搜档网
当前位置:搜档网 › 一元函数微分学的应用最全版

一元函数微分学的应用最全版

一元函数微分学的应用最全版
一元函数微分学的应用最全版

第四章 一元函数微分学的应用

第一节 柯西(Cauchy )中值定理与洛必达(Hospital L ')法则

思考题 :

1. 用洛必达法则求极限时应注意什么?

答:应注意洛必达法则的三个条件必须同时满足.

2. 把柯西中值定理中的“()x f 与()x F 在闭间区[]b a ,上连续”换成“()x f 与()x F 在开区间()b a ,内连续”后,柯西中值定理的结论是否还成立?试举例(只需画出函数图象)

说明.

答:不成立.

图像如下:

习作题:

1. 用洛必达法则求下列极限:

(1)11lim 21--→x x x , (2)x

x

x sin lim 1→,

(3)()π

ππ--→x x x sin lim , (4)x x x x x x x --+-→4240sin 23lim .

解:(1)11

lim 21--→x x x =)1(lim 1

+→x x =2,

(2)x

x

x sin lim

0→=x x cos lim 0→=1,

(3)()ππsin lim π--→x x x =()1

πcos lim π-→x x =1,

(4)x x x x x x x --+-→4240sin 23lim =14cos 264lim 330--+-→x x x x x = 1

012--=1-. 2. 用洛必达法则求下列极限:

(1)x

x x +→0

lim , (2)()x

x x 1

1lim +→.

解 :(1)x x x +→0

lim =x

x

x ln 0

e

lim +→=x

x x

10ln lim

e

+

→ =x

x -+

→0lim e

=1,

(2)()x

x x 10

1lim +→=x

x x 1

)1ln(0

e

lim +→ =x

x x )1ln(lim

e

+→=1

1

lim

0e

+→x x =e .

3. 设()x x x f -=2

,直接用柯西中值定理求极限()x

x f x sin lim 0→. 解:()00=f , 00sin =,

()x

x f x sin lim 0→∴ =()()0

sin sin 0lim 0--→x f x f x =()()ξξn si lim

0''→f x (ξ在0与 x 之间) =ξ

ξξcos 1

2lim

-→=1-.

第二节 拉格朗日)Lagrange (中值定理及函数的单调性

思考题:

1.将拉格朗日中值定理中条件()x f “在闭区间[]b a ,上连续”换为“在开区间()b a ,内连续”后,定理是否还成立?试举例(只需画图)说明.

答:不成立.

如下图:

2. 罗尔中值定理是微分中值定理中一个最基本的定理,仔细阅读下面给出的罗尔中值定理的条件与结论,并回答下列问题.

罗尔中值定理:若()x f 满足如下3条: (1)在闭区间[]b a ,上连续;

(2)在开区间()b a ,上可导;

(3)在区间[]b a ,端点处的函数值相等,即)()(b f a f =,则在开区间()b a ,内至少存在一点ξ,使得()0='ξf .

需回答的问题:

(1)罗尔中值定理与拉格朗日中值定理的联系与区别?

答:罗尔中值定理是拉格朗日中值定理的一个特殊情况.反之,拉格朗日中值定理是罗尔中值定理的推广.

(2)罗尔中值定理中条件(1)换为“在开区间()b a ,内连续”,定理的结论还成立吗?画图说明.

答:不成立.

如下图:

(3)不求()()()()()4321----=x x x x x f 的导数,说明方程()0='x f 有几个实根,并指出它们所在的区间.

答:方程()0='x f 有3个实根, 分别在区间(1, 2)、(2, 3)、(3, 4)内. 原因: 0)4()3()2()1(====f f f f , 据罗尔定理即可得出结果.

3. 举例说明罗尔中值定理与拉格朗日中值定理的条件是充分的而非必要的(可采用画图方式说明).

答:如下图所示.

)(x f 在],[b a 内不连续

)

(x f 在0=x 处不可导

习作题:

讨论函数2

e x y -=的单调性.

解:函数2e x y -=的定义域为),(+∞-∞,

2

e 2x x y --=', 令0='y , 得0=x ,

用0=x 把),(+∞-∞ 分成两部分)0(),0,(∞+-∞,

当)0,(-∞∈x 时0)(>'x f , 当),0(+∞∈x 时0)(<'x f , 因此2

e x y -=在)0,(-∞上单调递增, 在),0(+∞上单调递减.

第三节 函数的极值与最值

思考题:

1. 画图说明闭区间上连续函数)(x f 的极大值与最值之间的关系. 答:图像如下

由图可知, 函数)(x f 的极值与最值的关系为:)(x f 的极值为可能为最值,最值在极值点及边界点上的函数值中取得.

2. 可能极值点有哪几种?如何判定可能极值点是否为极值点?

答:对连续函数来说,可能极值点有驻点及函数一阶导数不存在的点(尖点)两种. 利用极值的第一充分条件或第二充分条件判定.

习作题:

1. 求3)(x x f =+2

3x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值.

解:x x x f 63)(2

+=', 令0)(='x f , 得2,

021-==x x ,

66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,

∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f .

∵50)5(-=-f , 200)5(=f .

∴ 比较)5(),0(),2(),5(f f f f --的大小可知:

)(x f 最大值为200, 最小值为50-.

2. 求函数x x y -+=1在]1,5[-上的最大值. 解:x

y --

='1211, 令0='y , 得4

3=

x . ∵4

5

)4

3(=

y , ()565-=-y , ()11=y , 比较可知 x x y -+=1在]1,5[-上最大值为4

5

=y .

第四节 曲率

思考题:

1. 对圆来说,其半径与其曲率半径相等吗?为什么? 答:相等.

因为:曲率半径r r s R s s =???=??=

→?→?α

αα00lim 1

lim 1. 2. 是否存在负曲率,为什么?

答:不存在.

因为曲率定义为:s

k s ??=→?α

0lim ,故可知曲率为非负的值.

习作题:

1. 求立方抛物线()03

>=a ax y 上各点处的曲率, 并求a x =处的曲率半径.

解:2

3ax y =', ax y 6='', 于是曲率 ()2

32

1y y k '+'

'=

=

()

2

34

2

916x a ax

+,

当 a x =时曲率 ()

2

36

2

916a a k +=

,

故曲率半径()

2

6

69112

3

a a k R +==

.

2. 曲线()03

≥=x x y 上哪一点处曲率最大,求出该点的曲率. 解:2

3x y =', x y 6='', 故曲率 ()

()

)0(9169162

32

34

4

≥+=

+=x x x

x x

k ,

对k 关于x 求导, 得

()

23444916

)91541(d d x x x x k ++-=, 令0d d =x

k

且0≥x 得4

45

1=x . <

≤x 04

451时, 0d d >x

k ; 4

451>x 时, 0d d

k , ∴曲线()03≥=x x y 上,)45,45(4

34

1

--处曲率最大 , 最大曲率为4

4

53

5

?

=k .

第五节 函数图形的描绘

思考题:

1. 若))(,(00x f x 为连续曲线弧()x f y =的拐点,问: (1)()0x f 有无可能是()x f 的极值,为什么? 答:可能.

如:()?????>≤=,

0,,

0,2x x x x x y

)0,0(为()x y 的拐点且()0y 为)(x y 的极值.

(2)()0x f '是否一定存在?为什么?画图说明

答:不一定. 如3

1

x y = 图像如右:

()0,0点为曲线3

1x y =的拐点,但

d d =x x

y

2. 根据下列条件,画曲线:

(1) 画出一条曲线,使得它的一阶和二阶导数处处为正.

解:如下图.

(2) 画出一条曲线,使得它的二阶导数处处为负,但一阶导数处处为正.

解:如下图.

(3) 画出一条曲线,使得它的二阶导数处处为正,但一阶导数处处为负.

解:如下图.

(4)画出一条曲线,使得它的一阶、二阶导数处处为负.

解:如下图.

一元函数微分学典型例题

一元函数微分学典型例题 1. 有关左右极限题 求极限??? ?????+++→x x sin e e lim x x x 41 012 ● 根据左右极限求极限, ● 极限x x e lim 1 →, x x sin lim x 0 →,x tan lim x 2 π→,x cot lim x 0→,x cot arc lim x 0→,x arctan lim x 1 0→都不存在, ● A )x (f lim A )x (f lim )x (f lim x x x =?==∞ →-∞ →+∞ → ● 【 1 】 2. 利用两个重要极限公式求1∞ 型极限 x sin x ) x (lim 20 31+→ ● 0→)x (?,e )) x (lim() x (=+??1 1 ● A )x (f lim =0→)x (?,A )x (f ) x (e ])) x (lim[(=+??11 ● 【 6e 】 3. 等价无穷小量及利用等价代换求极限 当0x + → (A) 1- (B) ln (C) 1. (D) 1-. ● 等价无穷小定义:如果1=α β lim ,则称β与α失等价无穷小,记为α∽β, ● 0→x 时,(1)n x x a x a x x x x x x x x x e x x x x x n x x ≈ -+≈-≈-+≈-≈---+≈-≈+≈≈≈≈111112 1 16111112 3 ln )(cos sin )ln(arctan tan sin αα

● 当0→)x (?时,)x (sin ?∽)x (?,11-+n )x (?∽ n ) x (?∽∽ ● 【 B 】 4. 利用单调有界准则求极限 设数列{}n x 满足n n x sin x ,x =<<+110π。证明:极限n n x lim ∞→存在,计算1 1n x n n n x x lim ??? ? ??+∞→ ● 利用单调有界准则球数列或者函数极限的步骤:1。证明数列或函数单调;2。证明 数列或函数是有界;3。等式取极限求出极限。 ● 定理单调有界数列必有极限还可以叙述为单调递减有下界数列必有极限,或单调递 增有上界数列必有极限。 ● 61 1 2 -→=?? ? ??e x x sin lim x x ● 【 0;6 1- e 】 5. 判断函数连续与否以及利用函数的连续性解题 设函数f (x )在x =0处连续,下列命题错误的是: (A) 若0()lim x f x x →存在,则f (0)=0. (B) 若0()() lim x f x f x x →+-存在,则f (0)=0. (C) 若0()lim x f x x →存在,则(0)f '存在. (D) 若0()() lim x f x f x x →-- 存在,则(0)f '存 在 【 】 ● 若()()00 x f x f lim x x =→,则称函数()x f 在点0x 处连续。 ● 左连续右连续则连续。 ● 分段函数的分段点不一定是函数的间断点。 ● 判断函数在某点是否连续的步骤:求函数在该点的极限;求函数在该点的函数值;判断 二者是否相等,相等则连续,否则间断。 6.导数的定义式相关题目 设函数 ()x f 在 x=0某领域内有一阶连续导数,且 ()()0 000≠'≠f ,f 。若 ()()()02f h bf h af -+在0→h 时是比h 高阶的无穷小,试确定a, b. ● 函数在某一点导数的定义: ()()()x x f x x f lim x y lim x f x x ??????000 00-+=='→→ ()()()()()0 0000 00 x x x f x f lim h x f h x f lim x f x x h --=-+='→→

2020年考研数学大纲考点:一元函数微分学

2020年考研数学大纲考点:一元函数微分学 在研究生入学考试中,高等数学是数一、数二、数三考试的公共 内容。数一、数三均占56%(总分150分),考察4个选择题(每题4分,共16分)、4个填空题(每题4分,共16分)、5个解答题(总分50分)。数二不考概率论,高数占78%,考察6个选择题(每题4分,共24分)、4个填空题(每题5分,共20分)、7个解答题(总分72分)。由高数所 占比例易知,高数是考研数学的重头戏,所以一直流传着“得高数者 得数学。”高等数学包含函数、极限与连续、一元函数微分学、一元 函数积分学、多元函数微分学、多元函数积分学、常微分方程和无穷 级数等七个模块,在梳理分析函数、极限与连续的基础上,继续梳理 对一元函数微分学,希望对学员有所协助。 一元函数微分学包含导数与微分、微分中值定理、导数应用三方 面内容。 1、考试内容 (1)导数和微分的概念;(2)导数的几何意义和物理意义;(3)函数 的可导性与连续性之间的关系;(4)平面曲线的切线和法线;(5)导数 和微分的四则运算(6)基本初等函数的导数;(7)复合函数、反函数、 隐函数以及参数方程所确定的函数的微分法;(8)高阶导数;(9)一阶 微分形式的不变性;(10)微分中值定理;(11)洛必达(L’Hospital)法则;(12)函数单调性的判别;(12)函数的极值;(13)函数图形的凹凸性、拐点及渐近线;(14)函数图形的描绘;(15)函数的值和最小值;(16)弧微分、曲率的概念;(17)曲率圆与曲率半径(其中16、17只要 求数一、数二考试掌握,数三考试不要求)。 2、考试要求 (1)理解导数和微分的概念,理解导数与微分的关系,理解导数的 几何意义,会求平面曲线的切线方程和法线方程,理解函数的可导性 与连续性之间的关系;(2)了解导数的物理意义,会用导数描述一些物

一元函数微分学教案

第二章 一元函数微分学 一、 导数 (一)、导数概念 1、导数的定义: 设函数)(x f y =在点0x 的某个邻域内有定义,当自变量在点0x 处取得改变量x ?时,函数)(x f 取得相应的改变量,)()(00x f x x f y -?+=?,如果当0→?x 时,x y ??的极限存在,即x y x ??→?0lim x x f x x f x ?-?+=→?)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0 )(x x dx x df = 2、根据定义求导数的步骤(即三步曲) ①求改变量)()(x f x x f y -?+=? ②算比值 x y ??x x f x x f ?-?+=)()( ③取极限x y x f y x ??='='→?0lim )(x x f x x f x ?-?+=→?)()(lim 0 例1:根据定义求2 x y =在点3=x 处的导数。 解:223)3(-?+=?x y 2)(6x x ?+?= x x y ?+=??6 6)6(lim lim 0 0=?+=??→?→?x x y x x 3、导数定义的几种不同表达形式 ①x x x x x f x x f x f x ?+=??-?+='→?00000) ()(lim )(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时 =当0)()(lim )(0000x x x f x f x f x ??-='→? ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的定义: 如果当)0(0-+→?→?x x 时,x y ??的极限存在,则称此极限为)(x f 在点0x 为右导数(左

高等数学教案--一元函数微分学的应用

高等数学教案—一元函数微分学的应用 课 时 授 课 计 划 第一课时 教学过程及授课内容 教学过程 一、柯西中值定理 定理1(柯西中值定理)如果函数)(x f 与 )(x F 满足下列条件:(1)闭区间 ],[b a 上连续; (2)在开区间),(b a 内可导; (3))('x F 在),(b a 内的每一点均不为零,那么,在),(b a 内至少有一点ξ,使得 二、洛必达法则 把两个无穷小量之比或两个无穷大量之比的极限称为00型或 ∞ ∞ 型不定式(也称为 0型或∞∞ 型未定型)的极限,洛必达法则就是以导数为工具求不定式的 极限方法. 定理2 (洛必达法则)若(1)0)(lim 0 =→x f x x ,0)(lim 0 =→x g x x ; (2))(x f 与)(x g 在0x 的某邻域内(点0x 可除外)可导,且0)('≠x g ; (3)A x g x f x x =''→) () (lim 0(A 为有限数,也可为∞+或∞-),则 A x g x f x g x f x x x x =''=→→) () (lim )()(lim 00 证 由于我们要讨论的是函数在点0x 的极限,而极限与函数在点0x 的值无关,所以我们可补充)(x f 与)(x g 在0x 的定义,而对问题的讨论不会发生任何影响。令0)()(00==x g x f ,则)(x f 与)(x g 在点0x 就连续了.在0x 附近任取一点x ,并应用柯西中值定理,得 .f(b)f(a)f ( )F(b)F(a)F () ξξ'-='-

) () ()()()()()()(00ξξg f x g x g x f x f x g x f ''=--= (ξ在x 与0x 之间) . 由于0x x →时,0x ξ→,所以,对上式取极限便得要证的结果,证毕. 注:上述定理对∞→x 时的0 未定型同样适用,对于0x x →或∞→x 时的未定型 ∞ ∞ ,也有相应的法则. 例1 求1 2 3lim 2331+--+-→x x x x x x . 解 123lim 2331+--+-→x x x x x x =12333lim 221---→x x x x =266lim 1-→x x x =46=2 3. 例2求x x x tan cos 1lim π+→. 解 x x x tan cos 1lim π+→=x x x 2πcos 1sin lim -→=0. 例3 求 x x x 1arctan 2 lim -+∞ →π 解 x x x 1arctan 2 lim -+∞ →π =221 11 lim x x x -+- +∞ →=22 1lim x x x ++∞→=1. 除未定型 00与∞ ∞ 之外,还有00,1,0,,0∞∞-∞∞?∞等未定型,这里不一一介绍,有兴趣的同学可参阅相应的书籍,下面就∞-∞未定型再举一例. 例5 求??? ? ?--→x x x x ln 11lim 1. 解 这是∞-∞未定型,通过“通分”将其化为 未定型. x x x x x x x x x x ln )1()1(ln lim ln 11lim 11---=??? ??--→→x x x x x x x 1ln 1 ln 1 lim 1-+ -+=→

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

数学考研:一元函数微分学的知识点和常考题型

数学考研:一元函数微分学的知识点和常考题型 【大纲内容】 导数和微分的概念 导数的几何意义和物理意义(数三经济意义) 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数(数三不要求)的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分、曲率的概念、曲率圆与曲率半径(数三不要求) 【大纲要求】 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义(数三经济意义),会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3.了解高阶导数的概念,会求简单函数的高阶导数。 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数(数三不要求)以及反函数的导数。

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理(数三了解),了解并会用柯西(Cauchy)中值定理。 6.掌握用洛必达法则求未定式极限的方法。 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。(数三不要求) 【常考题型】 1.导数概念; 2.求给定函数的导数或微分(包括高阶导数)隐函数和由参数方程确定的函数求导; 3.函数的单调性和极值; 4.曲线的凹凸性与拐点; 5.利用微分中值定理证明有关命题和不等式或讨论方程在给定区间内的根的个数; 6.利用洛必达法则求极限; 7.几何、物理、经济等方面的最大值、最小值应用题。解这类问题,主要是确定目标函数和约束条件,判定所讨论区间。

一元函数微分学综合练习题

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

一元函数积分学的应用

一元函数积分学的应用 一元函数积分学研究的是研究函数的整体性态,一元函数积分的本质是计算函数中分划的参数趋于零时的极限。 一元积分主要分为不定积分 ?dx x f )(和定积分? b a dx x f )(。化为函数 图像具体来说,不定积分是已知导数求原函数,也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C 的导数也是f(x)(C 是任意常数)。所以f(x)积分的结果有无数个,是不确定的。而定积分就是求函数f(X)在区间[a,b]中图线下包围的面积,可以说是不定积分在给定区间的具体数值化。因为积分在其它方面应用时一般都有明确的区间,所以本文主要研究定积分的各种应用。 积分的应用十分巧妙便捷,能解决许多不直观、不规则的或是变化类型的问题。故其主要应用在数学上的几何问题和物理上的各种变量问题和公式的证明以及解决一些实际生活问题。 微元法建立积分表达式 在应用微积分于实际问题时,首先要建立积分表达式,一般情况下,只要具备都是给定区间上的非均匀连续分布的量和都具有对区间的可加性这两个条件就都可以用定积分来描述(以下的讨论都是建立在这两个条件下,因此不再提示此条件)。 而建立积分表达式的方法我们一般用微元法。其分为两个步骤:(1)任意分割区间[]b a ,为若干子区间,任取一个子区间[]dx x x +,,求Q

在该区间上局部量的Q ?的近似值dx x f dQ )(=;(2)以dx x f )(为被积式,在],[b a 上作积分即得总量Q 的精确值 ??==b a b a dx x f dQ Q )(。(分割,近似,求和,取极限) 在实际应用中,通过在子区间],[dx x x +上以“匀”代“非匀”或者把子区间],[dx x x +近似看成一点,用乘法所求得的近似值就可以作为Q ?所需要的近似值,即为所寻求的积分微元dx x f dQ )(= 。 定积分在几何中的应用 在几何中,定积分主要应用于平面图形的面积、平面曲线的弧长、已知平行截面面积函数的立体体积、旋转体的侧面积。下面我们来分类讨论: 一、 平面图形的面积 求图形面积是定积分最基本的应用,因为定积分的几何意义就是在给定区间内函数曲线与x 轴所围成图形的面积。而求面积时会出现两种情况:直角坐标情形和极坐标情形。 1、直角坐标情形 在求简单曲边图形(能让函数图像与之重合)的面时只要建立合适的直角坐标系,再使用微元法建立积分表达式,运用微积分基本公式计算定积分,便可求出平面图形的面积。如设曲 y O

第九章多元函数微分法及其应用教案

第九章多元函数微分法及其应用 【教学目标与要求】 1、理解多元函数的概念和二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。 【教学重点】 1、二元函数的极限与连续性; 2、函数的偏导数和全微分; 3、方向导数与梯度的概念及其计算; 4、多元复合函数偏导数; 5、隐函数的偏导数;多元函数极值和条件极值的求法; 6、曲线的切线和法平面及曲面的切平面和法线; 【教学难点】 1、二元函数的极限与连续性的概念; 2、全微分形式的不变性; 3、复合函数偏导数的求法; 4、二元函数的二阶泰勒公式; 5、隐函数(包括由方程组确定的隐函数)的偏导数; 6、拉格郎日乘数法,多元函数的最大值和最小值。 【教学课时分配】 (18学时) 第1 次课§1第2 次课§2 第3 次课§3 第4 次课§4 第5次课§5 第6次课§6 第7次课§7 第8次课§8 第9次课习题课 【参考书】 [1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社. [2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

高数多元函数微分学教案 第一讲 多元函数的基本概念

第八章 多元函数微分法及其应用 第一讲 多元函数的基本概念 授课题目: §8.1多元函数的基本概念 教学目的与要求: 1、理解多元函数的概念. 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质. 教学重点与难点: 重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容: 一、平面点集 n 维空间 1、平面点集 平面上一切点的集合称为二维空间, 记为R 2 即 R 2=R ?R={(x , y ):x , y ∈R } 坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作 E ={(x , y ):(x , y )具有性质P }. 例如,平面上以原点为中心、r 为半径的圆内所有点的集合是 C ={(x , y ):x 2+y 2

如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U .. 点与点集之间的关系: 任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种: (1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点. (2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点. (3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点. E 的边界点的全体, 称为E 的边界, 记作?E . E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . (4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点. 由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E . 例如, 设平面点集E ={(x , y )|1

[考研类试卷]考研数学一(一元函数微分学)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(一元函数微分学)历年真题试卷汇编1 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 (1998年)函数f(x)=(x2一x一2)|x3一x|不可导点的个数是( ) (A)3 (B)2 (C)1 (D)0 2 (1999年)设其中g(x)是有界函数,则f(x)在x=0处( ) (A)极限不存在 (B)极限存在,但不连续 (C)连续,但不可导 (D)可导 3 (2001年)设f(0)=0,则f(x)在点x=0可导的充要条件为( ) 4 (2004年)设函数f(x)连续,且f′(0)>0,则存在δ>0使得( ) (A)f(x)在(0,δ)内单调增加

(B)f(x)在(一δ,0)内单调减少 (C)对任意的x∈(0,δ)有f(x)>f(0) (D)对任意的x∈(一δ,0)有f(x)>f(0) 5 (2005年)设函数则f(x)在(一∞,+∞)内( ) (A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点 (D)至少有三个不可导点 6 (2006年)设函数y=f(x)具有二阶导数,且f′(x)>0,f"(x)>0,△x为自变量x在X0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则( ) (A)0<dy<△y (B)0<△y<dy (C)△y<dy<0 (D)dy<△y<0 7 (2007年)设函数f(x)在x=0连续,则下列命题错误的是( )

8 (1998年)设f(x)连续,则 (A)xf(x2) (B)一xf(x2) (C)2xf(x2) (D)一2xf(x2) 9 (2008年)设函数则f′(x)的零点个数为( ) (A)0 (B)1 (C)2 (D)3 10 (2000年)设f(x),g(x)是恒大于零的可导函数,且f′(x)g(x)一f(x)g′(x)<0,则当a <x<b时,有( ) (A)f(x)g(b)>f(b)g(x) (B)f(x)g(a)>f(a)g(x) (C)f(x)g(x)>f(b)g(b) (D)f(x)g(x)>f(a)g(a)

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞∞或00型,) ()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107-135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量。 (D ) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A)0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件. (C)充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B ) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点. (C )可导的点,且0)0(='f . (D )可导的点,但0)0(≠'f . 答C 6.设函数f(x )定义在[a ,b]上,判断何者正确?( ) (A )f(x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C)f (x )连续,则f (x)可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x )定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A)0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f (x)定义在[a ,b ]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A)0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f =)(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

一元函数积分学在经济中的应用(1)

一元函数积分学在经济中的应用 一、导数在经济分析中的应用 (一)边际成本 总成本函数的导数称为边际成本。 边际成本是指在一定产量水平下,增加或减少一个单位产量所引起成本总额的变动数,用以判断增减产量在经济上是否合算。它是在管理会计和经营决策中常用的名词。当产量未达到一定限度时,边际成本随产量的扩大而递减,但当产量超越一定限度时,就转而递增。因此,当增加一个单位产量所增加的收入高于边际成本时,是合算的;反之,是不合算的。因此计算边际成本等于边际收入时,为企业获得其最大利润的产量。通过确定边际成本来提供经营决策所需资料的成本决策,称为边际成本计算。在实际工作中,边际成本计算常只按变动成本计算。 (二)边际收益 总收益函数的导数称为边际收益。 它表示销售一个单位产品后,再销售一个单位的产品所增加的收益。它可以是正值或负值。边际收益是厂商分析中的重要概念。利润最大化的一个必要条件是边际收益等于边际成本。在完全竞争条件下,任何厂商的产量变化都不会影响价格水平,需求弹性对个别厂商来说是无限的,总收益随销售量增加同比例增加,边际收益等于平均收益,等于价格。在非完全竞争)条件下,厂商的销售量同价格成反比。如果需求弹性大于1,即售量的增加的百分比,快于价格降低的百分比,总收益随销售量增加而增加,尽管不是同比例增加,平均收益下降,边际收益为零;如果需求弹性小于1,这时总收益随销售量增加而减少,平均收益更快下降,边际收益为负数。 (三)边际利润 总利润函数的导数称为边际利润。它表示:若已经生产了x个单位的产品,再生产多一个单位的产品总利润的增加量。 边际利润是反映增加产品的销售量能为企业增加的收益。销售单价扣除边际成本即为边际利润,边际利润是指增加单位产量所增加的利润。企业的经营收益减去会计成本,所得到的就是会计利润。按照我国的财会制度,有销售利润、利润总额及税后利润等概念。销售利润是销售收入扣除成本、费用和各种流转税及附加费后的余额;利润总额是企业在一定时期内实现盈亏的总额;税后利润是企业利润总额扣除应缴所得税后的利润。 一般情况下,总利润函数等于总收益函数与总成本函数之差,则边际利润是边际收益与边际成本之差。 二、函数在经济学中的应用。 需求函数。在经济管理中,需求函数是用来表示一种商品的需求数量和影响该需求数量的各种因素之间的相互关系的。也就是说,影响需求数量的各种因素是自变量,需求数量是因变量。需求函数是单调减少函数。 供给函数。供给函数表示一种商品的供给量和该商品的价格之间存在着一一对应的关系。 均衡价格。均衡价格是指一种商品的需求价格和供给价格相一致时的价格,也就是这种商品的市场需求曲线与市场供给曲线相交时的价格。

一元函数微积分基本练习题及答案

一、极限题 1、求.)(cos lim 2 1 0x x x → 2、6 sin )1(lim 2 2 x dt e x t x ?-→求极限。 3、、)(arctan sin arctan lim 20x x x x x -→ 4、2 1 0sin lim x x x x ?? ? ??→ 5、? ?+∞ →x t x t x dt e dt e 0 20 2 2 2)(lim 6、 ) 1ln(1 lim -→+x e x x 7、x x x e x cos 11 20 ) 1(lim -→+ 8、 x x x x x x ln 1lim 1+--→ 9、) 1ln()2(sin ) 1)((tan lim 2 30 2 x x e x x x +-→ 10、1 0lim( )3 x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞ →x x e x 12、 )cot 1(lim 2 20x x x -→ 13、[] )1(3sin 1 lim 11x e x x ---→ 14、() ?? ???=≠+=0 021)(3 x A x x x f x 在0=x 点连续,则A =___________ 二、导数题 1、.sin 2 y x x y ''=,求设 2、.),(0y x y y e e xy y x '==+-求确定了隐函数已知方程 3、.)5()(2 3 的单调区间与极值求函数-=x x x f 4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小, 这时底直径与高的比是多少?

高等数学讲义--一元函数微分学

第二章一元函数微分学 S.1导数与微分 (甲)内容要点 一、导数与微分概念 1、导数的定义 设函数y f(x)在点χo 的某领域内有定义,自变量 X 在X o 处有增量 X ,相应地函数 增量y f(x o X ) f (X O ) 。如果极限 存在,则称此极限值为函数 f (X )在X o 处的导数(也称微商),记作f (X o ),或y X 冷, dy ∣ X X 0 ,df(X) X X 0 等,并称函数y f(χ)在点X o 处可导。如果上面的极限不存在,则 dX dx 称函数y f (x)在点x 0处不可导。 导数定义的另一等价形式,令X X 0 X , X X X 0 ,则 f (X o ) Iim f(X) f (X O ) X xo X X o 我们也引进单侧导数概念。 右导数: f (x o ) Iim f (X) f (X O ) Iim f (X O X) f (X O ) X X D XX O X O X 左导数: f (X) f(X o ) 1 ? f (X o x) f(X o ) f (x o ) Iim Iim X X D XX O X o X 则有 f (X)在点X o 处可导 f (X)在点X o 处左、右导数皆存在且相等。 2. 导数的几何意义与物理意义 如果函数y f (X)在点X o 处导数f (X o )存在,则在几何上 f (X o )表示曲线y f (X) 在点(X o , f ( X O ) )处的切线的斜率 切线方程:y f (x o ) f (X O )(X x o ) Iim -y lim f(X o X ) f(X o ) X X

《高等数学》(上)一元函数微分学复习题

《高等数学》(上)“一元函数微分学”复习题 1.设x x f +=1)(ln ,求)(x f '. 2.设函数)(x f 二阶可导,且0)0(=f ,1)0(='f ,2)0(=''f ,求20)(lim x x x f x -→. 3.设)(x f 在2=x 处连续,且22)(lim 2=-→x x f x ,求)2(f '. 4.若)(sin x f y =,求dy . 5.若函数)(x f 可导,)(sin 2x f y =则 dx dy 为多少? 6.设函数)1ln()(2x x f -=,求)(x f ''. 7.求等边曲线x y 1=在点2) ,2 1(的切线方程. 8.设函数???≥+<=0 ),1ln(0,sin )(x x x x x f ,求)0(-'f 、)0(+'f ,并判断)0(f '是否存在. 9.确定常数a ,b 使函数? ??>-≤+=0,0,13sin )(x b ae x x x f x 在0=x 处可导. 10.求曲线???==t y t x sin 2cos 在3π=t 处的切线方程和法线方程. 11.求由方程0=-+e xy e y 所确定的隐函数的微分dy . 12.设函数x x x y ?? ? ??+=1,求其导数y '. 13.设曲线的参数方程为?????==-t t e y e x 23,求22dx y d . 14.求由方程12 2=-y x 所确立的隐函数)(x y y =的二阶导数22dx y d . 15.设函数)(x f y =由方程4ln 2y x xy =+确定,求() 1,1dx dy . 16.求椭圆442 2=+y x 在点()2,0处的二阶导数22dx y d . 17.设()3,1是曲线2 3bx ax y +=的拐点,求b a ,.

[考研类试卷]考研数学二(一元函数积分概念、计算及应用)模拟试卷6.doc

[考研类试卷]考研数学二(一元函数积分概念、计算及应用)模拟试卷 6 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 函数F(x)=∫x x+2πf(t)dt,其中f(t)=(1+sin2t)cos2t,则F(x) (A)为正数. (B)为负数. (C)恒为零. (D)不是常数. 2 设常数α>0,,则 (A)I1>I2. (B)I1<I2. (C)I1=I2. (D)I1与I2的大小与α的取值有关. 二、填空题 3 若f(x)的导函数是sinx,则f(x)的原函数是________. 4 =________. 5 =________.

6 设y=f(x)满足△y=△x+o(△x),且f(0)=0,则∫01f(x)dx=________. 7 =________. 三、解答题 解答应写出文字说明、证明过程或演算步骤。 8 n为自然数,证明: 9 求下列不定积分: 10 求I n=sin n xdx和J n=cos n xdx,n=0,1,2,3,…. 11 求下列定积分:(Ⅰ) I=(Ⅱ) J=sin2xarctane x dx. 12 已知抛物线y=ax2+bx+c经过点P(1,2),且在该点与圆 相切,有相同的曲率半径和凹凸性,求常数a,b,c. 13 在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为a 处有一质量为m的质点P,求证:质点与杆间的引力为F=(M为杆的质量).

14 计算下列不定积分: 15 假定所涉及的反常积分(广义积分)收敛,证明:∫-∞+∞f(x-)dx=∫-∞+∞f(x)dx. (*) 16 设f(x)=∫0x dt,求f'(x). 17 求曲线r=的全长. 18 求由曲线F:x=a(t-sint),y=a(1-cost)(0≤t≤2π)及y=0所围图形绕Ox轴旋转所成立体的体积. 19 求由曲线x2=ay与y2=ax(a>0)所围平面图形的质心(形心)(如图 3.34). 20 设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0x f(t)dt,求证:(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),凡为自然 数,则当nT≤x<(n+1)T时,有n∫0T f(x)dx≤∫0x f(t)dt<(n+1)∫0T f(x)dx. 21 求

相关主题