒸发过程制得SiO x包围的ITO纳米线。这种方法为超大规模集成设备在未来的应用提供了一个廉价、简单地方案。另外,我们假设了一个核壳结构的生长

二氧化硅水热合成纳米硅

Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries Jianwen Liang, Xiaona Li, Yongchun Zhu (?), Cong Guo, and Yitai Qian (?) Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China Received: 11 September 2014 Revised: 31 October 2014 Accepted: 3 November 2014 ? Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014 KEYWORDS silicon, hydrothermal synthesis, nanomaterials, silicon sol, energy storage ABSTRACT There have been few reports concerning the hydrothermal synthesis of silicon anode materials. In this manuscript, starting from the very cheap silica sol, we hydrothermally prepared porous silicon nanospheres in an autoclave at 180 °C. As anode materials for lithium-ion batteries (LIBs), the as-prepared nano-silicon anode without any carbon coating delivers a high reversible specific capacity of 2,650 mAh·g–1 at 0.36 A·g–1 and a significant cycling stability of about 950 mAh·g–1 at 3.6 A·g–1 during 500 cycles. 1Introduction Silicon has been considered as a promising anode candidate material for advanced lithium-ion batteries (LIBs) due to its high theoretical capacity (3,579 mAh·g–1) and relatively low discharge potential (<0.5 V versus Li/Li+) [1]. However, Si exhibits serious volume changes (>270%) during lithiation–delithiation, which leads to a rapid reduction in capacity [2, 3]. Similar to other electrode materials, using Si materials with a nano-structure is one of means to relieve this problem [4–9]. Various methods have been developed to produce nano-silicon anode materials in order to improve LIBs performance. One of these methods is chemical vapour deposition (CVD) of silanes, by which silicon nanotubes were prepared. After subsequent SiO2 surface-coating, the Si/SiO2 nanotubes were shown to have long cycle life (6,000 cycles with 88% capacity retention), high specific charge capacity (~2,971/1,780 mAh·g–1 at 0.4 A·g–1, and ~940/600 mAh·g–1 at 24 A·g–1) [10]. Nano-silicon anode materials are also prepared by the typical magnesiothermic reduction reaction [11–16]. For example, magnesiothermic reduction of SiO2 at 650 °C was used to synthesize Si nanotubes, which showed a capacity of about 1,900 mAh·g–1 at 0.4 A·g–1, with a reten-tion of ~50% after 90 cycles after carbon coating [11]. Nano Research 2015, 8(5): 1497–1504 DOI 10.1007/s12274-014-0633-6 Address correspondence to Yitai Qian, ytqian@https://www.sodocs.net/doc/8b18891096.html,; Yongchun Zhu, ychzhu@https://www.sodocs.net/doc/8b18891096.html,

相关主题