搜档网
当前位置:搜档网 › 【公开课教案】:三角函数【公开课教案】

【公开课教案】:三角函数【公开课教案】

【公开课教案】:三角函数【公开课教案】
【公开课教案】:三角函数【公开课教案】

第四章三角函数

总第1教时

4.1-1角的概念的推广(1)

教学目的:

1、推广叫的概念,引入正角、负角、零角;象限角、坐标上的角的概念;终边

相同角的表示方法。

2、让学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”

“终边相同的角”的含义,以及相应的表示方法。

3、从“射线绕其端点旋转而形成角”的过程,培养学生用运动变化的观点审视

事物;通过与数(轴)的类比,理解“正角”“负角”“零角,让学生感受图形的对称美、运动美。

教学重点:

1、理解并掌握正角、负角、零角、象限角的定义;

2、掌握总边相同角的表示方法及判定。

教学难点:把终边相同角用集合和符号语言正确的表示出来。

过程:

一、提出课题:“三角函数”

回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。二、角的概念的推广

1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”2.讲解:“旋转”形成角(P4)

突出“旋转”注意:“顶点”“始边”“终边”

“始边”往往合于x轴正半轴

3.“正角”与“负角”——这是由旋转的方向所决定的。

记法:角α或α

∠可以简记成α

4.由于用“旋转”定义角之后,角的范围大大地扩大了。

1?角有正负之分如:α=210?β=-150?γ=-660?

2?角可以任意大

实例:体操动作:旋转2周(360?×2=720?)3周(360?×3=1080?)

3?还有零角一条射线,没有旋转

三、关于“象限角”

为了研究方便,我们往往在平面直角坐标系中来讨论角

角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)

例如:30?390?-330?是第Ⅰ象限角300?-60?是第Ⅳ象限角585?1180?是第Ⅲ象限角-2000?是第Ⅱ象限角等

四、关于终边相同的角

1.观察:390?,-330?角,它们的终边都与30?角的终边相同 2.终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和 390?=30?+360? )1(=k

-330?=30?-360? )1(-=k 30?=30?+0×360?

)0(=k

1470?=30?+4×360? )4(=k -1770?=30?-5×360? )5(-=k

3.所有与α终边相同的角连同α在内可以构成一个集合 {}Z k k S ∈?+==,360| αββ

即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 4.(P6例1)例1 在0°到360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.

(1)-120°;(2)640°;(3)-950°12′. 解:(1)-120°=240°-360°,

所以与-120°角终边相同的角是240°角,它是第三象限角; (2)640°=280°+360°,

所以与640°角终边相同的角是280°角,它是第四象限角; (3)-950°12′=129°48′-3×360°,

所以与-950°12′角终边相同的角是129°48′,它是第二象限角. (P5) 五、小结: 1? 角的概念的推广,用“旋转”定义角 角的范围的扩大 2?“象限角”与“终边相同的角” 六、作业: P7 练习1、2、3、4

习题1.4 1

总 第2课时

4.1-2 角的概念的推广(2)

教学目的:

1、进一步理解角的概念,能表示特殊位置(或给定区域内)的角的集合;

2、能进行角的集合之间的交与并运算;

3、讨论等分角所在象限问题。 教学重点与难点:

1、角的集合之间的交与并运算;

2、判断等分角的象限。 过程:

一.复习、作业讲评.

二.新课:

例一、(P6例2)写出终边在y轴上的角的集合(用0°到360°的角表示).解:在0°到360°范围内,终边在y轴上的角有两个,即90°,270°角(图4-4).因此,所有与90°角终边相同的角构成集合

S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},

而所有与270°角终边相同的角构成集合

S2={β|β=270°+k·360°,k∈Z}

={β|β=90°+180°+2k·180°,k∈Z}

={β|β=90°+(2k+1)180°,k∈Z},

于是,终边在y轴上的角的集合

S=S1∪S2

={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)180°,k∈Z}

={β|β=90°+180°的偶数倍}∪{β|β=90°+180°的奇数倍}

={β|β=90°+180°的整数倍}={β|β=90°+n·180°,n∈Z}.

例二、(P6例3)、写出与下列各角终边相同的角的集合S,并把S 中适合不等式-360o≤β<720o的元素β写出来:

(1)60o (2)-21o (3)363o14ˊ

解:(1)S={β|β=60°+k·360°,k∈Z}.

S中适合-360°≤β<720°的元素是

60°-1×360°=-300°,

60°+0×360°=60°,

60°+1×360°=420°.

(2)-21°不是0°到360°的角,但仍可用上述方法来构成与-21°角终边相同的角的集合,即

S={β|β=-21°+k·360°,k∈Z}.

S中适合-360°≤β<720°的元素是

-21°+0×360°=-21°,

-21°+1×360°=339°,

-21°+2×360°=699°.

(3)S={β|β=363°14′+k·360°,k∈Z}.

S中适合-360°≤β<720°的元素是

363°14′-2×360°=-356°46′,

363°14′-1×360°=3°14′,

363°14′+0×360°=363°14′.

例三、用集合表示:(1)第二象限的集合;(2)终边落在y轴右侧的角的集合。解:(1)因为在0o~360o范围内,第二象限角的范围为90o<α0<180o,而与每个α0角终边相同的角可记为αo+k360o,(k∈Z),故该范围内每个角适合90o+k360o<α0<90o+k360o,(k∈Z)所以第二象限的集合为{α|-90o+k360o<α<90o+k360o,k∈Z}。

(2)因为在-180o~180o范围内,y轴右侧的角的范围为-90o<α0<+90o,而与每个

α0角终边相同的角可记为αo +k360o ,(k ∈Z),故该范围内每个角适合-90o +k360o <α0<180o +k360o ,(k ∈Z)所以第二象限的集合为{α|90o +k360o <α<180o +k360o ,k ∈Z }。

说明:特殊位置(或给定区域内)的角的集合的表示过步骤:

1) 在0o ~360o 范围内,找到特殊位置(或给定区域内)的角并记为α0;然后写出与上述终边相同角的集合

(二)习题4.1 .5(1)已知α是锐角,那么2α是 ( )

(A)第一象限角. (B)第二象限角.

(C)小于180o的角. (D)不大于直角的角.

三. 练习:课本第7页练习5, 习题4.1 .5(2)

四. 作业:习题4.1. 3 (2)、(4)、(6)、(8) , 4

总 第3教时

4.2-1弧度制(1)

教学目的:

1、理解1弧度的角及弧度的定义,掌握弧度制与角度制互化,并能熟练的进行角度与弧度的换算;熟记一些的数角的弧度数。并进而建立角的集合与实数集R 一一对应关系的概念。

2、通过弧度制的学习,使学生认识到角度与弧度都是度量角的制度,二者虽单位不同,但却是相互联系、辩证统一的;在弧度制下角的加、减运算可以象十进制一样进行,而不需要进行角度制与十进制之间的转化,化简了六十进制给角的加减、运算带来的诸多不便,体现了弧度制的简洁美。

教学重点:使学生理解弧度制的意义,能正确地进行弧度与角度的换算。

教学难点:1、弧度制的概念及其与角度的关系,2、角的集合与实数集R 一一对应关系。

过程:

一、回忆(复习)度量角的大小第一种单位制—角度制的定义。

二、提出课题:弧度制—另一种度量角的单位制,它的单位是rad 读作弧度 定义:长度等于半径长的弧所对的圆心角称为1弧度的角。 如图:∠AOB=1rad ,∠AOC=2rad

周角=2πrad

1.正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0;

2. 角α的弧度数的绝对值 r

l

=α(l 为弧

长,r 为半径)

3.用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同。 三、角度制与弧度制的换算

抓住:360?=2πrad ∴180?=π rad ∴ 1?=

rad rad 01745.0180

≈π

'185730.571801

=≈??? ??=πrad

例一 把'3067 化成弧度

解:

??

?

??=2167'3067 ∴ rad rad ππ832167180'3067=?=

例二 把rad π53

化成度

解: 1081805

3

53=?=rad π

注意几点:1.度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;

2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad sin π表示πrad 角的正弦

3.一些特殊角的度数与弧度数的对应值应该记住(见课本P9表)

4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

任意角的集合 实数集R 四、练习(P11 练习1、 2)

例三 用弧度制表示:1?终边在x 轴上的角的集合 2?终边在y 轴上的角的集合 3?终边在坐标轴上的角的集合

解:1?终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ

2?终边在y 轴上的角的集合 ?

??

???∈+==Z k k S ,2|2ππββ

3?终边在坐标轴上的角的集合 ?

??

???∈==Z k k S ,2|3πββ

五、 小结:1.弧度制定义 2.与弧度制的互化

六、作业: 课本 P11 练习 3、4 P12习题4.2 2、3

总 第4教时

4.2-2弧度制(2)

教学目的:

1、加深学生对弧度制的理解,理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活的在具体应用中运用弧度制解决具体的问题。

2、通过弧度制与角度制的比较使学生认识到映入弧度制的优越性,激发在学生的学习兴趣和求知欲望,培养良好的学习品质。

教学重点:弧度制下的弧长公式,扇形面积公式及其应用。 教学难点:弧度制的简单应用。 1、

过程:一、复习:弧度制的定义,它与角度制互化的方法。 口答

二、由公式:?=r l α α?=r l

比相应的公式180r

n l π=简单

弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 例一 (课本P10例三) 利用弧度制证明扇形面积公式lR S 21

=其中l 是扇形弧长,R 是圆的半径。

证: 如图:圆心角为1rad 的扇形面积为:

221

R ππ

弧长为l 的扇形圆心角为

rad R

l

∴lR R R l S 2

1212=??=ππ 比较这与扇形面积公式 360

2R n S π=扇

要简单 例二 直径为20cm 的圆中,求下列各圆心所对的弧长 ⑴3

⑵ 165 解: cm r 10= ⑴: )(3

401034cm r l ππα=?=

?= ⑵:r a d r a d 12

11)(165180

165π

π

=

?=

∴)(6

55101211cm l π

π=?=

例三 如图,已知扇形AOB 的周长是6cm ,该扇形 o

R S

l

的中心角是1弧度,求该扇形的面积。 解:设扇形的半径为r ,弧长为l ,则有

??

?==??????==+22162l r r

l l r ∴ 扇形的面积2)(221cm rl S == 例四 计算4sin π

5.1t a n

解:∵

454

∴ 2

245sin 4

sin

=

= π

'578595.855.130.571.5rad ==?=?

∴ 12.14'5785tan 5.1tan ==

例五 将下列各角化成0到π2的角加上)(2Z k k ∈π的形式

π3

19

⑵ 315- 解:ππ

π63319+=

ππ

24

36045315-=

-=-

例六 求图中公路弯道处弧AB 的长l (精确到1m ) 图中长度单位为:m 解: ∵ 3

60π=

∴ )(471514.3453

m R l ≈?≈?=

?=π

α 三、练习:P11 6、7 、8、9、10

四、作业: 课本 P11 -12 P12-13 习题4.2 5—14

总 第5教时

4.3-1任意角的三角函数(定义)

教学目的:

1、生掌握任意角的三角函数的定义,熟悉三角函数的定义域及确定方法;

2、理解α角与β=2k π+α(k ∈Z)的同名三角函数值相等的道理。

重点难点:三角函数的定义域及确定方法,终边相同角的同名三角函数值相等。 过程:一、提出课题:讲解定义:

1.设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )

则P 与原点的距离0222

2

>+=+=

y x y

x r (见图4-10

2.比值r

y

叫做α的正弦 记作: r y =αs i n

比值r x

叫做α的余弦 记作: r x

=

αc o s 比值x y

叫做α的正切 记作: x

y =

αt a n 比值

y x 叫做α的余切 记作: y

x

c o t 比值x r 叫做α的正割 记作: x r

=αs e c

比值

y r 叫做α的余割 记作: y

r

c s c 注意突出几个问题: ①角是“任意角”,当β=2k π+α(k ∈Z)时,β与α的

同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等。 ②实际上,如果终边在坐标轴上,上述定义同样适用。(下面有例子说明)

③三角函数是以“比值”为函数值的函数

④0>r ,而x,y 的正负是随象限的变化而不同,故三角函数的符号应由象限确定(今后将专题研究) ⑤定义域:

αααt a n c o s s i n ===y y y )

(2

Z k k R

R ∈+

≠π

πα α

αα

csc sec cot ===y y y )

()(2

)

(Z k k Z k k Z k k ∈≠∈+≠∈≠παπ

παπα

二、例题:

例一 已知α的终边经过点P(2,-3),求α的六个三角函数值 解:13)3(2,3,222=-+=-==r y x

∴sin α=-13133 cos α=13

13

2 tan α=-2

3 cot α=-3

2 sec α=

213 csc α=-3

13 例二 求下列各角的六个三角函数值

⑴ 0 ⑵ π ⑶ 23π⑷ 2π

解:⑴ ⑵ ⑶的解答见P16-17

⑷ 当α=2

π

时 r y x ==,0 ∴sin 2π=1 cos 2π=0 tan 2π不存在 cot 2π

=0

sec 2π不存在 csc 2π

=1

例三 求函数x

x

x

x y tan tan cos cos +

=

的值域 解: 定义域:cosx ≠0 ∴x 的终边不在x 轴上 又∵tanx ≠0 ∴x 的终边不在y 轴上

∴当x 是第Ⅰ象限角时,0,0>>y x cosx=|cosx| tanx=|tanx| ∴y=2 …………Ⅱ…………,0,0>

…………ⅢⅣ………, 0

,00

,0<><

解:⑴由定义 :5=r sin α=-53 cos α=54 ∴2sin α+cos α=-52

⑵若0>a a r 5= 则sin α=-53 cos α=54 ∴2sin α+cos α=-52

若0

2

三、小结:定义及有关注意内容

四、作业: 课本 P19 练习1 P20习题4.3 3

总 第6教时

4.3-2三角函数线

教学目的:

1、理解有向线段的概念、正弦线、余弦线、正(余)切线。

2、要求学生掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。

过程:一、复习三角函数的定义,指出:“定义”从代数的角度揭示了三角函数是一个“比值”

二、提出课题:从几何的观点来揭示三角函数的定义:

用单位圆中的线段表示三角函数值

三、新授: 2. 介绍(定义)“单位圆”—圆心在原点O ,半径等于单位长度的圆 3. 作图:(图4-12 )

设任意角α的顶点在原点,始边与x 轴的非负半轴重合,角α的终边也与单位圆交于P ,坐标轴正半轴分别与单位圆交于A 、B 两点

过P(x,y)作PM ⊥x 轴于M ,过点A(1,0)作单位圆切线,与α角的终边或其反向延长线交于T ,过点B(0,1)作单位圆的切线,与α角的终边或其反向延长线交于S 4. 简单介绍“向量”(带有“方向”的量—用正负号表示) “有向线段”(带有方向的线段)

方向可取与坐标轴方向相同,长度用绝对值表示。 例:有向线段OM ,OP 长度分别为y x ,

当OM=x 时 若0>x OM 看作与x 轴同向 OM 具有正值x 若0

5.

MP y y

r y ====1sin α OM x x

r x ====1

cos α 有向线段MP,OM,AT,BS 分别

称作

AT OA

AT

OM MP x y ====αtan α角的正弦线,余弦线,正切线,

余切线 BS OB

BS MP OM y x ====

αcot 四、例题:

例一.利用三角函数线比较下列各组数的大小:

1? 32s i n π与54sin π 2? tan 32π与tan 54π 3? cot 32π与cot 54π

解:如图可知:

32sin

π>54sin π, tan 32π< tan 54π cot 32π >cot 5

例二 利用单位圆寻找适合下列条件的0?到360?的角 1? sin α≥

2

1

2? tan α>33

30?≤α≤150? 30?<α<90?或

210?<α<270

?

例三、求证:若2

021π

αα≤

<≤时,则sin α1

证明: 分别作α1,α2的正弦线x 的终边不在x 轴上

sin α1=M 1P 1 sin α2=M 2P 2 ∵2

021π

αα≤

<≤ ∴M 1P 1< M 2P 2 即sin α1

五、小结:单位圆,有向线段,三角函数线

六、作业: 课本 P15 练习 P20习题4.3 2 补充:解不等式:()2,0[π∈x )

1?sinx ≥

23 2? tan x 1-> 3?sin 2

x ≤2

1

三角函数的诱导公式教案优质课

三角函数的诱导公式(共5课时) 教学目标: 1、知识目标:理解四组诱导公式及其探究思路,学会利用 四组诱导公式求解任意角的三角函数值,会 进行简单的化简与证明。 2、能力目标:培养学生数学探究与交流的能力,培养学生 直觉猜想与抽象概括的能力。 3、情感目标与价值观:通过不断设置悬念、疑问,来引起 学生的困惑与惊讶,激发学生的好奇心和 求知欲,通过小组的合作与交流,来增强 学生学习数学的自信心。 教学重点:理解四组诱导公式 利用四组诱导公式求任意角的三角函数值和简单的化简与证明。 教学难点:四组诱导公式的推导过程 为了区分下节课的几组公式,要理解为何名称不变 理解确定符号的方法 教学方法:启发式结合讨论式教学方法,结合多媒体课件演示

教学工具:多媒体电脑,投影仪 教学过程: 一、问题情景: 回顾前面已经学习的理论知识,我们已经学习了任意角的三角函数的定义,学习了三角函数线,还有同角三角函数关系,但是我们还有一个关键问题没有解决,那就是:我们如何来求任意角的三角函数值呢 思考:你能填好下面的表吗 二、学生活动: 小组讨论: 1、找出我们可以解决的和目前无法解决的 2、对于还无法解决的,可否借助前面学习的知识求解

3、这些角之间有何关联 教师指导:我们前面学过了三角函数的定义和三角函数线,知道角的 终边和单位圆的交点的坐标就是角对应的三角函数值,大 家先画出一个单位圆,然后把第一个角的终边画出来,它 和单位圆的交点记为(00,x y ),然后我们以每两排为一 组前后左右可以相互讨论,分别画出另外四个角的终边和 单位圆的交点,每组画一个,然后每组推出一名代表发言, 看看你在画图的时候发现了什么。 (给五分钟画图、总结,学生在画图中容易看出另外的几个角和 开始的锐角的关系) 三、 意义建构: 教师指导:请每组推出的代表发言。(按顺序,没合适人选时,教师可以随机指出一名代表) 第一组:由画图发现0390的角的终边和6 的终边是重合的,它们相差 0360,由三角函数定义可知,终边相同的角的同一三角函数值相等,表中第二列和第一列值相同。 教师指导:第一组总结的很好,我们可否也把 它推广到任意的角呢总结一下就是“终 边相同的角的三角函数值相同”,如何

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

全国高中数学优质课 余弦定理教学设计

《余弦定理》教学设计 一、教学内容解析 本节内容选自普通高中课程标准实验教科书人教A版《数学》必修5第一章《解三角形》第一节正弦定理和余弦定理。第一节约4课时,2课时通过探究证明正弦定理,应用正弦定理解三角形;2课时通过探究证明余弦定理,应用余弦定理解三角形。本节课是余弦定理的第一课时,属于定理教学课。 正余弦定理是定量研究三角形边角关系的基础,它们为解三角形提供了基本方法,为后续解决测量等实际问题提供了理论基础和操作工具。余弦定理是继正弦定理之后的解三角形又一有力工具,完善了解三角形体系,为解决三角形的边角关系提供了新的方法;是对任意三角形“边、角、边”和“边、边、边”问题进行量化分析的结果,将两种判定三角形全等的定性定理转化为可计算的公式。 纵观余弦定理的发展史,它的雏形出现公元前3世纪。在欧几里得《几何原本》卷二对钝角三角形和锐角三角形三边关系的阐述中,利用勾股定理将余弦定理的几何形式进行了证明。1593年,法国数学家韦达首次将欧几里得的几何命题写成了我们今天熟悉的余弦定理的三角形式,直到20世纪,三角形式的余弦定理才一统天下。“余弦定理是作为勾股定理的推广而诞生的,以几何定理的身份出现,直到1951年,美国数学家荷尔莫斯在其《三角学》中才真正采用解析几何的方法证明了余弦定理,至于向量方法的出现,更是晚近的事了。” 从新旧教材的内容设计对比来看,无论是问题的提出,定理的证明,简单应用都呈现出变化。旧教材数学第二册(下)中,余弦定理被安排在第五章《平面向量》的第二节解斜三角形中。基于特殊到一般的数学思想,从直角三角形

切入,提出问题后,直接用向量的方法推导定理。新教材将余弦定理安排在独立章节《解三角形》中,首先给出探究:如果已知一个三角形的两边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形,从量化的角度研究这个问题,也为余弦定理解三角形的类型做了铺垫。在定理的推导过程中,同样用了向量方法,但在推导前提出思考:联系已经学过的知识,我们从什么途径来解决这个问题?新教材还结合余弦定理和余弦函数的性质,分别对三种形状的三角形进行了量化分析,旧教材没有涉及此内容。 从余弦定理的发展史和教材的设置变化来看,欧式几何依据基本的逻辑原理,建立几何关系,论证严谨,但思维量大,需要分类讨论。而作为沟通代数、几何与三角函数的工具——向量引入后,欧式几何中的平行、相似、垂直都可以转化成向量的加减、数乘、数量积的运量,从而把图形的基本性质转化成向量的运算体系,由此开创了研究几何问题的新方法。而且在证明之后还提出问题:用坐标方法怎样怎样证明余弦定理?还有其他的方法吗? 教材的编排,就是希望学生了解可以从向量、解析方法和三角方法等多种途径证明余弦定理,另外对向量工具性作用有所体会和认识。 基于以上分析,本节课的教学重点是: 通过对三角形边角关系的探索,发现并证明余弦定理。 二、教学目标设置 结合《课程标准》和教材编排,本节课的教学目标确定为: 1.发现并掌握余弦定理及其推论,利用余弦定理能够解决一些与三角形边角有关的计算问题。 2.通过对三角形边角关系的探索,能证明余弦定理,了解可以从向量、解析方法和三角方法等多种途径证明余弦定理。

1.2.1 三角函数线 教案 (1)(优秀经典公开课比赛教案)

1.2.1 三角函数线 一、教学目标: 知识与技能: 1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值; 3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。 过程与方法: 掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。 情感、态度与价值观 通过任意角的三角函数定义学习,让学生体会数形结合的思想方法,帮助学生形成科学的世界观、 价值观。 二.重点难点 重点:正弦、余弦、正切线的概念。 难点:正弦、余弦、正切线的利用。 三、教材与学情分析 利用信息技术,可以很容易地建立角的终边和单位圆的交点坐标、单位圆中的三角函数线之间的联系,并在角的变化过程中,将这种联系直观地体现出来.所以,信息技术可以帮助学生更好地理解三角函数的本质.激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境. 四、教学方法 问题引导,主动探究,启发式教学. 五、教学过程 1.导入新课 思路1.(情境导入)同学们都在一些旅游景地或者在公园中见过大观览车,大家是否想过大观览车在转动过程中,座椅离地面的高度随着转动角度的变化而变化,二者之间有怎样 的相依关系呢? 思路2.(复习导入)我们研究了三角函数在各象限内的符号,学习了将任意角的三角函数化成0°—360°角的三角函数的一组公式,前面还分析讨论了三角函数的定义域,这些内容

的研究,都是建立在任意角的三角函数定义之上的,这些知识在以后我们继续学习“三角”内容时,是经常、反复运用的,请同学们务必在理解的基础上要加强记忆.由三角函数的定义我们知道,对于角α的各种三角函数我们都是用比值来表示的,或者说是用数来表示的,今天我们再来学习正弦、余弦、正切函数的另一种表示方法——几何表示法.我们知道,直角坐标系内点的坐标与坐标轴的方向有关.因此自然产生一个想法是以坐标轴的方向来规定有向线段的方向,以使它们的取值与点的坐标联系起来. 新知探究 (1)提出问题:问题①:回忆上节课学习的三角函数定义并思考:三角函数的定义能否用 几何中的方法来表示,应怎样表示呢? 问题②:回忆初中学过的线段,若加上方向会怎样呢?什么是有向线段? 活动:指导学生在平面直角坐标系内作出单位圆,设任意角α的顶点在原点,始边与x 轴的非负半轴重合,终边与单位圆相交于点P(x,y),x 轴的正半轴与单位圆相交于A(1,0),过P 作x 轴的垂线,垂足为M;过A 作单位圆的切线,这条切线必平行于y 轴(垂直于同一条直线的两直线平行),设它与角α的终边或其反向延长线交于点T.教师点拨学生观察线段的方向与点P 的坐标.显然,线段OM 的长度为|x|,线段MP 的长度为|y|,它们都只能取非负值. 当角α的终边不在坐标轴上时,我们可以把OM 、MP 都看作带有方向的线段: 如果x>0,OM 与x 轴同向,规定此时OM 具有正值x;如果x<0,OM 与x 轴正向相反(即反向), 规定此时OM 具有负值x,所以不论哪一种情况,都有OM=x. 如果y>0,把MP 看作与y 轴同向,规定此时MP 具有正值y;如果y<0,把MP 看作与y 轴反向,规定此时MP 具有负值y,所以不论哪一种情况,都有MP=y. 引导学生观察OM 、MP 都是带有方向的线段,这种被看作带有方向的线段叫做有向线段. 于是,根据正弦、余弦函数的定义,就有 sin α=r y =1 y =y=MP, cos α=r x =1x =x=OM. 这两条与单位圆有关的有向线段MP 、OM 分别叫做角α的正弦线、余弦线. 类似地,我们把OA 、AT 也看作有向线段,那么根据正切函数的定义 和相似三角形的知识,就有tan α= x y =OA AT =AT. 这条与单位圆有关的有向线段AT,叫做角α的正切线.

初中数学九年级《锐角三角函数:正弦》公开课教学设计

28.1 锐角三角函数(教案) 第 1 课时正弦 【知识与技能】 1. 让学生理解当直角三角形的锐角固定时,它的对边与斜边的比值是一个定值的事实; 2. 掌握正弦函数意义,能依据正弦函数定义进行有关计算. 【过程与方法】通过对30°和45°与其所对的直角边与斜边的比值之间关系的探讨,可以获得“直角三角形中,当锐角一定时,这个锐角的对边与斜边的比是固定值”这一重要结论,发展学生的演绎推理能力. 【情感态度】在探索正弦函数概念的过程中,可进一步培养学生的创新意识,发展学生的形象思维,增强由特殊到一般逻辑推理能力. 【教学重点】了解正弦函数定义,理解当锐角一定时它所对的直角边与斜边的比固定不变这一事实.【教学难点】加深直角三角形中,当它的某一锐角固定时这角的对边与斜边的比是个定值”的理解. 一、情境导入,初步认识 问题为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌. 现测得斜坡与水平面所成角的度数是30°, 为使水管出水口到水平面的高度为35m,那么需准备多长的管? 【教学说明】对所提示的问题,教师应引导学生如何将这一实际问题转化为数学模型,让学生在相互交流中获得结论. 教师应重点关注学生获取结论的过程,即是否运用 30 的对边1 “ 斜边= 2 ” 这一结论。 二、思考探究,获取新知 探究 1 如果将上述问题中出水口到水平面的高度改为50m,那么需准备多长的水管? 思考 1 通过对前面问题和探究的思考,你有什么发现? 【教学说明】在学生自主探究,获得结论后,让他们相互交流各自体会,为掌握本节知 识积累感性认识. 最后教师与学生一道进行简要总结. 【归纳结论】在一个直角三角形中,如果一个锐角为30°,那么不管三角形的大小如 何,这个角的对边与斜边的比值都等于1,是一个固定值. 2 ∠ C=90°,∠ A = 45°,计算∠ A的对边BC与斜思考 2 如图,在Rt△ACB中,

锐角三角函数的图文解析

锐角三角函数的图文解析 一、选择题 1.如图,菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,∠DOE =120°,DE =1,则BD =( ) A .3 B .23 C .63 D .33 【答案】B 【解析】 【分析】 证明△OBE 是等边三角形,然后解直角三角形即可. 【详解】 ∵四边形ABCD 是菱形,∴OD =OB ,CD =BC . ∵DE ⊥BC ,∴∠DEB =90°,∴OE =OD =OB . ∵∠DOE =120°,∴∠BOE =60°,∴△OBE 是等边三角形,∴∠DBC =60°. ∵∠DEB =90°,∴BD = 23sin603 DE =?. 故选B . 【点睛】 本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】

在Rt△BDE中,cosD=DE BD , ∴DE=BD?cosD=500cos55°. 故选B. 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=3 5 ,则下列结论正确的个数有() ①DE=3cm; ②BE=1cm; ③菱形的面积为15cm2; ④BD=210cm. A.1个B.2个C.3个D.4个【答案】C 【解析】 【分析】 根据菱形的性质及已知对各个选项进行分析,从而得到答案 【详解】 ∵菱形ABCD的周长为20cm ∴AD=5cm ∵sinA=3 5 ∴DE=3cm(①正确) ∴AE=4cm ∵AB=5cm ∴BE=5﹣4=1cm(②正确) ∴菱形的面积=AB×DE=5×3=15cm2(③正确) ∵DE=3cm,BE=1cm ∴10(④不正确) 所以正确的有三个. 故选C. 【点睛】 本题考查了菱形的性质及锐角三角函数的定义,熟练掌握性质是解题的关键 4.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()

杨启刚1.3三角函数的诱导公式-公开课教案

公开课教案 教学课题: 1.3三角函数的诱导公式 教学时间:2014.11.20第七节课教学地点:北楼一楼授课班级:高一(2)班执教人:杨启刚●三维目标 1.知识与技能 (1)理解正弦、余弦的诱导公式. (2)培养学生化归、转化的能力. 2.过程与方法 (1)能运用公式一、二、三推导公式四. (2)掌握诱导公式并运用其进行三角函数式的求值、化简以及简单三角恒等式的证明. 3.情感、态度与价值观 通过公式四的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质. ●重点、难点 重点:诱导公式的探究,运用诱导公式进行简单三角函数式的求值、化简与恒等式的证明,提高对数学内部联系的认识. 难点:发现圆的几何性质(特别是对称性)与三角函数性质的联系.式的关系.●教学建议 1.三角函数的诱导公式是圆的对称性的“代数表示”,因此,用数形结合的思想,从单位圆关于坐标轴、原点等的对称性出发研究诱导公式,是一个自然的思路.利用单位圆的对称性,让学生自主发现终边分别关于原点或坐标轴对称的角的三角函数值之间的关系,使得诱导公式(数)与单位圆(形)得到紧密结合,成为一个整体,不仅大大简化了诱导公式的推导过程,缩减了认识、理解诱导公式的时间,而且还有利于学生对公式的记忆,减轻了学生的记忆负担.2.诱导公式应当在理解的基础上记忆,而且应当使学生学会利用单位圆帮

助记忆.教科书对诱导公式的特点进行了概括,教学中要留有时间让学生思考、讨论、归纳,引导学生建立各组公式与相应图形的联系,并对各个公式的异同进行比较,以此加深公式的理解. ●教学过程 设任意角α的终边与单位圆交于点P1(x,y),π+α的角的终边与单位圆交于点P2. 1.点P2的坐标是什么? 【提示】P2(-x,-y) 2.根据三角函数的定义,你能得出角π+α与角α的三角函数值间的关系吗? sin(π+α)=-sin_α,cos(π+α)=-cos_α;tan(π+α)=tan_α. 任意角α与-α的终边与单位圆的交点有怎样的位置关系? 你能用三角函数的定义验证-α与α的三角函数值的关系吗? sin(-α)=-sin_α;cos(-α)=cos_α;tan(-α)=-tan_α. 任意角α与π-α的终边与单位圆的交点有怎样的位置关系? 1.公式四:sin(π-α)=sin_α;cos(π-α)=-cos_α;tan(π-α)=-tan_α. 2.公式一~四可以概括为:

任意角的三角函数公开课教案(精.选)

任意角的三角函数(第一课时) 教学目标 1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 一、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化). 二、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关

系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业] (一)复习引入、回想再认 开门见山,面对全体学生提问: 在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢? 探索任意角的三角函数(板书课题),请同学们回想,再明确一下: (情景1)什么叫函数?或者说函数是怎样定义的? 让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调: 传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域. 现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数 f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作: f(x),x∈A ,其中x叫自变量,自变量x的取值范围A叫做函数的定义域. (情景2)我们在初中通过锐角三角形的边角关系,学习

《解直角三角形复习》公开课教案

《解直角三角形复习》教案 单位:泸县一中 年级: 九 学科: 数 学 设计者:_______ 时间:2015年 4月14日 【学习目标】: 1. 巩固三角函数的概念,巩固用直角三角形边之比来表示某个锐角的三角函数. 2. 熟记30°,45°, 60°角的三角函数值.会计算含有特殊角的三角函数的值,会由一个特殊锐角的三角函数值,求出它的对应的角度. 3.掌握直角三角形的边角关系,会运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形. 4.会用解直角三角形的有关知识解决简单的实际问题. 【教学重点】:从实际问题中提炼图形,将实际问题数学化,将抽象问题具体化。 【教学难点】:运用解直角三角形的知识灵活、恰当地选择关系式解决实际问题。 【教学过程】: 一、考点梳理: 1.锐角三角函数的定义 在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c. 2、特殊角的三角函数值 三角函数 角α sin α cos α tan α 30° 45° 60° 1sin =A A A ∠=∠———— ——— ————的、正弦函数:的=A A A ∠= ∠———— ——— ———— 的2、余弦函数:cos 的=A A A ∠=∠———— ——— ———— 的3、正切函数:tan 的

3、解直角三角形的定义及类型 (1)定义:一般地,在直角三角形中,除直角外,共有 5 个元素,即______条边和______个锐角.由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形. 4、解直角三角形的应用 (1)仰角和俯角 在视线与水平线所成的角中,视线在水平线 的叫做仰角,在水平线 的叫做俯角. (2)方位角 一般以观察者的位置为中心,南北方向线与目标方向线之间的夹角叫方位角。如下图: OA 方向用方位角表示为 ;OB 方向用方位角表示为 。 (3)坡角、坡度 坡角:指坡面与水平线的夹角,如图中的 坡度:指坡面的垂直高度与水平距离的比,如图中的i =1:表示AF 与BF 的比 坡角与坡度的关系: 二、基础巩固: 1. 如图,在Rt △ABC 中, ∠ C=90°,BC=3,AC=4,那么cos A 的值等于( ) 2.河堤横断面如图所示,堤高BC=6 m,迎水坡AB 的坡度为 ,则AB 的长为( ) 3 . 4A 4. 3B 3. 5 C 4. 5 D 3.12A m .43B m .53C m .63D m

锐角三角函数教学设计数学优秀教学设计案例实录能手公开课示范课.docx

锐角三角函数教学设计 §28?1锐角三角函数(一) 一. 指导思想 建构主义学习理论的核心是:以学生为屮心,强调学生对知识的主动探索,主动发现和对所学知识意义的主动建构;教师只对学生的意义建构起帮助和促进作用,并不要求教师直接向学生传授和灌输知识。 《数学课程标准》提出:学生是数学学习的主人,教师是数学学习的纽织者、引导者与合作者;有效的数学学习活动不能单纯依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方法。学生的数学学习内容应当是现实的、冇意义的、富冇挑战性的,这些内容要有利于学生主动的进行观察、实验、猜想、验证、推理打交流活动。教师应向学生提供充分从事数学活动的机会,帮助他们在动手实践、自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。 因此,在木节课的每个教学活动屮,教师努力做到:给予学生充分的独立思考、探究的时间,使学生面对新问题,寻求新的解决办法;参与到学生活动中,适时进行点拨与指导,对学生在活动屮的各种表现,都应该及时给予鼓励,使他们真正体验到白己的进步,感受到成功的喜悦;为学生提供协作、交流的机会,使每个学牛的个性得以张扬,自我表现意识和团队精神得以增强。 二. 教学背景分析 (一)教学内容分析: 1.地位及作用 《锐角三角函数概念》是人教版义务教育课程标准实验教科书数学九年级下册笫28章第一节的内容。 锐角三角函数的概念是以相似三角形的知识为基础的,它的建立是对代数屮已初步涉及的函数概念的一次充实和进一步开阔视野,也将是高中阶段学习任意角的三角函数的基础。锐角三角函数的概念,既是本章的重点,也是难点.又是学好本章内容的关键?因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角Z间的关系,从而才能利川这些关系解直角三角形。此内容乂是数形结合的典范.因此,学好本节内容是十分必要的,对本单元的学习必须引起足够的重视. 2.课时安排 本节教材共分三课时完成,:第-?课时是正弦概念的建立及其简单应用;第二课时是余弦、正切概念的建立及其简单应用;笫三课时是综合应用。 (二)学生情况分析: 学生前面已经学习了三角形、四边形、和似三角形和勾股定理的知识,为锐角三角函数的学习

人教版初中数学锐角三角函数的经典测试题附答案

人教版初中数学锐角三角函数的经典测试题附答案 一、选择题 1.如图,在矩形ABCD 中,4,AB DE AC =⊥,垂足为E ,设ADE α∠=,且 3 cos 5 α= ,则AC 的长为( ) A .3 B . 163 C . 203 D . 165 【答案】C 【解析】 【分析】 根据同角的余角相等求出∠ADE=∠ACD ,再根据两直线平行,内错角相等可得∠BAC=∠ACD ,然后求出AC . 【详解】 解:∵DE ⊥AC , ∴∠ADE+∠CAD=90°, ∵∠ACD+∠CAD=90°, ∴∠ACD=∠ADE=α, ∵矩形ABCD 的对边AB ∥CD , ∴∠BAC=∠ACD , ∵cos α=3 5,35 AB AC ∴ =, ∴AC= 520433?=. 故选:C . 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC 是解题的关键. 2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A 、B 、C 都是格点,则tan ABC ∠=( )

A . 39 B . 36 C . 33 D . 32 【答案】A 【解析】 【分析】 直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用 EC tan ABC BE ∠= 得出答案. 【详解】 解:连接DC ,交AB 于点E . 由题意可得:∠AFC=30°, DC ⊥AF, 设EC=x,则EF= x =3x tan 30? , ∴BF AF 2EF 23x === EC 3 tan ABC BE 23x 3x 33= === +∠, 故选:A 【点睛】 此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键. 3.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点 B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A , C ,E 成一直线,那么开挖 点E 离点D 的距离是( )

公开课教案解直角三角形

解直角三角形复习课教案 教学目标: 1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三 角形的两个锐角互余及锐角三角函数解直角三角形. 2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数 解直角三角形,逐步培养学生分析问题、解决问题的能力. 3、渗透数形结合的数学思想,培养学生良好的学习习惯 思想方法: 1、数形结合思想:用锐角三角函数解直角三角形,主要是从“数”上去研 究的.在具体解题时,要画出它的平面或截面示意图,按照图中边角之 间的关系去进行数的运算. 2、方程的思想:在解直角三角形时,常常通过设未知数列方程求解,使 问题变得清楚明了. 3、转化的思想:在求三角函数值和解直角三角形时,常利用三角函数的 意义,可以实现边和角的互化,利用互余角的三角函数关系可以实现“正弦”与“余弦”的互化. 教学重点: 1、锐角三角函数 2、特殊角的三角函数值 3、直角三角形的解法. 教学难点: 三角函数在解直角三角形中的灵活运用. 四、考题透视 锐角三角函数在中考中考查的难度不大,分数约4-6分,主要以填空题、选择题出现;解直角三角形方面的应用题历来都是中考的重点和热点内容之一,分数达到8~12分不等,分值占的比例较大,应引起足够的重视。 考点一:锐角三角函数的概念 例1(郴州市2007年)如图1在直角三角形 B 3

ABC 中,则______. 考点二:特殊角的三角函数值的计算 例2:计算 考点三:解非直角三角形 例3 :如图所示,已知:在△ABC中,∠A=60,∠B=45,AB=8.求△ABC的面积(结果可保留根号)。 考点四:解直角三角形的实际问题 例4、一高速铁路即将动工,工程需要测量某一段河的宽度。如图1,一测量员在河岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°. (参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48); 1)求所测之河的宽度 2)除图1的测量方案外,请你再设计一种测量江宽的方案,并在图2中画出图形。

全国第八届青年数学教师优质课教学设计:任意角的三角函数4 含答案

1.2.1任意角的三角函数 【教学内容解析】 三角函数是描述客观世界中周期性变化规律的重要数学模型,是对函数模型的丰富,是对函数概念,性质,图像变换及函数应用的进一步深化,是函数概念的下位知识。 三角函数在物理学、天文学、地理学等学科中都有重要的应用,它是解决实际问题的重要工具,它是学习数学及其他学科的基础,因此,通过本章的学习可以培养学生的数学应用能力。 本节之前学生学习了函数的概念,指数函数、对数函数、幂函数和任意角弧度制,本节之后还要接着研究三角函数的图像和性质,并应用性质解决一些简单的具有周期现象的实际问题。而本节内容是研究三角函数图像和性质的基础。因此本节内容具有承上启下的作用。 任意角三角函数概念的重点是借助单位圆上点的圆周运动理解任意角的正弦、余弦的定义,它们是本节,乃至本章的基本概念,解决这一重点的关键是在直角坐标系中,借助单位圆、象限角等知识,抽象概括出三角函数,在这一过程中,学生可以感受到数形结合、运动变化、对应等数学思想方法. 【教学目标设置】 1、通过大量实例,认识到定义任意角三角函数的必要性; 2、借助单位圆上的圆周运动,抽 象概括出任意角正弦、余弦定义,并体会命名的合理性;能根据定义求特殊角的三角函数值。 3、在抽象概括三角函模型的过程中,体会数形结合等数学思想。 【学生学情分析】 初中学习了函数的初步概念,研究了一次函数、二次函数、反比例函数的图像和性质,进入高中后从集合与对应的观点重新刻画了函数的概念,研究了指数函数、对数函数和幂函数的定义、图像和性质。学生已具备了学习和研究一个新函数的知识基础和初步能力。本节课之前的任意角和弧度制,学生已经知道了角的弧度数与实数一一对应,这为学生学习任意角的三角函数奠定了基础。 三角函数是“从角的集合到坐标分量的集合”的对应关系,所以学生对任意角三角函数对应关系的理解要比从前学过的特殊函数困难些,这是教学的一个难点,所以需要借助单位圆上的圆周运动以直观的几何方式给出定义,通过合理的设计问题串突破该难点。 教学的另一个难点是,任意角三角函数的定义域是角的集合(或它的子集),需要“把角的集合转化为实数集”.回顾前一节的弧度制学生可以自行解决该难点,并也体现了引入弧度制的必要性。 【教学重点、难点】 重点:借助单位圆上点的圆周运动生成理解任意角的正弦、余弦的定义;能根据定义求特殊角的三角函数值。 难点:从单位圆上点的圆周运动这一模型中寻找变量并抽象概括出函数。 【教学策略分析】 “任意角三角函数的概念”是“函数概念”的下位概念,学生的学习是下位学习(一般函数概念下的具体函数),为了更好地突出“任意角三角函数的函数性”和“三角函数作为

(优质课)锐角三角函数教案

教学设计: §28.1 锐角三角函数 授课人:和金平 编号: 48号

§28.1 锐角三角函数(一) 一、教学目标: 1、理解直角三角形中锐角正弦函数的意义,并会求锐角的正弦值; 2、掌握根据锐角的正弦值及直角三角形的一边,求直角三角形其他边长的方法; 3、经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究能力。 教学重点: 理解正弦(sinA)概念,掌握当直角三角形的锐角固定时,它的对边与斜边的比值是固定值.教学难点: 在直角三角形中当锐角固定时,它的对边与斜边的比值是固定值的事实。 二、教学过程: 1、创设情景,提出问题:(PPT演示) 在唐僧师徒取经的路上,遇到了一座山,这座山有多高呢?这可难住了唐僧。大徒弟孙悟空目测山的顶部,视线与水平线的夹角为30度,然后从地面飞到山顶,路程是1000米。 你能帮孙悟空计算出山的高度吗? 1000米 B A C 情境探究: 分析:这个问题可以归结为,在Rt△ABC中,∠C=90°,∠A=30°,AB=1000m,求BC 根据“在直角三角形中,30°角所对的边等于斜边的一半”,即 可得BC=AB =500m,也就是说,这座山的高度是500m 思考1:在上面的问题中,如果孙悟空从山底部飞到山顶1500米,那么山的高度是多少? 可得B’C =AB’ =750m 仍有 1 2 A BC AB ∠ == 的对边 斜边 1 2 ''1 , A B C ∠ == 的对边 1 2

结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角 的对边与斜边的比值都等于 思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?如果是,是多少? 在Rt△ABC 中,∠C =90°,由于∠A =45°,所以 Rt△ABC 是等腰直角三角形,假设 BC= ,由勾股定理得: A 因此 C B 45°时,不管这个直角三角形的大小如何,这个角的对 边与斜边的比都等于从上面这两个问题的结论中可知,在一个Rt △ABC 中,∠C=90° 当∠A=30°时,∠A 的对边与斜边的比都等于1 2 ,是个固定值; 当∠A=45°时,∠A ,也是一个固定值. 2、【探究】当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值? 任意画Rt△ABC 和Rt△A’B’C ,使得∠C =∠C ’=90°,∠A =∠A’= , 那么 与 有什么关系.你能解释一下吗? 由于∠C =∠C ’=90°, ∠A =∠A ’= 所以Rt△ABC ∽ Rt△A’B’C’ 【为了更直观地验证这一结论,教师几何画板演示:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比不变;当锐角A 的度数增大时,不管三∠A 的对边与斜边的比值变大。】 1 2 a 22222 22AB AC BC BC a =+==AB =2BC AB ===a a 2 αAB BC ' '' 'B A C B α,'''' BC AB B C A B ∴=B'C' .AB '' BC A B =即

【公开课教案】《三角函数图像》教学设计

函数)0,0)(sin(>>+=ω?ωA x A y 的图象教学设计 (一) 教学重点:)0,0)(sin(>>+=ω?ωA x A y 的图象; (二) 教学难点:)0,0)(sin(>>+=ω?ωA x A y 图象的作法及其变换方法; (三) 教学方法:启发诱导式; (四) 教学过程: 一、引入 播放小动画,引起学生兴趣,并提出问题: 已知某海滨浴场的海浪高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y=f(t),下面是某日各时的海浪数据: 怎样根据以上数据,建立y 与t 之间的函数关系? 二、)0,0)(sin(>>+=ω?ωA x A y 图象画法。 问题一:怎样画出)3 2sin(2π +=x y 的函数图象? [分析]主要方法:五点法。 (1)列表 (2)描点 (3)连线

注意:(1)五点法作图中x 的取值方法; (2)x 轴单位的确定。 三、图象变换 问题二:)3 2sin(2π +=x y 由x y sin =图象怎样变换得到? [分析](法一) x y sin = )3 sin(π + =x y )32sin(π + =x y )32sin(2π +=x y (法二) x y sin = x y 2sin = )6(2sin π + =x y )3 2sin(2π +=x y (此过程讲解配合动画演示) 四、例题 向左平移 3 π 个单位 横坐标缩小为原来 2 1 倍,纵坐标不变 2倍,横坐标不变 纵坐标伸长为原来 横坐标缩小为原来 2 1 倍,纵坐标不变 向左平移 6 π 个单位 2倍,横坐标不变 纵坐标伸长为原来

(优质课)锐角三角函数教案

1文档来源为:从网络收集整理.word 版本可编辑. 教学设计: §28.1 锐角三角函数 授课人:和金平 编号: 48号 §28.1 锐角三角函数(一) 一、教学目标: 1、理解直角三角形中锐角正弦函数的意义,并会求锐角的正弦值; 2、掌握根据锐角的正弦值及直角三角形的一边,求直角三角形其他边长的方法; 3、经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究能力。 教学重点: 理解正弦(sinA )概念,掌握当直角三角形的锐角固定时,它的对边与斜边的比值是固定值. 教学难点: 在直角三角形中当锐角固定时,它的对边与斜边的比值是固定值的事实。 二、教学过程: 1、创设情景,提出问题:(PPT 演示) 在唐僧师徒取经的路上,遇到了一座山,这座山有多高呢?这可难住了唐僧。大徒弟孙悟空目测山的顶部,视线与水平线的夹角为30度,然后从地面飞到山顶,路程是1000米。 你能帮孙悟空计算出山的高度吗? 1000米 B A C 情境探究: 分析:这个问题可以归结为,在Rt△ABC 中,∠C =90°,∠A =30°,AB =1000m ,求BC 根据“在直角三角形中,30°角所对的边等于斜边的一半”,即 可得BC = AB =500m ,也就是说,这座山的高度是500m 思考1:在上面的问题中,如果孙悟空从山底部飞到山顶1500米,那么山的高度是多少? 可得B ’C = AB ’ =750m 仍有 结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角 ''1,'2 A B C AB ∠ ==的对边斜边1 2 12

2文档来源为:从网络收集整理.word 版本可编辑. B C A 30° A C B 45° 的对边与斜边的比值都等于 思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?如果是,是多少? 在Rt△ABC 中,∠C =90°,由于∠A =45°,所以 Rt△ABC 是等腰直角三角形,假设 BC= ,由勾股定理得: A 因此 C B 即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对 边与斜边的比都等于 从上面这两个问题的结论中可知,在一个Rt △ABC 中,∠C=90° 当∠A=30°时,∠A 的对边与斜边的比都等于 12,是个固定值; 当∠A=45°时,∠A 的对边与斜边的比都等于22,也是一个固定值. 2、【探究】当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值? 任意画Rt△ABC 和Rt△A’B’C ,使得∠C =∠C ’=90°,∠A =∠A’= , 那么 与 有什么关系.你能解释一下吗? 由于∠C =∠C ’=90°, ∠A =∠A ’= 所以Rt△ABC ∽ Rt△A’B’C’ 【为了更直观地验证这一结论,教师几何画板演示:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比不变;当锐角A 的度数增大时,不管三∠A 的对边与斜边的比值变大。】 【通过数形结合引导学生体会锐角A 的度数的变化与∠A 的对边与斜边的比之间的关系,并且结合图形叙述正弦定义,以培养学生概括能力及语言表达能力】. [板书] 定义:在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦。 记作sinA , B A C 指出:“sinA ”是一个完整的符号,记号里习惯省去角的符号“∠”. 【这一环节的教学,教师要强调前提条件是:“在直角三角形中”,正弦函数值是边的比值,没有单位,并且让学生明确什么是“对边”和“斜边”】单独写出符号sin 是没有意义的。 当∠A =30°时, 当∠A=45°时, a 2222222AB AC BC BC a =+==a 22 αAB BC ''''B A C B α,'''' BC AB B C A B ∴=1sin 302=

中考数学专题练习:锐角三角函数与解直角三角形(含答案)

锐角三角函数与解直角三角形 一、选择题 1. (2018·柳州)如图,在Rt ABC ?中,90C ∠=?,4,3BC AC ==,sin B 的值为( ) A. 35 B. 45 C. 37 D. 34 2. (2018·孝感)在Rt ABC ?中,90C ∠=?,10,8AB AC ==,则sin A 的值为( ) A. 35 B. 45 C. 34 D. 43 3. (2018·云南)在Rt ABC ?中,90C ∠=?,1,3AC BC ==,则A ∠的正切值为( ) A. 3 B. 1 3 C. D. 4. (2018·大庆)2cos60?的值为( ) A. 1 B. C. D. 1 2 5. (2018·天津) cos30?的值为( ) A. 2 B. C. 1 D. 6. ( 2018·日照)计算1 1 ()tan30sin 602 -+??g 的结果为( ) A. 32- B. 2 C. 52 D. 72 7. ( 2018·烟台)利用计算器求值时,小明将按键顺序为(sin 30)() 4x y -= 的显示结 果记为a ,26/3 x ab c =的显示结果记为b 。则,a b 的大小关系为( ) A. a b < B. a b > C . a b = D.不能比较 8. (2018·葫芦岛)如图,AB 是⊙O 的直径,,C D 是⊙O 上AB 两侧的点.若30D ∠=?, 则tan ABC ∠的值为( ) A. 1 2 B. C. D.

9. (2018·贺州)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知3sin 5 CDB ∠= ,5BD =,则AH 的长为( ) A. 253 B. 163 C. 256 D. 16 6 10. (2018·自贡)如图,若ABC ?内接于半径为R 的⊙O ,且60A ∠=?,连接,OB OC , 则边BC 的长为( ) A. B. R C. R D. 11.(2018·娄底)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的 面积为49,则sin cos αα-的值为( ) A. 513 B. 513- C. 713 D. 713 - 12. (2018·枣庄)如图,在矩形ABCD 中,E 是边BC 的中点,AE BD ⊥,垂足为F ,则 tan BDE ∠的值是( ) A. 4 B. 14 C. 1 3 D. 3 13. (2018·无锡)如图,E 是矩形ABCD 的对角线AC 上一动点,正方形EFGH 的顶点,G H 都在边AD 上.若3,4AB BC ==,则tan AFE ∠的值( ) A.等于3 7 B.等于3 C.等于 3 4 D.随点E 位置的变化而变化 14. (2018·贵阳)如图,,,A B C 是小正方形的顶点,且每个小正方形的边长为1,则t a n BAC ∠

相关主题