搜档网
当前位置:搜档网 › 金属腐蚀与控制

金属腐蚀与控制

金属腐蚀与控制
金属腐蚀与控制

金属腐蚀与控制

第一章腐蚀概论

一、腐蚀的定义

腐蚀是材料在环境的作用下引起的破坏或变质。金属和合金的腐蚀主要是由于化学或电化学作用引起的破坏,有时还同时伴有机械、物理或生物作用。例如应力腐蚀破裂就是应力和化学物质共同作用的结果。单纯物理作用的破坏,如合金在液态金属中的物理溶解,也属于腐蚀范畴,但这类破坏实例不多。单纯的机械破坏,如金属被切削、研磨,不属于腐蚀范畴非金属的破坏一般是由于化学或物理作用引起,如氧化、溶解、溶胀等。

二、腐蚀的危害

1.经济损失

腐蚀的危害非常巨大,它使珍贵的材料变为废物,如铁变成铁锈、(氧化铁);使生产和生活设施过早地报废,并因此引起生产停顿,产品或生产流体的流失,环境污染,甚至着火爆炸。据统计,工业发达国家每年由于金属腐蚀的直接损失约占全年国民经济总产值的2~4%。中国1988年国民生产总值约为1万4千亿元,由于金属腐蚀造成的直接损失约为300~600亿元。据国外统计,金属腐蚀的年损失远远超过水灾、火灾、风灾和地震(平均值)损失的总和,这还不包括由于停工减产、火灾爆炸等造成的间接损失。例如,发电厂一合锅炉管子腐蚀损坏,其价值不大,但引起一大片工厂停工,则损失要大得多。另外,非金属腐蚀损失还没有详细调查,由于混凝上、木材、塑料等用量庞大,腐蚀损失也是惊人的。材料腐蚀遍及所有的经济和生活领域,由于腐蚀主要是材料与化学介质发生化学反应所引起的,所以,对于大量使用和生产强腐蚀性化学产品的化学工业等,其危害就更大。克服腐蚀危害也是广大科技工作者的迫切任务。

2.对安全和环境的危害

腐蚀不仅造成经济上的损失;也经常构成对安全的威胁。均匀腐蚀,如铁生锈,一般进展缓慢,危险性不大,但一些局部腐蚀如孔蚀(穿孔)和应力腐蚀破裂,常常是突然发生的,可能引起事故,造成意外危险。过去国内外都曾发生过许多灾难性腐蚀事故,如飞机因某一零部件破裂而坠毁,桥梁因钢梁产生裂缝而塌陷,油管因穿孔或裂缝而漏油,引起着火爆炸等。化工厂的腐蚀事故更多,如贮酸槽穿孔泄漏,造成重大环境污染,液氨贮罐爆炸,造成人员伤亡,管道和设备跑、冒、滴、漏,破坏生产环境,有毒气体如氯、硫化氢、氰化氢等的泄漏,则更危及工作人员和附近居民的生命安全。据一些化工厂的统计,化工设备的破坏约有60%是由于腐蚀引起的,而腐蚀破坏中约30%是均匀腐蚀, 70%则属于危险的局部腐蚀,其中以应力腐蚀破裂为最多。可见,除了经济损失以外,腐蚀对安全和环境的威胁决不容忽视。

3.阻碍新技术的发展

一项新技术、新产品、和新工业的产生过程中,往往会遇到需要克服的腐蚀问题,只有解决了这些困难的腐蚀问题,新技术、新产品、新工业才得以发展。工业史上有许多例子,如铅室法硫酸工业是在找到了耐稀硫酸的铅材才得以发展起来的; 发明了不锈钢以后,生产硝酸和应用硝酸的工业才蓬勃兴起。近代还有一个有趣的例子,美国人在实施登月计划的过程中,遇到一个严重的腐蚀问题:盛四氧化二氮(氧化剂)的容器是用钛合金(6%A1,4%V)制成的,试验中几小时内就破裂,经查是应力腐蚀所致。后来科学家找到了防止破裂的方法:在氧化剂中加入少量水(>1.5%)或加0.6%NO,作为缓蚀剂,控制了应力腐蚀,克服了这道障碍,人类终于登上了月球。现在和未来在发展新技术、新产品的过程中,还会不断遇到各种新的腐蚀问题,而且是越来越困难的问题,例如化学、能源(包括核能)、航天工业等都有向高温、高压方向发展的趋势,这样可获得更高的生产率,更快的速度和更低的生产成本。但高温高压会造成更加苛刻的腐蚀环境。早期的喷气机油泵温度约为790℃,现在已达到约1100℃,这就需要适应高温、高速的新材料。由于石油和天然气的短缺,特别是我国,利用蕴藏量巨大的煤转化为气或液体燃料,是有重大意义的,但这就会遇到一连串的腐蚀问题:高温(超过1650℃)、高压、庞大的容器、粉尘的磨损腐蚀,硫化氢以及加氢引起的氢腐蚀,适应高温、高速、高磨蚀的泵和阀等。解决了这一系列问题,将可能获得廉价的煤的液化、气化燃料,将使我国以至世界的经济面貌大为改观。

4.促进自然资源的耗损

地球只有薄薄的一层外壳贮藏着可用的矿藏,而金属矿的贮量是有限的,现在已越来越减少。人类从矿石中提炼出金属,腐蚀又使金属变为无用的、不能回收的散碎的氧化物等,因而加速了自然资源的耗损。从延缓自然资源耗竭的观点看,防止腐蚀的工作也是十分重要的。

三、腐蚀的分类

根据腐蚀的形态,可分为均匀(全面)腐蚀和局部腐蚀两类,局部腐蚀还可分为若干小类。

根据腐蚀的作用原理,可分为化学腐蚀和电化学腐蚀。两者的区别是当电化学腐蚀发生时,金属表面存在隔离的阴极与阳极,有微小的电流存在于两极之间,单纯的化学腐蚀则不形成微电池。过去认为,高温气体腐蚀(如高温氧化)属于化学腐蚀,但近代概念指出在高温腐蚀中也存在隔离的阳极和阴极区,也有电子和离子的流动。据此,出现了另一种分类:干腐蚀和湿腐蚀。湿腐蚀是指金属在水溶液中的腐蚀,是典型的电化学腐蚀,干腐蚀则是指在干气体(通常是在高温)或非水溶液中的腐蚀。单纯的物理腐蚀,对于金属很少见,对于非金属,则多半产生单纯的化学或物理腐蚀,有时两种作用同时发生。

金属腐蚀与控制

第二章金属腐蚀形态

一、概述

金属腐蚀的形态可分为全面(均匀)腐蚀和局部腐蚀两大类。前者较均匀地发生在全部表面,后者只发生在局部。例如孔蚀,缝隙腐蚀,晶间腐蚀,应力腐蚀破裂,腐蚀疲劳,氢腐蚀破裂,选择腐蚀,磨损腐蚀,脱层腐蚀等(图-1)。一般局部腐蚀比全面腐蚀的危害严重得多,有一些局部腐蚀往往是突发性和灾难性的。如设备和管道穿孔破裂造成可燃可爆或有毒流体泄漏,

而引起火灾、爆炸、污染环境等事故。根据一些统计资料,化工设备的腐蚀,局部腐蚀约占70%。均匀腐蚀虽然危险性小,但大量金属都暴露在产生均匀腐蚀的气体和水中,所以经济损失也非常惊人。

二、全面(均匀)腐蚀

金属表面的全部或大部都发生腐蚀,腐蚀程度大致是均允的。一般表面覆盖一层腐蚀产物膜,能使腐蚀减缓,高温氧化就是一例。又如易钝化的金属如不锈钢、钛、铝等在氧化环境中产生极薄的钝化膜,具有优良的保护性,使腐蚀实质上停止。铁在大气和水中产生的氧化膜(锈)保护性很低。一般均匀腐蚀很严重。

也有些均匀腐蚀不产生表面膜,如铁在稀硫酸或盐酸中全面迅速溶化。无膜全面腐蚀很危险,但在现实生活中很少发生,除非选材严重错误,例如选用铁或铝设备贮运盐酸等。

均匀腐蚀的程度可以用腐蚀率来表示。常用两种单位,一是单位时间内,单位表面积上损失的重量,以g/(m2·h)计;另一是单位时间内腐蚀的平均厚度,以mm/年计。二者换算关系如下:

lmm/年=8.76g/(m2 ·h)x 1/d

上式中 d—材料的密度。

由厚度腐蚀率可以估算设备的预期寿命,一般应用得更广泛。

三、孔蚀

孔蚀是高度局部的腐蚀形态。金属表面的大部分不腐蚀或腐蚀轻微, 只在局部发生一个或一些孔。孔有大有小,一般孔表面直径等于或小于孔深,但也有坑状碟形浅孔(图一2)。小而深的孔可使金属板穿透,引起流体泄漏、火灾、爆炸等事故,它是破坏性和隐患最大的腐蚀形态之一。

孔蚀发生于易钝化的金属,如不锈钢、钛铝合金等,因为表面覆盖强保护性的钝化膜,腐蚀很微,但由于表面局部可能存在缺陷(露头的螺位错、痕、非金属夹杂物等),溶液内又存在能破坏钝化膜的活性离子(Cl-,Br-),钝化膜在局部破坏,微小破口暴露的金属成为电池的阳极,周围广大面积的膜成为阴极,阳极电流高度集中,使腐蚀迅速向内发展,形成蚀孔。孔形成后,孔外部为腐蚀产物阻塞,内外的对流和扩散受到阻滞,孔内形成独特的闭塞区(亦称闭塞电池),孔内的氧迅速耗尽,只剩下金属腐蚀的阳极反应,阴极反应氧离子化完全移到孔外侧进行。因此孔内很快积累了带正电的金属离子为了保持电中性、带负电的Cl、从孔外迁移人孔内、Cl-增浓,金属离子水解产生H+,孔内pH值下降。H+和Cl-形成腐蚀强烈的盐酸,如下式:

m++C1-+H20=MOH↓十H+十Cl-

闭塞区内溶液组成(H+,Cl-)和区外迥然不同。图--2示出这个变化的各阶段。当区内pH值下降到某一临界值,腐蚀率突然上升,形成加速腐蚀,孔内产生阴极放氢反应,孔蚀由闭塞区酸性电池控制。

蚀孔形成以后,是否深入发展直至穿孔,由于影响因素复杂,现在还难以预测。一般如孔少,电流集中,深入发展的可能性大;如孔多又较浅,闭塞程度不大,危险性也较小。

图2-2 孔蚀、缝隙腐蚀和应力发展阶段示意图

a---钝化膜局部破裂;b---膜破口腐蚀闭塞区内金属离子增浓;c---阴离子进入闭塞区,金属离子水解,PH下降;d---裂缝内产生自催化加速腐蚀过程, H在尖端析出,渗入裂缝前缘,使金属脆化。

四、缝隙腐蚀

是孔蚀的一种特殊形态,发生在缝隙内(如焊、铆缝、垫片或沉积物下面的缝隙),破坏形态为沟缝状,严重的可穿透。缝隙内是缺氧区,也处于闭塞状态,缝内pH值下降,浓度增大。常有一段较长的孕育期,当缝内pH值下降到临界值后,与孔相似,也产生加速腐蚀(图--2)。一般在含Cl-溶液中最易发生。有效的防止方法是消除缝隙。

五、脱层腐蚀

在金属层状结构层与层之间产生腐蚀,先垂直向内发展,然后改变方向,有选择地腐蚀与表面平行的物质。腐蚀产物的膨胀力使未腐蚀的表层成层状脱离(图--1)。

六、晶间腐蚀

腐蚀从表面沿晶粒边界向内发展,外表没有腐蚀迹象,但晶界沉积疏松的腐蚀产物。由金相显微镜可看到晶界呈现网状腐蚀(图2--3)。严重的晶间腐蚀可使金属失去强度和延展性,在正常载荷下碎裂。

图2--3晶间腐蚀

(Cr18Ni8Ti不锈钢在 HCl—空气-H2O—丁烷混合气中,700℃)

晶间腐蚀是晶界在一定条件下产生了化学和组成上的变化,耐蚀性降低所致,这种变化通常是由于热处理或冷加工引起的。以奥氏体不锈钢为例,含铬量须大于11%才有良好耐蚀性。当焊接时,焊缝两侧2~3mm处可被加热到400~910℃,在这个温度(敏化温度)下晶界的铬和碳易化合形成Cr3C6,Cr从固溶体中沉淀出来,晶粒内部的Cr扩散到晶界很慢,晶界就成了贫铬区,铬量可降到远低于11%的下限,在适合的腐蚀溶液中就形成“碳化铬晶粒(阴极)--喷铬区(阳极)”电池,使晶界贫铬区腐蚀。

奥氏体不锈钢晶间腐蚀在工业中较常见,危害也最大。防止方法有:①“固溶淬火”处理,将已产生贫铬区的钢加热到1100℃左右,使碳化铬溶解,水淬,迅速通过敏化温度区,使合金保持含Cr的均一态。②钢中加入少量更易生成碳化物的元素钛或铌。

③碳含量降低到0.03%以下,从晶界沉淀的铬量就很少。

七、选择性腐蚀

工业合金含有不同成分和杂质,具有不同的结构,耐蚀性也有差别。在一定溶液中,有些活性组分溶出,剩下疏松的不活泼组分,强度和延性完全丧失。这类选择性腐蚀的常见例子是黄铜脱锌。锌溶人溶液,黄铜表面覆盖一层疏松的红色薄膜。实际上铜也溶解,但其后又沉积在合金表面上。除均匀的层状脱锌外,还有局部的塞状脱锌(见图一1)。提高铜含量(红黄铜:Cu85%)可防止脱锌,加入1%锡,或少量砷、锑、磷也能改善对脱锌的抗力。

灰铸铁的石墨化也是选择性腐蚀,铁腐蚀浸出,剩下石墨网状体,严重失去强度。球墨或延展性铸铁因为不存在残余物联系在一起的网状结构,所以不产主石墨化。

八、磨损腐蚀

1.冲击腐蚀

金属表面受高流速和湍流状的流体冲击,同时遭到磨损和腐蚀的破坏,称为磨损腐蚀。冲击腐蚀是磨损腐蚀的主要形态。金属在高速流体冲击下,保护膜破坏,破口处裸金属加速腐蚀。如果流体中含有固体颗粒,磨损腐蚀就更严重。它的外表特征是:局部性沟槽、波纹、圆孔和山谷形,通常显示方向性。暴露在运动流体中的设备如:管、三通、阀、鼓风机、离心机、叶轮、换热器、排风筒等都能产生冲击腐蚀。软金属如铜和铅更为严重。

冲击腐蚀多发生在流体改变方向的部位。如弯头、三通、旋风分离器,容器内和入口管相对的部位。冷凝器和换热器管束入口处,流体由大截面进入小口,产生湍流,在管入口数十毫米处常发生严重腐蚀。

防止冲击腐蚀可以选用耐磨损较好的材料,如20号合金优于18/8不锈钢,90Cu/10Ni优于70Cu/30Ni(海水中),也可改进设计、改变环境、或用涂层和阴极保护等。

2.空泡腐蚀

空泡腐蚀简称空蚀或气蚀,是磨损腐蚀的一种特殊形态。在高速液体中含有空泡,使磨损腐蚀十分严重。空泡的形成是由于液体的湍流或温度变化引起局部压力下降,空泡内只含少量水汽,存在时间非常短暂,气泡破裂时产生冲击波压力可高达4000atm,使金属保护膜破坏,并可引起塑性形变,甚至撕裂金属粒子。膜破口处裸金属受腐蚀,随即重新生膜。在同一点上又形成新空泡,又迅即破裂,这个过程反复进行(图2--4),结果金属表面生成致密而深的孔,外表很粗糙。泵叶轮和水力透平机等常产生空蚀。

图2-4 空泡腐蚀的发生过程示意图

防止空蚀可改进设计,以减小流程中流体动压差,也可选用较耐空蚀的材料或精磨表面,因为光洁表面不提供形成空泡的核点。用弹性保护层(塑料或橡胶)或阴极保护也有效。

3.摩振腐蚀

它也是磨损腐蚀的一种特殊形态,是指承受载荷、互相接触的两表面由于振动和滑动(反复的相对运动)引起的破坏,也称微振腐蚀。摩振腐蚀的危害非常大,既破坏了精密的金属部件,产生的氧化锈泥常将部件锈死,还会使接触面超过容许公差,产生的蚀孔还会引起疲劳破裂。

摩振腐蚀最常见的例子是滚珠轴承套与轴之间,也发生在引擎、机车部件、螺栓连接的部件等处。它的必要条件是反复的相对运动,位移小至10-8cm即可引起破坏。例如在远距离铁路和轮船运输中的汽车轴,表面承受载荷,又发生连续轻微振动,将产生摩振腐蚀。它不发生在连续运动的表面上。正常行驶的汽车因为轴承表面间的相对运动非常大(旋转),就不发生这种腐蚀。

摩振腐蚀的原因是摩振作用破坏了金属保护膜,裸金属迅速氧化,磨损和氧化反复进行,使破坏加剧。另外,金属表面因受压产生冷焊或熔化,其后由于相对运动使金属碎粒脱落,并迅速氧化。二者都产生氧化锈粒,破坏金属界面。氧在摩振腐蚀中很重要,但也有些摩振腐蚀不需要氧。

防护方法可在接触表面涂润滑油脂,可减小摩擦,并排除氧,如果表面同时磷化更有效。还可选用硬质合金,喷丸处理或冷加工以提高表面硬度等。

九、应力腐蚀破裂

合金在腐蚀和一定方向的拉应力同时作用下产生破裂,称为应力腐蚀破裂。裂缝形态有两种:沿晶界发展,称晶间破裂;缝穿过晶粒,称穿晶破裂,也有混合型,如主缝为晶间型,支缝或尖端为穿晶型(图2--5),它是最危险的腐蚀形态之一,可引起突发性事故。

应力腐蚀破裂有一些特征:

①必须存在拉应力(如焊接、冷加工产生的残余应力),如果存在压应力则可抑制这种腐蚀。

a.晶间腐蚀

b.穿晶腐蚀

c.混合型破裂

(Cr18Ni9敏化不锈钢在3%NaCl溶液中,90℃) (Cr18Ni9Ti不锈钢在C1-溶液中) (Cr18Ni9不锈钢)

图2-5 应力腐蚀破裂

②只发生在一定的体系,如奥氏体不锈钢/C1-体系,碳钢/NO-3体系,铜合金/NH+4体系等。

应力腐蚀的机理很复杂,按照左景伊提出的理论,破裂的发生和发展可区分为三个阶段:

1.金属表面生成钝化膜或保护膜;

2.膜局部破裂,产生蚀孔或裂缝源;

3.裂缝内发生加速腐蚀,在拉应力作用下,以垂直方向深入金属内部。

产生应力腐蚀必须满足上述三个阶段的生成环境。以奥氏体不锈钢/C1-体系为例,环境中必须含有C1-和氧,因为奥氏体不锈钢在含氧环境内很容易钝化,满足了条件1; C1-是破钝剂,在应力作用下,膜的局部缺陷处很容易破裂,满足了条件2;裂缝内形成闭塞区,pH值下降,Cl-从外部迁入增浓、pH值下降到1.3以下,腐蚀加速,这和孔蚀相同。裂缝尖端产生了氢,引起局部脆化,在拉应力作用下发生脆性破裂,然后裂尖又进入酸性溶液;裂缝在腐蚀和脆裂的反复作用下迅速发展(见图一2)。

防止应力腐蚀的方法有以下一些:进行热处理以消除部件的应力;改进设计结构,避免应力集中于局部,设计中选用的载荷应低于产生应力腐蚀的临界值;表面用喷丸处理产生压应力,采用电化学保护、涂料、或缓蚀剂等。

十、腐蚀疲劳

腐蚀和交变应力(应力方向周期性变化,亦称周期应力)共同作用引起的破裂,称为腐蚀疲劳。在无腐蚀时,金属受交变应力作用将产生疲劳破裂。对于铁合金,承受的应力有一临界值,如低于此值,即使经无限周期也不会疲劳破裂。此值称为疲劳极限。非铁金属如铝、镁,没有疲劳极限,但抗疲劳性能也随应力减小而增大。通常规定在106周期不产生疲劳破裂的临界应力值为疲劳极限。在腐蚀环境中疲劳极限大大下降(图2--6),因而在较低的应力和较短的周期内就发生疲劳破裂。

图2-6 钢在周期应力下的S---N曲线

腐蚀疲劳的外形特征是:产生众多深孔,裂缝可以有多条,由蚀孔起源以和应力垂直的方向纵深发展,是典型的穿晶型,设有支缝,缝边呈现锯齿形。振动部件如泵轴和杆、螺旋桨轴、油气井管、吊素以及由温度变化产生周期热应力的换热管和锅炉管等,都容易发生腐蚀疲劳。腐蚀疲劳最易发生在能产生孔蚀的环境中,无疑,蚀孔起了提高应力的作用。周期应力使保护膜反复局部破裂,裂口处裸金属遭受不断腐蚀。与应力腐蚀不同,腐蚀疲劳对环境没有选择性。氧含量、温度、pH值和溶液成分都影响腐蚀疲劳。阳极极化将促进腐蚀疲劳。

防止方法:改进设计或进行热处理以消除和减小拉应力,表面喷丸处理产生压应力,电镀锌、铬、镍等,但电镀时注意镀层中不可产生拉应力,也不可有氢渗入。也可用缓蚀剂和阴极保护。

十一、氢腐蚀

1.氢鼓泡

对低强度钢,特别是含大量非金属夹杂时,溶液中产生的氢原子很容易扩散到金属内部,大部分H通过器壁在另一侧结合为H2逸出,但有少量H积滞在钢内空穴,结合为H2,因氢分子不能扩散,将积累形成巨大内压,使钢表面鼓泡,甚至破裂。

当环境中含有硫化物、氰化物、含磷离子等阻止放氢反应的毒素,氢原子就会进入钢内产生鼓泡。石油工业物料常含有上述毒素,氢鼓泡是常见的危害。防止方法:除去这类毒素最为有效;也可选用无空穴的镇静钢以代替有众多空穴的沸腾钢。此外,可采用氢不易渗透的奥氏体不锈钢或镍的衬里,或橡胶,塑料、瓷砖村里、加入缓蚀剂等。

2.氢脆

在高强钢中晶格高度变形,当H进入后,晶格应变更大,使韧性及延展性降低,导致脆化,在外力下可引起破裂。不过在未破裂前氢脆是可逆的,如进行适当的热处理,使氢逸出,金属可恢复原性能。一般钢强度越高,氢脆破裂的敏感性越大。它的机理还不十分清楚,有各种理论,如:氢分子聚积造成巨大内压;吸附氢后使表面能降低,或影响了原子键结合力,促进了位错运动等。一些迹象表明,铁素体和马氏体铁合金在裂缝尖处与氢产生了反应,钛、钽等易生成氢化物的金属,在高温下容易与溶解的氢反应,生成脆性氢化物。高温下氢还能造成脱碳。

进入金属的氢常产生于电镀、焊接、酸洗、阴极保护等操作中。应力腐蚀的裂尖酸化后,也将产生氢脆,但阳极腐蚀,已造成永久性损害,与单纯氢脆有别。氢脆与钢内空穴无关,所以防止方法与防氢鼓泡稍有不同:在容易发生氢脆的环境中,避免使用高强钢,可用Ni、Cr合金钢;焊接时采用低氢焊条,保持环境干燥(水是氢的主要来源);电镀液要选择,控制电流;酸洗液中加入缓蚀剂。氢已进入金属后,可进行低温烘烤驱氢,如钢一般在90~150℃脱氢。

第三章控制腐蚀的方法

一、正确选材和设计

材料的品种很多,不同材料在不同环境中有不同的腐蚀速度,有些腐蚀率很高,根本不能应用,有些比较低或很低。选材者对某一特定环境选择腐蚀率低、价格较便宜、物理力学性能等又适合设计要求的材料,是常用的、简便而行之有效的控制腐蚀的方法,设备可以获得经济、合理的使用寿命。正确选材需要完整的腐蚀数据,由于设备结构常常可能对腐蚀产生影响,所以正确的设计也很重要。另外,选材者也需要具备一定的腐蚀及防腐蚀知识,才能更完善地解决选材问题。

二、调整环境

如果能消除环境中引起腐蚀的各种因素,腐蚀就会中止或减缓,但是多数环境是无法控制的,如大气和土壤中的水分,海水中的氧等都不可能除去。化工生产流程也不可能任意更动。但是有些局部环境可以调整,例如锅炉进水先去氧(加入脱氧剂亚硫酸钠和肼等),可保护锅炉管免遭腐蚀。密闭的仓库进入的空气先除去水分,可免贮存金属部件生锈。如改变环境不影响产品和工艺,有些生产流程也可采用这种方法。为了防止冷却水对换热器和其它设备的结垢、穿孔,在水中经常加入碱或酸以调节pH 值至最佳范围(通常接近中性)。炼油工艺中也常加碱或氨使生产流体保持中性至碱性。温度大高,可以在器壁冷却降温,也可在设备内壁砌衬耐火砖隔热。如果许可的话,工艺中可选用缓和的介质代替强腐蚀介质等。

三、加入缓蚀剂

在腐蚀环境中加入少量的物质(百分之几以下)就能大大减缓金属的腐蚀,这类物质称为缓蚀剂,可分为无机、有机和气相缓蚀剂三类,缓蚀机理各不相同。

1.无机缓浊剂

有些缓蚀剂使阳极过程变慢,称为阳极型缓蚀剂,如促进阳极钝化的氧化剂(铬酸盐、亚硝酸盐、Fe3+)或阳极成膜剂(碱、磷酸盐、硅酸盐、苯甲酸盐),在阳极区反应,促进阳极极化(图:3一1b)。一般系在阳极表面生成保护膜,缓蚀效果好,但是有危险,因为如剂量不充足,膜可能不完整,膜缺陷处暴露的裸金属面积小,阳极电流密度大,容易穿孔。

图 3—1 极化的类型

a---阴极控制;b---阳极控制

另一类缓蚀剂是在阴极反应,促进阴极极化(图3---1a),如Ca2+、Zn2+、Mg2+、 Cu2+、 Cd2+、 Mn2+、 Ni2+等与阴极产生的OH-,形成不溶性的氢氧化物,以厚膜形态覆盖在阴极表面,因而阻滞氧扩散到阴极,增大浓差极化。也有同时阻滞阳极和阴极过程的混合型缓蚀剂。

有些溶液中杂质如硫、硒、砷、锑、铋等化合物,能阻抑阴极放氢过程,使阴极活化极化增大,腐蚀减缓。但这类缓蚀剂有危险,因为放氢过程分两步骤:(a) H+十е→H2 ; (b)两个H结合成H2放出,如果(b)比(a)慢,就会有多余的H积累在阴极表面,一部分进入金属内部,将引起氢脆。

冷却水中常加入聚磷酸盐和亚硝酸盐缓冲剂。过去常用铬酸盐,效果虽好,因铭有毒性,现已少用,以避免污染。自来水可加入10~200ppm聚磷酸盐和硅酸盐。热水体系可用硼酸盐。有些体系同时还需要调整pH值。

缓蚀剂的加入量一般要先通过试验。含Cl-高、温度高、流速高,需加入量就大。一般无机缓蚀剂的有效加入量为几百ppm。

2.有机缓蚀剂

有机缓蚀剂是吸附型缓蚀剂,吸附在金属表面,形成几个分子厚的不可见膜,一般同时阻滞阳极和阻极反应,但影响不等。常用品种有含氮、含硫、含氧、含磷有机化合物,如胺类、杂环化合物、长链脂肪酸化合物、硫腺类、醛类、有机磷类等。吸附类型随有机物分子构型的不同可分为:静电吸附、化学吸附、和兀键(不定位电子)吸附。静电吸附型有苯胺及其取代物,吡啶、丁胺、苯甲酸及其取代物如苯磺酸等;化学吸附型有氮和硫杂环化合物,有些化合物同时具有静电和化学吸附作用,兀键吸附的效果也显著,当化合物由单键至双键至三键变化时,兀键与金属的作用也增强,如在2.8N HCl(65℃)中对碳钢的缓蚀效果,烯丙醇大于丙醇,炔丙醇又大于烯丙醇。此外,有些螫合剂能在金属表面生成一薄层金属有机化合物。由于缓蚀剂品种很多,又多属专利,成分不公开,膜的结构复杂,所以缓蚀机理还了解得不完全。

有机缓蚀剂发展很快,用途广泛。

对于酸洗(钢铁除去锈垢)有喹啉及其取代物、硫脲类、二环已胺、甲苯醛。国内常用品种有:沈1一D(苯胺甲醛缩合物)和JIB-5(用于盐酸);邻甲苯胺(用于硫酸),蓝一5(用于硝酸)等。

对于油、气井有咪唑啉一脂肪酸盐,季胺盐等。

用于水处理有多元醇磷酸脂类等。

使用缓蚀剂也同时产生缺点,如可能污染产品,特别是食品;可能对生产流程的这一部分有利,进入另一部分有害;可能阻抑需要的反应,如酸洗时使去膜速度下降过多。

3.气相缓蚀剂

这类缓蚀剂是挥发性很高的物质,含有缓蚀基团,一般用来保护、贮藏和运输中的金属零部件,以固体形态应用,它的蒸气被大气中水分解出有效的缓蚀基团,吸附在金属表面,使腐蚀减缓。它也是一种吸附型缓蚀剂。被保护的金属表面不需要除锈处理,它能吸附在有锈表面并防止继续生锈。它必须用于密封包装内,大至海洋油轮内舱也可用它保护。

有效的气相缓蚀剂有下列一些:①胺盐(与亚硝酸、铬酸、碳酸、氨基甲酸、醋酸、苯甲酸及其取代酸所形成的盐);亚硝酸、苯二甲酸、或碳酸组成的酯;③伯、仲、叔脂肪胺;④脂环胺和芳香胺; ⑤聚甲烯胺; ③亚硝酸盐与硫脲混合物、乌洛托品、乙醇胺;①硝基苯和硝基萘等。国内外常用的品种为二环己胺亚硝酸盐的粉未或片剂。

四、阴极保护

由(图2--2)可以看出,腐蚀电池中的阴极是接受电子产生还原反应的电极,只有阳极才发生腐蚀。利用这个原理,可以从外部导入阴极电流至需要保护的设备上,使设备全部表面都成为阴极。在(图2--3)中:原来金属表面状态为腐蚀电位E corr:与腐蚀电流I corr的交点M,如果从外部输入阴极电流I A,I A一部分进入局部阴极,一部分进入局部阳极。电流的分布与阴、阳极的电阻成反比,原来的局部阴极电流与局部阳极电流相I corr等,但二者方向相反。导入人I A后,在阴极因电流方向相同,I K=I corr+∫I A (∫为电流分布系数),阳极因电流相反,I a=I corr-(1-∫) I A。所以导I A后,I K逐渐增加,电位逐渐降低,沿着CM线下降;I a则逐渐减小,沿着MA线下降,当电位下降到E A即局部阳极的开路电位后,I a =0,此时腐蚀停止,设备达到完全的保护。

图2—2 腐蚀电池模型图2一3:阴极保护的效应

E A一阳极开路电位;E c—阴极开路电位;E corr—腐蚀电位(复合电位); i A一外加电流;i corr—腐蚀电流

从热力学上也可解释,当电位下降到免蚀区(图2--4)时,腐蚀实际停止,不过电位下降到放氢平衡线a以下时,可能产生

氢脆。

图2--4 电位-pH图(Fe—H2O,25℃)

导人外电流有两种方法:一是从外部接上直流电源,体系中连接一块导流电极(石墨、铂或镀钌、钛、高硅铁、废钢等)作为阳极,另一是连接一块电位较负的金属,例如钢铁设备连接一块锌、镁、或铝合金,由于后者电位比铁低,在电解液内构成的原电池中成为阳极,阳极会逐渐腐蚀,所以也称牺牲阳极,须定时更换。

阴极保护广泛用于土壤和海水中的金属结构,如管道、电缆、海船、港湾码头设施、钻井平台、水库闸门、油气井、家用水糟等。为了减少电流输入、延长使用寿命一般和涂料联合应用,是一种经济简便、行之有效的防腐蚀方法。

五、阳极保护

以设备作为阳极,从外部通人电流,一般将加速腐蚀,如(图2--5)所示,腐蚀电流随阳极极化而增大。但是对可以钝化的金属则会出现另一情况,如(图2--6)示出,当电位随电流上升,达到致钝电位后,腐蚀电流急速下降,甚至可下降几万倍,以后随电位上升,电流不变,直到过钝区为止。利用这个原理,Edeleanu首先提出阳极保护的概念:以需要保护的设备为阳极,导入电流,使电位保持在钝化区的中段(以免波动时进入活化区),腐蚀率可保持很低值,通入的电流就表示设备的腐蚀速度。这种方法需要一台恒电位仪,用以控制设备的电位。因为它只适用于接触钝化溶液的可钝化金属,所以用途受限制。工业上已用于处理硫酸、磷酸、碳酸氢铵生产液、硝铵混肥等的不锈钢或碳钢制的各种设备,如槽、换热器等。

图2--5 纯锌在酸中的电极动力学行为图2--6钝化金属腐蚀率与溶液氧化能 (腐蚀电位)的关系

六、合金化

在基体金属中加入能促进钝化的合金成分,当加入量达到一定比例后,便得到耐蚀性优良的材料。如铁中加入铬,当铬量达12%以上时,就成为不锈钢,在氧化环境中由于表面生成钝化膜,有很高的耐蚀性。

铬钢中加入镍,可扩大钝化范围,还可提高机械性能。含铬18%、镍9%的铬镍不锈钢是工业和民用中最广用的耐蚀合金。又如铁中加入硅量达14%时,就得到耐酸性优良的高硅铁,它的表面主成氧化硅保护膜,对热硫酸、硝酸、混酸等都有优良的抵抗力。镍铜合金中的镍大于30~40%时,可得到含镍10~30%的铜镍合金(Cupron一ickel)和镍70铜30(Monel)合金,它们比纯铜和纯镍的耐蚀性在一些环境中都更优越些。一系列镍合金是有名的耐蚀材料,如镍铸铁有优良的耐碱性。镍钼铬合金是少数能耐高温非氧化性酸(如盐酸)的合金。镍铝铬铁合金能耐高温氧化性酸、次氯酸盐、海水等,比一般不锈钢更好。

彩缤纷在某些活性金属中加入微量超电压低的阴极贵金属,可以促进钝化,如不锈钢和钛在某些浓度和温度的硫酸中是活性的,如在基体金属中加入0.1~0.15%的钯或铂,将在合金表面分布成为众多的微阴极,促进局部腐蚀电池的运转,阳极电流很快增大,迅即达到钝化区,使合金耐蚀性增强。

七、表面处理

金属在接触使用环境之前先用钝化剂或成膜剂(铬酸盐、磷酸盐、碱、硝酸盐和亚硝酸盐混合液等)处理,表面生成稳定密实的钝化膜,抗蚀性大大增加。它与缓蚀剂防护法的不同之处,在于它在以后的使用环境中(如大气、水)不需要再加入缓蚀剂,铝经过阳极处理,表面可以生成比在大气中生成的更为密实的膜。这类膜在温和的腐蚀环境(大气和水)中有优良的抗蚀能力。钢铁部件表面发蓝也是一个广为应用的例子。

整体合金化造价比较昂贵,可采用表面合金化的方法,将易钝化的合金成分如铬、钼、硅渗人钢铁表面,一般将钢部件放在充满粉末铬、铝、硅中,或在金属蒸气中,进行加热渗镀。表面渗镀层在氧化性环境内产生钝化膜,它的抗高温氧化力和某些耐蚀性优于底层钢。由于保护层薄,不耐磨损,寿命比整体的合金短,不适于长期接触强腐蚀介质。

较新的一种表面技术是离子注入法,一般用硼、碳、磷、硅、氮、钼、钯、铂等元素或贵金属用离子注入机使其电离、加速,使高能离子与基体金属相撞击,进入表面,形成一定深度和浓度的非晶态合金层。具有比基体金属高得多的耐蚀性,现已应用于小部件。

八、金属镀层和包覆层

在钢铁底层上可用一薄层更耐腐蚀的金属(如铬、镍、铅等)保护。常用的方法是电镀,一般镀2~3层,只有几十微米厚,因而不可避免地存在微孔,溶液可渗人微孔,将构成镀层~底层腐蚀电池。镀层如为贵金属(金、银等)或易钝化金属(铬、钛)以及镍、铅等时,由于电位比铁高,将成为阴极,会加速底层铁腐蚀。因此这类镀层不适于强腐蚀环境(如酸),但可用于大气、水等环境,缓慢产生的腐蚀产物可将微孔堵塞,电阻增大,有一定的寿命。如果用贱金属锌、镉等作镀层,构成腐蚀电池的极性则与上述相反,孔内裸露的钢为阴极,锌或镉镀层为阳极。锌、镉作为牺牲阳极,使钢得到阴极保护,在缓和的腐蚀环境中,锌的腐蚀慢,可以保持较长寿命。镀锡的铁(马口铁)广泛用于食品罐头,锡的标准电位高于铁,但在食品有机酸中,它却低于铁也起了牺牲阳极的作用。除了电镀外还常用热浸镀(熔融浸镀)、火焰喷镀、蒸气镀和整体金属薄板包镀。后者因无微孔,耐蚀性强,寿命也更长,但价格高些。

九、涂层

用有机涂料保护大气中的金属结构,是最广用的防腐手段。市售各类油漆、清漆、假漆等都属这一类,主要是由合成树脂、植物油、橡胶浆液、溶剂、助干剂、颜料、填料等配制而成。品种极多,过去以植物油为主的油漆现在多为合成树脂漆所替代。涂料覆盖在金属面上,干后形成多孔薄膜,虽然不能使金属与介质完全隔绝,但增大介质通过微孔的扩散阻力和溶液电阻,使腐蚀电流下降。在缓和的环境如大气、海水等中,微孔底金属腐蚀缓慢,腐蚀产物可堵塞微孔,有很长的使用寿命,但不适于强腐蚀溶液如酸中,因为金属腐蚀迅速,并产生氢气,会使漆膜破裂。

涂料的施工程序如下:首先是表面处理,这是最重要的一环,表面锈垢、油污等要用喷砂、喷丸和火焰清除等方法彻底除净,否贝会影响涂层与金属的粘结力,寿命大大缩短;其次是选用底漆,一般加人红丹,铅酸钙,铬酸锌和锌粉等缓蚀剂,当微孔中渗人介质后可起缓蚀作用。最后是面漆,除了耐蚀外,美观也是重要的目的。一般要涂几层面漆,使微孔尽量减少。常用的合成树脂优良品种有:环氧、过氯乙烯、聚氨酯、氯磺化聚乙烯、氯化聚醚、酚醛、呋喃(糠醇)等。沥青是廉价但性能优良的涂料,也常和环氧树脂等混合应用于地下管道。天然树脂生漆是我国特产,具有优良耐酸性和耐候性,是一种高级涂料。

无机涂层中广泛应用的是以锌粉为主的富锌漆,以合成树脂为粘结剂,干后表面锌膜是导电的,作用和阴极保护相同,在大气中可使用很久,也可使用于较高温。

十、衬里

一般为整片材料,适用于和强腐蚀介质接触的设备内部。如盐酸、稀硫酸的贮槽用橡胶或塑料衬里、贮放硝酸的钢槽用不锈钢薄板村里等。耐酸砖(硅砖)也广泛用于村里,它耐强酸,耐火砖衬里则可起隔热作用。搪瓷实际上是一种玻璃衬里,工业上称为搪瓷玻璃,它的耐酸性强,广用于食品、医药等工业,可保证产品质量,但是不能烧制太大的设备。

金属腐蚀理论复习题

金属腐蚀理论复习题

————————————————————————————————作者: ————————————————————————————————日期:

金属腐蚀理论及腐蚀控制复习题 第一章 绪论 思考题 1.举例说明腐蚀的定义,腐蚀定义中的三个基本要素是什么,耐蚀性和腐蚀性概念的区别。 答:腐蚀的定义:工程材料和周围环境发生化学或电化学作用而遭受的破坏 举例:工程材料和周围环境发生相互作用而破坏 三个基本要素:腐蚀的对象、腐蚀的环境、腐蚀的性质。 耐蚀性:指材料抵抗环境介质腐蚀的能力。 腐蚀性:指环境介质对材料腐蚀的强弱程度。 2.金属腐蚀的本质是什么,均匀腐蚀速度的表示方法有哪些? 答:⑴金属腐蚀的本质:金属在大多数情况下通过发生化学反应或是电化学反应后,腐蚀产物变为化合物或非单质状态;从能量观点看,金属与周围的环境组成了热力学上不稳定的体系,腐蚀反应使体系能量降低。 ⑵均匀腐蚀速度的表示方法: ①深度:年腐蚀深度 (p V ) V P =t h ?=d -V △h 是试样腐蚀后厚度的减少量,单位mm ;V -代表失重腐蚀速 度; t 是腐蚀时间,单位y;d 是金属材料的密度;VP 所以的单位是mm /y 。 ②增重: V + =St W +? = St W W 10- W0代表腐蚀前金属试样的质量,单位g ; W 1代表腐

蚀以后经除去腐蚀产物处理的试样质量,单位g; S代表试样暴露的表面积,单位m 2; t 代表腐蚀的时间,单位h 。 ③失重:失重腐蚀速度(-V ) - V = St W -?=St W W 1 0- W0代表腐蚀前金属试样的质量,单位g; W1代表 腐蚀以后经除去腐蚀产物处理的试样质量,单位g; S 代表试样暴露的表面积, 单位m 2; t 代表腐蚀的时间,单位h 。 计算题 计算题 1. 根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V- 和年腐蚀深度Vp,并进行比较,说明两种腐蚀速度表示方法的差别。 表1 解:由题意得: (1)对碳钢在30%HNO 3( 25℃)中有: Vˉ=△W ˉ/st =(18.7153-18.6739)/45×2×(20×40+20×3+40×30)×0.000001 =0.4694 g/㎡?h 又d=m /v=18.7154/20×40×0.003=7.798g /c m2 ?h V p=8.76Vˉ/d=8.76×0.4694/7.798=0.53m m/y 对铝在30%HNO 3(25℃)中有: V ˉ=△W ˉ铝/s t =(16.1820-16.1347)/2×(30×40+30×5+40×5)×45×10-6

金属腐蚀理论及腐蚀控制答案

《金属腐蚀理论及腐蚀控制》 (跟着剑哥走,有肉吃。) 习题解答 第一章 1.根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V- 和年腐蚀深度V p,并进行比较,说明两种腐蚀速度表示方法的差别。 解:由题意得: (1)对碳钢在30%HNO3( 25℃)中有: Vˉ=△Wˉ/st = mh 又有d=m/v=20×40×=cm2h Vp=ˉ/d=×=y 对铝在30%HNO3(25℃)中有: Vˉ=△Wˉ铝/st = =㎡h

d=m铝/v=30×40×5×=cm3 说明:碳钢的Vˉ比铝大,而Vp比铝小,因为铝的密度比碳钢小。 (2)对不锈钢在20%HNO 3( 25℃)有: 表面积S=2π×2 .0+2π××= m2 015 Vˉ=△Wˉ/st= g/ m2h 试样体积为:V=π××= cm3 d=W/V== g/cm3 Vp=ˉ/d=×=y 对铝有:表面积S=2π×2 .0+2π××= m2 02 Vˉ=△Wˉ/st= g/ m2h 试样体积为:V=π×2 2×= cm3 d=W/V== g/cm3 Vp=ˉ/d=×=y 试样在98% HNO3(85℃)时有: 对不锈钢:Vˉ=△Wˉ/st = g/ m2h Vp=ˉ/d=×=y 对铝:Vˉ=△Wˉ/st= m2h Vp=ˉ/d=×=y 说明:硝酸浓度温度对不锈钢和铝的腐蚀速度具有相反的影响。

3.镁在L NaCl 溶液中浸泡100小时,共放出氢气330cm3。试验温度25C,压力760mmHg;试样尺寸为2020 (mm)的薄板。计算镁试样的失重腐蚀速度V p。(在25C时水的饱和蒸汽压为) 解:由题意得:该试样的表面积为: S=2×(20×20+20×+20××6 10-m2 10-=840×6 压力P= mmHg = mmHg= 根据PV=nRT 则有放出的氢气的物质的量为: n=PV/RT=×330×6 10-/×(25+= 又根据Mg +2+ H H—>+2 Mg+ 2 Mg腐蚀的量为n(Mg)= 所以:Vˉ=nM(Mg)/St=×840×6 10-×100= g/ m2h 查表得:d Mg= g/cm3 有:Vp=ˉ/d=×=y 4.表面积4cm2的铁试样,浸泡在5%盐酸溶液中,测出腐蚀电流为Icor = 。计算铁试样的腐蚀速度V-和V p。 解:由题意得: 根据Vˉ=A/nF=i cor可知 Vˉ=(A/nF)I cor/s =××2××4×= m2h 查表得d(Fe)= cm3 Vp=ˉ/d=×=y 即铁试样的腐蚀速度Vˉ= g/㎡*h Vp=y 第二章

金属腐蚀与防护

第一章绪论 腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。 腐蚀控制的方法: 1)、改换材料 2)、表面涂漆/覆盖层 3)、改变腐蚀介质和环境 4)、合理的结构设计 5)、电化学保护 均匀腐蚀速率的评定方法: 失重法和增重法;深度法; 容量法(析氢腐蚀);电流密度; 机械性能(晶间腐蚀);电阻性. 第二章电化学腐蚀热力学 热力学第零定律状态函数(温度) 热力学第一定律(能量守恒定律) 状态函数(内能) 热力学第二定律状态函数(熵) 热力学第三定律绝对零度不可能达到 2.1、腐蚀的倾向性的热力学原理 腐蚀反应自发性及倾向性的判据: ?G:反应自发进行 < ?G:反应达到平衡 = ?G:反应不能自发进行 > 注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大. 热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀. 2.2、腐蚀电池 2.2.1、电化学腐蚀现象与腐蚀电池 电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏. 腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电 池. 注:1)、通过直接接触也能形成原电池而不一定要有导线的连接; 2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池. 丹尼尔电池:(只要有电势差存在) a)、电极反应具有热力学上的可逆性; b)、电极反应在无限接近电化学平衡条件下进行; c)、电池中进行的其它过程也必须是可逆的. 电极电势略高者为阴极 电极电势略低者为阳极 电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀

2.2.2、金属腐蚀的电化学历程 腐蚀电池: 四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路) 三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动) 1)、阳极过程氧化反应 ++ - M n M →ne 金属变为金属离子进入电解液,电子通过电路向阴极转移. 2)、阴极过程还原反应 []- -? D D ne +ne → 电解液中能接受电子的物质捕获电子生成新物质. (即去极化剂) 3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用 金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程 难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方 阳极——[]+n M(金属阳离子浓度) (形成致密对金属起保护作用) 阴极——pH高 2.3、腐蚀电池类型 宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池 2.3.1、宏观腐蚀电池 特点:a)、阴、阳极用肉眼可看到; b)、阴、阳极区能长时间保持稳定; c)、产生明显的局部腐蚀 1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域 2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致 a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区 eg:水线腐蚀——靠近水线的下部区域极易腐蚀 b、盐浓差电池——稀溶液中的金属电位低成为阴极区 c、温差电池——不同材料在不同温度下电位不同 eg:碳钢——高温阳极低温阴极 铜——高温阴极低温阳极 2.3.2、微观腐蚀电池 特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm); b)、阴、阳极区能长时间保持稳定; c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)

金属腐蚀理论总复习题

金属腐蚀理论及腐蚀控制复习题 第一章 绪论 思考题 1.举例说明腐蚀的定义,腐蚀定义中的三个基本要素是什么,耐蚀性和腐蚀性概念的区别。 答:腐蚀的定义:工程材料和周围环境发生化学或电化学作用而遭受的破坏 举例:工程材料和周围环境发生相互作用而破坏 三个基本要素:腐蚀的对象、腐蚀的环境、腐蚀的性质。 耐蚀性:指材料抵抗环境介质腐蚀的能力。 腐蚀性:指环境介质对材料腐蚀的强弱程度。 2.金属腐蚀的本质是什么,均匀腐蚀速度的表示方法有哪些? 答:⑴金属腐蚀的本质:金属在大多数情况下通过发生化学反应或是电化学反应后,腐蚀产物变为化合物或非单质状态;从能量观点看,金属与周围的环境组成了热力学上不稳定的体系,腐蚀反应使体系能量降低。 ⑵均匀腐蚀速度的表示方法:深度:年腐蚀深度 (p V )V P =t h ?=8.76d -V △h 是试样腐蚀后厚度的减少量,单位mm;V -代表失重腐蚀速度; t 是腐蚀时间, 单位y ;d 是金属材料的密度;V P 所以的单位是mm/y 。 失重:失重腐蚀速度(-V ) - V = St W -?=St W W 10- W0代表腐蚀前金属试样的质量,单位g ; W1代表腐 蚀以后经除去腐蚀产物处理的试样质量,单位g ;S 代表试样暴露的表面积,单 位m 2; t 代表腐蚀的时间,单位h 。 计算题 计算题 1. 根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V- 和年腐蚀深度Vp ,并进行比较,说明两种腐蚀速度表示方法的差别。 表1 解:由题意得: (1)对碳钢在30%HNO 3( 25℃)中有: V ˉ=△W ˉ/st

金属腐蚀与防护课后答案

《金属腐蚀理论及腐蚀控制》 习题解答 第一章 1.根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V- 和年腐蚀深度V p,并进行比较,说明两种腐蚀速度表示方法的差别。 解:由题意得: (1)对碳钢在30%HNO3( 25℃)中有: Vˉ=△Wˉ/st =(18.7153-18.6739)/45×2×(20×40+20×3+40×30)×0.000001 =0.4694g/ m?h 又有d=m/v=18.7154/20×40×0.003=7.798g/cm2?h Vp=8.76Vˉ/d=8.76×0.4694/7.798=0.53mm/y 对铝在30%HNO3(25℃)中有: Vˉ=△Wˉ铝/st =(16.1820-16.1347)/2×(30×40+30×5+40×5)×45×10-6

=0.3391g/㎡?h d=m铝/v=16.1820/30×40×5×0.001=2.697g/cm3 说明:碳钢的Vˉ比铝大,而Vp比铝小,因为铝的密度比碳钢小。(2)对不锈钢在20%HNO ( 25℃)有: 3 表面积S=2π×2 .0+2π×0.015×0.004=0.00179 m2 015 Vˉ=△Wˉ/st=(22.3367-22.2743)/0.00179×400=0.08715 g/ m2?h 试样体积为:V=π×1.52×0.4=2.827 cm3 d=W/V=22.3367/2.827=7.901 g/cm3 Vp=8.76Vˉ/d=8.76×0.08715/7.901=0.097mm/y 对铝有:表面积S=2π×2 .0+2π×0.02×0.005=0.00314 m2 02 Vˉ=△Wˉ/st=(16.9646-16.9151)/0.00314×20=0.7882 g/ m2?h 试样体积为:V=π×2 2×0.5=6.28 cm3 d=W/V=16.9646/6.28=2.701 g/cm3 Vp=8.76Vˉ/d=8.76×0.7882/2.701=2.56mm/y 试样在98% HNO3(85℃)时有: 对不锈钢:Vˉ=△Wˉ/st =(22.3367-22.2906)/0.00179×2=12.8771 g/ m2?h Vp=8.76Vˉ/d=8.76×12.8771/7.901=14.28mm/y 对铝:Vˉ=△Wˉ/st=(16.9646-16.9250)/0.00314×40=0.3153g/ m2?h Vp=8.76Vˉ/d=8.76×0.3153/2.701=1.02mm/y 说明:硝酸浓度温度对不锈钢和铝的腐蚀速度具有相反的影响。

金属腐蚀与防护

《金属腐蚀与防护》教设计案 一、教材分析 山东科技出版选修《化学反应原理》第一章第三节三、金属腐蚀与防护,在学习电解及原电池原理的基础上,通过分析铜铁接触形成原电池的例子,理解金属腐蚀的电化学原理及防护的原则,介绍电化学在生产生活中的应用。 二、教学目标 【教学目标】 知识与技能:1.理解金属的电化学腐蚀,学会防止金属腐蚀的一般方法.2.结合电化学原理,探究分析影响金属腐蚀的外界条件. 过程与方法:从实验探究过程提高对实验现象的观察能力和分析能力 情感、态度与价值观:通过学习金属腐蚀与生产,生活实际相联系的内容,增强学生的学习兴趣,发展学生们的探究能力 【重点难点】金属腐蚀的电化学原理以及防护的原则。 三、教学过程 1、从生活案例引入(图片) 2、分析学习目标 3、对预习情况进行分析 4、学生实验探究并进行讨论,得出结论 5、总结并练习 学案设计如下: 【课前预习】 1、金属的腐蚀 (1)概念:金属或合金与周围环境中的物质发生反应而腐蚀损耗的现象。金属腐蚀一般分为和。 (2)铁锈的生成原理是怎样的?(用反应化学方程式表示) 2、金属的防护 (1)改变金属组成和结构,如在金属中添加其他元素形成等。 (2)加,如在钢铁表面涂油或油漆、覆盖塑料、镀不活泼金属等。 (3)电化学防护 【课内探究】 一、金属腐蚀

[实验探究] 将经过酸洗除锈的铁钉,用饱和食盐水浸泡一下,放入下图具支试管中,观察导管中水柱变化,并思考引起变化的原因? 相同点: 不同点: 练习:如图所示,水槽中的试管内有一枚铁钉,放置数天观察: (1)铁钉在逐渐生锈,则铁钉的腐蚀属于__________腐蚀. (2)若试管内的液 面上 升,则原溶液呈 _____________性,发生__________腐蚀;电极反应: 负极___________________,正极____________________. (3)若试管内的液面下降,则原溶液呈__________性,发 生__________腐蚀;电极反应:负极____________,正 极____________________. 总结: 二、金属的防护 电化学防护: ①牺牲阳极保护法——原理。(阴极):被保护的金属 设备;(阳极):比被保护的金属活泼的金属。 ②外加电流的阴极保护法——原理::被保护的金属设 备;:惰性电极。

2013金属腐蚀理论及应用试题答案

2013金属腐蚀理论及应用试题 一、名词解释:(5分) 平衡电位:当金属正离子进入溶液成为水合金属离子后,由于静电作用不仅水合了该金属正离子能回到金属中去,而且也能将溶液中水合了的其他正离子吸引 到金属上去。当这两个相反过程速率相等且又可逆时,会产生一个稳定的 电极电位,称为平衡电位。 腐蚀电位:在金属腐蚀过程中,腐蚀金属电极表面上常常有两个或更多个电极电极反应同时进行,当这些电极反应的阴极反应和阳极反应痛同时以相等的速率 进行时,电极反应将发生相互耦合,阴、阳极反应的电位由于极化原因而 相互靠拢,最后达到一个共同的非平衡电位,此电位称之为混合电位,也 称为腐蚀电位。 绝对电位:浸在某一电解质溶液中并在其界面发生电化学反应的导体称之为电极。当金属和电解质溶液接触时,在金属/溶液界面处将产生电化学双电层,此双 电层的金属相与溶液相直接的电位差称之为电极电位。单个电极上的双电 层电位差的绝对值称之为绝对电位。但是单个电极的绝对电位无法测定。AISI:AISI是美国的一种行业标准,是“美国钢铁学会标准”的英文首字母缩写。 选择性氧化:在多个元素氧化过程中,存在着竞争氧化的现象,即存在着某一个元素优先氧化的问题,这个现象叫做选择性氧化。 二、回答下列问题:(15分) 1.含有二氧化碳的软水,通过两套不同的供水系统,(1)软水流经铜管进入镀锌的钢水槽,半年左右镀锌的钢水槽发生穿孔腐蚀;(2)软水流经镀锌管后进入镀锌的钢水槽,四年多尚未发现镀锌的钢水槽有局部腐蚀。请问这是为什么? 答:(1)软水含有CO2呈酸性,为导电的腐蚀介质。铜与锌、铁比较,无论标准电位还是电偶序,其电位数值都较高,因此,理论上会发生电偶腐蚀。其原因有两种可能: 第一种可能性:如果铜管与镀锌水箱直接连接,在连接处附近会发生电偶腐蚀,导致水箱泄漏。 第二种可能性:如果采取了绝缘措施,对铜管而言,水中含氧可发生氧去极化腐蚀,即阳极Cu→Cu2++2e,阴极O2+4H++4e→2H2O,结果使水流经铜管后含有了Cu2+离子。含有Cu2+离子的水进入水箱后,与锌发生置换反应,实质是发生了铜离子还原的阴极反应Cu2++2e→Cu(Cu2+是极强的氧化剂),使铜沉积于水箱的靠近进口的部分表面,这样沉积铜的表面为阴极,金属锌为阳极,发生了间接电偶腐蚀。当镀锌层消耗后漏出铁时,铁仍为阳极,继续腐蚀,直至穿孔。 (2)不存在电偶腐蚀问题,发生的腐蚀为均匀腐蚀,而且镀锌层在常温水中耐腐蚀性较好,所以使用寿命更长。 2.为了防止双金属腐蚀,有人把涂料涂刷在贱金属(电位较负的金属)上,以防贱金属加速腐蚀,你对这种做法有何看法? 答:这种做法是不对的,会加速贱金属的腐蚀,原因如下: 涂料一般指有机涂层,除添加锌粉等的特殊涂层外,一般有机涂层不导电,多为阴极性涂层,而且有空隙,避免不了水分子的渗透,因此单独使用涂料很容易出现大阴极

金属腐蚀及控制

第一章电化学腐蚀 1、何为腐蚀原电池?(外电路短路,画图) 腐蚀原电池:外电路短路原电池。 2、何为次生腐蚀反应?举例说明(Fe) 次生腐蚀反应:阳极、阴极腐蚀产物之间发生反应。 如:Fe,Cu,3%NaCl溶液中; 阳极:Fe - 2e = Fe2+ 阴极:O2 + 2H2O + 4e =4OH-次生腐蚀过程:Fe2++ 2OH- = Fe(OH)2 Fe(OH)2 沉积阳、极阴交界处形成致密膜起保护作用,若Fe(OH)2 进一步反应:Fe(OH)2 + O2 + 2H2O =4Fe(OH)3,脱水成铁锈xFeO.yFe2O3.2H2O 疏松不起保护作用。 3、微电池的种类有哪些? 定义:人眼不可辨,指阳极区和阴极区尺寸小,很难区分。 (1)成分不均匀钢或铸铁中的Fe、Fe3C或石墨,Fe为阳极,Fe3C或石墨为阴极;(2)组织不均匀晶界与晶粒内部,一般晶界为阳极,晶粒内部为阴极; (3)物理状态不均匀应力大晶格畸变为阳极,应力小为阴极。 4、双电层有哪几种? (1)金属+ H2O Mn +.ne + mH2O = Mn+ .mH2O + ne (2)金属+ 金属盐溶液

CuSO4溶液中的Cu2+由于被Cu吸引沉积到Cu上。Cu2 + + 2e = Cu (3)非金属+ 电解质溶液 氧电极:Pt吸附O2或O,得到Pt上的e。Pt =Pt + + e 氢电极:Pt吸附H2或H,得到Pt上的e。Pt =Pt + + e 5、简述阴极和阳极化学极化、浓差极化、电阻极化的原因。 (1)阳极极化原因 A.化学极化(活化极化):金属溶解速度<电子迁移速度,电子迁移到阴极,失电子Mn+还未迁移到溶液中,导致阳极带正电荷,电位升高,ηa>0; B.浓差极化:阳极周围Mn+向外扩散速度较慢,使阳极附近Mn+活度升高,ηc>0; M - ne =Mn+;ε↑=ε0+RT/nF ln(a Mn↑/1) C. 电阻极化:阳极形成保护膜,使M→Mn+过程受阻,ηr>0; (2)阴极极化原因

(完整版)金属腐蚀与防护课后习题答案

腐蚀与防护试题 1化学腐蚀的概念、及特点 答案:化学腐蚀:介质与金属直接发生化学反应而引起的变质或损坏现象称为金属的化学腐蚀。 是一种纯氧化-还原反应过程,即腐蚀介质中的氧化剂直接与金属表面上的原子相互作用而形成腐蚀产物。在腐蚀过程中,电子的传递是在介质与金属之间直接进行的,没有腐蚀电流产生,反应速度受多项化学反应动力学控制。 归纳化学腐蚀的特点 在不电离、不导电的介质环境下 反应中没有电流产生,直接完成氧化还原反应 腐蚀速度与程度与外界电位变化无关 2、金属氧化膜具有保护作用条件,举例说明哪些金属氧化膜有保护作用,那些没有保护作用,为什么? 答案:氧化膜保护作用条件: ①氧化膜致密完整程度;②氧化膜本身化学与物理稳定性质;③氧化膜与基体结合能力;④氧化膜有足够的强度 氧化膜完整性的必要条件:PB原理:生成的氧化物的体积大于消耗掉的金属的体积,是形成致密氧化膜的前提。 PB原理的数学表示: 反应的金属体积:V M = m/ρ m-摩尔质量 氧化物的体积: V MO = m'/ ρ ' 用? = V MO/ V M = m' ρ /( m ρ ' ) 当? > 1 金属氧化膜具备完整性条件 部分金属的?值 氧化物?氧化物?氧化物? MoO3 3.4 WO3 3.4 V2O5 3.2 Nb2O5 2.7 Sb2O5 2.4 Bi2O5 2.3 Cr2O3 2.0 TiO2 1.9 MnO 1.8 FeO 1.8 Cu2O 1.7 ZnO 1.6 Ag2O 1.6 NiO 1.5 PbO2 1.4 SnO2 1.3 Al2O3 1.3 CdO 1.2 MgO 1.0 CaO 0.7 MoO3 WO3 V2O5这三种氧化物在高温下易挥发,在常温下由于?值太大会使体积膨胀,当超过金属膜的本身强度、塑性时,会发生氧化膜鼓泡、破裂、剥离、脱落。 Cr2O3 TiO2 MnO FeO Cu2O ZnO Ag2O NiO PbO2 SnO2 Al2O3 这些氧化物在一定温度范围内稳定存在,?值适中。这些金属的氧化膜致密、稳定,有较好的保护作用。 MgO CaO ?值较小,氧化膜不致密,不起保护作用。 3、电化学腐蚀的概念,与化学腐蚀的区别 答案:电化学腐蚀:金属与介质发生电化学反应而引起的变质与损坏。 与化学腐蚀比较: ①是“湿”腐蚀 ②氧化还原发生在不同部位 ③有电流产生 ④与环境电位密切相关

四川理工学院金属腐蚀理论及应用试卷

四川理工学院试卷(2007 至2008 学年第 2 学期) 课程名称: 金属腐蚀理论及应用 命题教师: 龚敏,陈琳 适用班级: 2005级材料科学与工程专业(腐蚀与防护方向) 考试 2008年 5月 日 共 6 页 1、 满分100分。要求卷面整洁、字迹工整、无错别字。 2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否 则视为废卷。 3、 考生必须在签到单上签到,若出现遗漏,后果自负。 4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷 分别一同交回,否则不给分。 试 题 一、简答题(共35分) 1. 什么是阳极保护,其适用条件是什么?(6分) 用阳极钝化方法达到减小金属腐蚀的目的,这种防护技术叫做阳极保护。 2分 阳极保护的适用条件是: (1)阳极极化曲线具有活态—钝态转变。 2分 (2)阳极极化时必须使金属的电位正移到稳定钝化区内。 2分 2. ++ >H H Cu Cu E E /0/0 22,为何在潮湿的大气中铜会受到腐蚀; ++

3. 从材料、环境和力学三方面叙述应力腐蚀破裂的主要特征。(6分) (1)主要是合金发生SCC,纯金属极少发生。2分 (2)对环境的选择性形成了所谓“SCC的材料―特定环境组合”。2分 (3)只有拉应力才引起SCC,压应力反而会阻止或延缓SCC的发生。2分 4. 简述腐蚀电池的三个工作环节。(6分) (1)阳极反应:通式:Me→Men++ne 2分 (2)阴极反应:通式:D+me=[D.me] 2分析氢反应:2H++2e=H2 吸氧反应:O2+4H++4e=2H2O (酸性溶液中); O2+2H2O+4e=4OH-(中性或碱性溶液中) (3)电流回路2分金属部分:电子由阳极流向阴极 溶液部分:正离子由阳极向阴极迁移 5. 金属氧化膜具有良好保护性需要满足哪些基本条件?(6分) (1)P-B比大于1是氧化物具有保护性的必要条件。2分 (2)膜有良好的化学稳定性。2分(3)膜有一定的强度和塑性,与基体结合牢固。2分 【或(4)膜与基体金属的热膨胀系数差异小,不易剥落。(5)膜的组织结构致密、缺陷少。】 6. CPT和CCT的含义是什么?如何使用CPT、CCT来评价材料的耐蚀性能?(6分)(1)CPT:临界孔蚀温度1分CCT:临界缝蚀温度1分(2)临界孔蚀温度越高,材料的耐小孔腐蚀性能越好。2分临界缝蚀温度越低,材料的耐缝隙腐蚀性能越差。2分 第2页

金属的腐蚀和防护教案

第二节金属腐蚀和防护 【教学目标】 1.能描述金属腐蚀的化学原理,知道金属防护的常用方法,认识防止金属腐蚀的重要意义。 2.进一步学会对比、比较认识事物的科学方法和假设验证探究的思维方式,辩证的认识外因条件对化学变化的影响; 3.参与试验探究观察铁生锈及析氢腐蚀吸氧腐蚀的过程,体会动手试验自己获得铁的性质的知识的成功愉悦,保持学习的兴趣; 【教学重点】金属的电化学腐蚀 【教学难点】电化学原理 【教学方法】实验探究、师生共议、归纳总结。 【教学过程】 【引入】【板书】第四节金属的腐蚀 【板书】一、金属腐蚀: 【讲述】以上两个案例都是金属腐蚀造成的,我们以前接触过金属腐蚀的,曾经探讨过铁钉在什么条件下最容易受到腐蚀,我们来设计实验来研究一下钢铁腐蚀的条件,提示大家我们可以利用对比、比较的方法设计实验,我这里提供的实验用品有:铁钉、煮沸过的水(除O2)、干燥剂(CaCl2)、植物油、试管、橡胶塞,还有食盐溶液和醋酸溶液。我们可以设计出至少五种实验方案来探究铁钉在什么条件下会锈蚀,什么条件下锈蚀的速度会加快。 注意在设计实验的时候将方案用到的物品填在学案相对应位置。 【实验设计】(学生自主设计)(由学生讲述设计的实验) 【现象】单独与水或空气接触的铁钉不易腐蚀,但是与水和空气同时接触的铁钉,出现明显的锈蚀。与食盐溶液接触的铁钉和与醋酸接触的铁钉锈蚀的更加明显。 【板书】三、铁钉生锈的条件:潮湿的空气;加速锈蚀的原因,有电解质溶液。

【提问】铁作为我们常见的金属,我们看到的这个现象就是腐蚀现象,那么什么是金属腐蚀?它的定义,本质,分类分别是什么呢? 【投影】金属腐蚀:指金属(或合金)跟周围接触到的气体(或液体)发生化学反应而引起损耗的过程。 本质:金属原子失去电子被氧化。 【讨论】我们刚才做的实验中给予铁钉了不同环境,也造成了不同程度的腐蚀,那么你们能感觉到这些腐蚀有什么明显的不同吗? 【讲述】如果我将铁钉在空气中灼烧,就是直接接触空气,例如有的地方的洒铁花,印度帕博尔的毒气泄漏事故中钢铁和氯原子的直接反应导致阀门腐蚀。这样的腐蚀叫做金属的化学腐蚀,铁在干燥的空气中是腐蚀速度很慢的,而我们做的铁钉锈蚀条件中接触水和空气,接触食盐溶液和醋酸溶液的腐蚀很快,为什么呢?这就是第二类腐蚀,金属的电化学腐蚀。展示电化学腐蚀的定义。【投影】实验探究2,探究初中锌粒和稀硫酸反应,如果加入铜片会有什么现象。 【学生讲述】本来在锌粒上面的气泡,因为接触了铜片,立刻铜片上会有大量的氢气泡冒出,也相当于加快了锌粒的腐蚀。 【动画模拟】探讨回忆原电池的原理,指出铁钉其实是铁碳合金,含2~4%的碳,这样就组成了铁碳原电池,动画模拟讨论铁碳在酸性条件下和中性及弱酸性条件下的反应。 实验探究3:钢铁的析氢腐蚀和吸氧腐蚀。 负极(Fe):Fe - 2e- = Fe2+ 正极(C):2H++2e-=H2↑(析氢腐蚀) 2H2O + O2 + 4e- = 4OH-(吸氧腐蚀) 铁锈的生成:Fe2+ + 2OH- = Fe(OH)2↓ 4Fe(OH)2 + 2H2O + O2 = 4Fe(OH)3 生成的Fe(OH)3,失水生成Fe2O3·xH2O就是铁锈。 【讲述】吸氢我们可以通过试验来验证一下铁钉是否发生吸氧腐蚀,我们来看这个试验装置:p85 【试验现象和结论】水柱上升,说明发生了吸氧腐蚀。 【讲述】另外,我们还注意到,电化学腐蚀现象在生活中更为普遍而且腐蚀速

金属腐蚀理论及其控制复习大纲

金属腐蚀理论复习大纲 ● 金属腐蚀和耐蚀性的意义; ● 均匀腐蚀速度的表示方法:失重腐蚀速度,增重腐蚀速度,年腐蚀度的计算公式,相互换算公式。 ● 腐蚀电池的概念和特点。● 腐蚀电池的工作环节(举例说明) ●腐蚀电流密度和失重腐蚀速度的换算公式。 ● 电位的表示方法,平衡电位的意义,Nernst 公式的应用,非平衡电位的概念。 ● 电化学腐蚀倾向的判断,电位比较准则的应用。 ● 用电位-pH平衡图说明腐蚀倾向和腐蚀控制的途径。 ● 基本概念:极化,去极化,过电位η,极化值ΔE。 ● Evans极化图的作法,用Evans极化图表示腐蚀电流的影响因素。 ● 活化极化、浓度极化的概念,判断电极反应极化控制类型的条件。 ● 过电位和电极反应速度的关系,动力学方程和极化曲线的概念。 ● Tafel方程式的数学形式、图形表示、适用条件和应用。 ● 交换电流密度的概念及意义,与电极反应极化性能的关系。 ● 极限扩散电流密度的计算(注意Cb的单位) ● 均匀腐蚀的腐蚀电位和腐蚀电流密度。 ●电极反应的耦合,混合电位,电流加和原理的应用。 ●均相腐蚀电极极化状态下的电位、电流关系,活 化极化腐蚀体系的动力学方程式和极化图,阳极反应受活化极化控制、阴极反应受浓度极化控制体系的动力学方程和极化图。 ● 微极化和强极化的意义,用极化电阻Rp和法拉第电阻Rf求icor和i0方法。 ● 复相电极的电位和电流关系。 ● 用活化极化腐蚀体系的理论说明析氢腐蚀的特点。 ● 用阳极反应受活化极化控制,阴极反应受 浓度极化控制腐蚀体系的理论说明吸氧腐蚀特点。 ● 析氢腐蚀与吸氧腐蚀的比较。● 金属钝态的特征。 ● 阳极钝化体系的阳极极化曲线,单位区间及钝化参数。 ● 几种钝化体系的极化图。● Flade电位的意义。 ● 高温氧化倾向的判断,氧化物的分解压和电动势的应用。 ● 氧化物的分解压和电动势的计算,它们与温度和氧压的关系。 ● 氧化膜具有保护性的条件,p-B的含义。 ● 两类氧化膜的缺陷,缺陷浓度对氧化速度的影响。 ● 局部腐蚀的概念,七种局部腐蚀的定义。 ● 电偶腐蚀的影响因素,集氧面积原理。 ● 孔蚀和缝隙腐蚀的影响因素,孔蚀和缝隙腐蚀的比较。 ● 用特征电位表示孔蚀和缝隙腐蚀倾向。 ● 用闭塞腐蚀电池理论说明发生局部腐蚀环境条件的典型例子。 ● 说明发生局部腐蚀材料条件的典型例子; ● 不锈钢敏化处理和贫铬理论; ● SCC的特征,最常见的合金-环境组合,临界电位和临界应力。 ● 磨损腐蚀的影响因素,临界流速,发生湍流腐蚀和空泡腐蚀的原因。

金属腐蚀学习题教学文案

金属腐蚀学习题

腐蚀学第一章习题 1、导出腐蚀速度mm/a与mg/dm2·d间的一般关系式。 思考题 2、什么是腐蚀?为何提出几种不同的腐蚀定义? 3、举例说明研究腐蚀的意义. 4、化学腐蚀和电化学腐蚀的区别是什么? 5、金属的主要腐蚀形态有哪些? 10、表示均匀腐蚀速度的方法有哪些?它们之间有什么联系?这些腐蚀速度表达式中,哪些是量方程式?哪些是数值方程式?它们之间的主要区别是什么? 腐蚀学第二章习题 1、计算在25℃和50℃下的2.3RT/F值。 2、计算Zn在0.3mol/L ZnSO4溶液中的电极电位(相对于SHE),换算成SCE电位值是多少? 3、计算离子活度为10-6mol/L时,Ag/Ag+、Cu/Cu2+和Fe/Fe2O3/H+的平衡电极电位以及第三个电极的pH值。(已知:uoAg=0 , uoCu=0 , uoFe=0, uoFe2O3=-742.200KJ/mol , uo= 77.12KJ/mol , uoCu2+=65.52 KJ/mol, uoH+=0) Ag+ 4、计算25℃时,下列电极的标准电极电位 a)、Cu在氰化物溶液中(注意铜为1价) b)、Ni在氨溶液中 c)、Zn在碱溶液中 5、计算Ag/AgCl电极在1mol/L NaCl溶液中的电位。 6、计算40℃氢分压P H2=0.5atm时氢电极在PH=7的溶液中电极电位。 7、计算25℃时,铁在pH=9.2的0.5mol/L NaCl溶液中的电极电位。 10、Zn(阳极)与氢电极(阴极)在0.5mol/L ZnCl2溶液中组成电池的电动势为+0.590V,求溶液的pH值。 11、把Zn浸入pH=2的0.001 mol/LZnCl2溶液中,计算该金属发生析氢腐蚀的理论倾向。(以电位表示) 12、计算镍在pH =7的充空气的水中的理论腐蚀倾向。假定腐蚀产物为H2和Ni(OH)2, Ni(OH)2的溶度积为1.6×10-16。 13、铜电极和氢电极(P H2=0.2MPa)浸在Cu2+活度为1且pH=1的硫酸铜溶液中组成电池,求该电池的电动势,并判断电池的极性。 14、计算在pH=0的充空气的CuSO4溶液中铜是否因腐蚀而生成Cu2+(活度为1)和H2(0.1MPa),并以电位差表示腐蚀倾向的大小。

不锈钢的腐蚀与耐腐蚀的基本原理

不锈钢的腐蚀与耐腐蚀的基本原理 金属受环境介质的化学及电化学作用而被破坏的现象即腐蚀。化学腐蚀的环境介质是非电解质(汽油、苯、润滑油等),电化学腐蚀的环境介质是电解质(各种水溶液)。电化学腐蚀是涉及电子转移的化学过程,该过程能否进行取决于金属能否离子化,而离子化的趋势可用金属的标准电极电位(ε0)来表示。 由于碳化物、夹杂物,以及组织、化学成分和内部应力的不均匀等的作用,将促使各部分在电解液中产生相互间的电极电位差。电极电位差愈大,微阳极和微阴极间的电流强度愈大,钢的腐蚀速度也愈大,微阳极部分产生严重的腐蚀。在电化学腐蚀中能够控制腐蚀反应速度的现象称为极化,极化可使阳极与阴极参与反应的速度得到减弱和减缓。电解液中离子的缓慢移动、原子缓慢结合成气体分子或电解液中离子的缓慢溶解,都可能是极化的表现形式。反应面积、搅拌或电解液流动、氧气、温度等因素,都将影响极化的速度。用极化技术与临界电位可衡量金属与合金在氯化物溶液中点腐蚀与缝隙腐蚀的敏感性。当不锈钢与异种金属接触时,需考虑电化学腐蚀。但若不锈钢是正极,则不会产生电流腐蚀。 钝化状态金属的耐腐蚀性取决于铬含量、环境中的氯化物和氧含量以及温度。某些元素(如氯)可以击穿钝化膜,造成钝化膜不连续处的金属被腐蚀,故使用钝化状态金属的用户应特别注意点腐蚀、应力腐蚀开裂、敏化以及贫氧腐蚀等。为了提高不锈钢的耐腐蚀性能,其应处于钝化状态(必要条件),钝化后腐蚀电流密度要低(腐蚀速度),钝化状态的电位范围要宽(相对稳定性)。 对于含镍材料来说,腐蚀有两种主要形式:一种是均匀腐蚀,另一种是局部腐蚀。在海洋大气中的铁锈就是一种一般或均匀腐蚀的典型例子。此处金属在其整个表面上均匀地被腐蚀。在这种情况下,钢表面形成疏松层,这层腐蚀产物很容易去除。另一方面,像合金400这种耐腐蚀性较好的金属,它们在海洋大气中表现出良好的均匀抗腐蚀性。这是由于合金400可形成一种非常薄而坚韧的保护膜。均匀腐蚀是一种最容易处理的腐蚀形式,因为工程师可以定量地确定金属的腐蚀率并可精确地预测金属的使用寿命。 不锈钢耐腐蚀性机理:在不锈钢表面形成明显的Cr2O3薄膜,O和Cr的含量有最低要求(10.5%)以获得连续的保护性薄膜,以抑制侵蚀的发生。若保护性薄膜被损坏,它可以自然恢复。氧化膜的抗腐蚀性能取决于Mo、Ni、Cr、及N的含量。提高Cr含量可以提高不锈钢的抗侵蚀性和当Cr2O3薄膜被损坏时增强了其自修复能力。Cr2O3薄膜对基体结构(铁素体或奥氏体)没有任何影响。 蚀斑:在较高温度范围内处于氯化物、氟化物或氧化性溶液中,最初产生在夹杂物、表面损伤等保护膜不连续表面,而后将产生穿孔或形成新的保护膜(除去腐蚀物质和冲洗过的部分)。主要产生于海边环境、盐水、海水或高氧化性溶液环境。为此,需除去或减少氯、氟含量,加强冲洗维护,提高铬、钼含量。

金属的腐蚀与防护 教学设计教案

第3节化学能转化为电能——电池 第3课时金属的腐蚀与防护 【学习目标】 1、能够运用原电池原理解释金属发生电化学腐蚀的原因。 2、学会利用原电池原理和电解原理设计防护的方法。 3、认识金属腐蚀的危害和防护的必要性。 【预习】 三、金属的腐蚀与防护 1、金属电化学腐蚀的原理 (1)金属腐蚀。 金属腐蚀常见的类型:。 (2)电化学腐蚀 ①概念:当两种金属(或合金)且又同时暴露在里或与接触时,由于形成原电池而发生的腐蚀就是电化学腐蚀。 电化学腐蚀过程中由于电解质溶液的不同,又可分为和两种。 ②吸氧腐蚀 见课本27页图1-3-13:表示的是一块铆有铁铆钉的铜板暴露在潮湿空气中的腐蚀情况,其中为负极,为正极,铜板表面凝结有一层水膜,空气中CO2及沿海地区空气中的NaCl等物质溶解在水膜中形成电解质溶液,从而构成原电池。 电极反应为:负极:正极: 然后OH-与Fe2+结合为Fe(OH)2,故该原电池的总反应为: Fe(OH)2与潮湿空气反应生成Fe(OH)3:方程式为: 生成的Fe(OH)3分解,从而生成铁锈(Fe2O3·nH2O),该过程主要消耗O2,称为吸氧腐蚀。③析氢腐蚀 同样是上述腐蚀,若空气中SO2含量较高,处于酸雨的环境下,使水膜酸度较高,即电解质溶液为酸性溶液,正极反应就变为: 总反应为:。该过程为析氢腐蚀。 无论是析氢腐蚀,还是吸氧腐蚀,都使金属成为原电池的负极,金属电子变为金属阳离子而被腐蚀,且金属越越易发生电化学腐蚀。 【例1】下列关于铁器的使用注意事项不正确的是() A、避免长期接触潮湿空气 B、避免与酸性物质接触 C、不能接触干燥的空气 D、不能盛放硫酸铜溶液 【例2】下列现象中,不是由于原电池反应造成的是( ) A、含杂质的锌与盐酸反应比纯锌与盐酸反应速率快。 B、金属在潮湿的空气中易腐蚀。 C、纯铁和盐酸反应,如滴入几滴硫酸铜溶液,则可加快反应速率。 D、化工厂中的铁锅炉易腐蚀而损坏。 2、金属的防护 金属的腐蚀主要是电化学腐蚀,只要破坏了原电池的构成要素就可减少电化学腐蚀的发生,常见有以下几种金属防护方法: (1)让金属制品处于的环境。该方法破坏了电解质溶液的存在,金属不易被腐蚀。 (2)在金属表面加一层。常见的方法是刷一层、、、 、等保护层,效果较好的方法还有在金属表面镀上一层金属防护层。

金属腐蚀理论及腐蚀控制考试重点题

第 三 章 1. 在下列情况下,氧电极反应的平衡电位如何变化: (1) 温度升高10?C (取Po 2 =1atm ,pH = 7)。 (2) 氧压力增大到原来的10倍 (温度25?C)。 (3) 溶液pH 值下降1单位 (温度25?C)。 解:在中性溶液中,阴极的反应为:O 2+2H 2O+4- e =4OH- 其平衡位则为Ee=E 0(OH-/O2)+ nF RT ㏑(Po 2/4 OH a -) (1) 当温度升高10℃后有: Ee = E 0(OH-/O2)+ nF T R )10(+×㏑(Po 2/4 OH a -) =E+nF RT ㏑(Po 2/4OH a )+ nF R 10㏑Po 2/4 OH a - 则平衡电位变化量△Ee1= Ee’- Ee=nF R 10㏑(Po 2/4 OH a -) =nF R 10㏑Po 2-nF R 10㏑4OH a - 又因㏑4OH a =2.3lg 4 OH a ,则有lg OH a =pH -14 所以:△Ee1=10×8.314/(4×96500) × ㏑Po 2-10×8.314/(4×96500)×4×2.3×(7-14) =0+0.01387=0.0139V>0 即:温度升高10℃后平衡电位正移0.0139V 。 (2) 当氧压力增加到原来的10倍时 ' '2 Ee =E +nF RT ㏑(10Po 2/4OH a )=E +nF RT ln10+nF RT ㏑(Po 2/4 OH a -) △E 2= E e’’-Ee =nF RT ln10 =(8.314×298.15)/(4×96500)×2.3 =0.0148V>0 即氧压力增大到原来的10倍时有氧电极平衡电位正移0.0148V (3) 当溶液pH 值下降1时有

金属腐蚀与防护课后题答案

1.材料腐蚀的定义:腐蚀是材料受环境介质的化学、电化学和物理作用产生的损坏或变质现象。腐蚀包括化学、电化学与机械因素或生物因素的共同作用。 2.腐蚀的特点:自发性/铁腐蚀变成以水和氧化铁为主的腐蚀产物,这些腐蚀产物在结构或形态上和自然界天然存在的铁矿石类似,或者说处于同一能量等级自发性只代表反应倾向,不等于实际反应速度 普遍性/ 元素周期表中约有三、四十种金属元素,除了金和铂金可能以纯金属单体形式天然存在之外,其它金属都以它们的化合物(氧化物、硫化物)形式存在 隐蔽性/ 应力腐蚀断裂管道:表面光亮如新,几乎不存在均匀腐蚀迹象,金相显微镜下,可观察到管道内部布满细微裂纹 3.按材料腐蚀形态如何分类:全面腐蚀<均匀和不均匀腐蚀> 局部腐蚀{ 点蚀(孔蚀、)缝隙腐蚀及丝状腐蚀、电偶腐蚀(接触腐蚀)晶间腐蚀}选择性腐蚀 4.按材料腐蚀机理如何分类:化学腐蚀、电化学腐蚀、物理溶解腐蚀 5.按材料腐蚀环境如何分类:自然环境腐蚀、工业环境腐蚀、生物环境腐蚀 1、名词解释 物理腐蚀:是指金属由于单纯的物理溶解作用而引起的破坏 电化学腐蚀:就是金属和电解质组成两个电极,组成腐蚀原电池。 电极电位:金属-溶液界面上建立了双电层,使得金属与溶液间产生电位差,这种电位差称为电极电位(绝对电极电位) 非平衡电极电位:(在生产实际中,与金属接触的溶液大部分不是金属自身离子的溶液)当电极反应不处于平衡状态,电极系统的电位称为非平衡电位。 平衡电极电位:水合金属离子能够回到金属中去,水合-金属化过程速率相等且又可逆,这时的电极电位。 标准电极电位:金属在25℃浸于自身离子活度为1mol/L的溶液中,分压为1×105Pa时的平衡电极电位 极化:电流流过电极表面,电极就会失去平衡,并引起电位的变化 去极化:能降低电极极化的因素称为去极化因素 过电位:是电极的电位差值,为一个电极反应偏离平衡时的电极电位与这个电极反应的平衡电位的差值。 活化极化:设电极反应的阻力主要来自电子转移步骤,液相传质容易进行,这种电极反应称为受活化极化控制的电极反应。 浓差极化:当电极反应的阻力主要来自液相传质步骤,电子转移步骤容易进行时,电极反应受浓度极化控制。 吸氧腐蚀:是指金属在酸性很弱或中性溶液里,空气里的氧气溶解于金属表面水膜中而发生的电化腐蚀。 析氢腐蚀:以氢离子还原反应为阴极过程的金属腐蚀 钝化化学腐蚀:当金属处于一定条件时,介质中的组分或是直接同金属表面的原子相结合或是与溶解生成的金属离子相结合,在金属表面形成具有阻止金属溶解能力并使金属保持在很低的溶解速度的钝化膜。 2、电位-pH图在腐蚀研究中的应用与其局限性是什么?电位—pH图中汇集了金属腐蚀体系的热力学数据,并且指出了金属在不同pH 或不同电位下可能出现的情况,提示人们可借助于控制电位或改变pH 到防止金属腐蚀的目的。1. 绘制电位pH 图时,是以金属与溶液中的离子之间,溶液中的离子与含有这些离子的腐蚀产物之间的平衡作为先决条件的,而忽略了溶液中其它离子对平衡的影响。而实际的腐蚀条件可能是远离平衡的;其它的离子

相关主题