搜档网
当前位置:搜档网 › 矩阵相关性质

矩阵相关性质

矩阵相关性质
矩阵相关性质

等价:存在可逆矩阵Q P ,,使B PAQ =,则A 与B 等价;

相似:存在可逆矩阵P ,使B AP P =-1,则A 与B 相似;

合同:存在可逆矩阵C ,使B AC C T =,则A 与B 合同.

一、相似矩阵的定义及性质

定义1 设B A ,都是n 阶矩阵,若有可逆矩阵P ,使B AP P =-1

,则称B 是A 的相似矩阵,

或说矩阵A 与B 相似,记为B A ~.对A 进行运算AP P 1-称为对A 进行相似变换,可逆矩阵P 称为把A 变成B 的相似变换矩阵.

注 矩阵相似是一种等价关系.

(1)反身性:A A ~.

(2)对称性:若B A ~,则A B ~.

(3)传递性:若B A ~,C B ~,则C A ~.

性质1 若B A ~,则

(1)T T B A ~;

(2)11~--B A ;

(3)E B E A λλ-=-;

(4)B A =;

(5))()(B R A R =.

推论 若n 阶矩阵A 与对角矩阵??????? ?

?=Λn λλλ 21相似,则n λλλ,,,21 是A 的n 个特征值.

性质2 若1-=PBP A ,则A 的多项式1)()(-=P B P A φφ.

推论 若A 与对角矩阵Λ相似,则

1211)()()()()(--??????

? ??=Λ=P P P P A n λφλφλφφφ . 注 (1)与单位矩阵相似的只有它本身;

(2)有相同特征多项式的矩阵不一定相似.

二、矩阵可对角化的条件

对n 阶方阵A ,如果可以找到可逆矩阵P ,使Λ=-AP P 1为对角阵,就称为把方阵A 对角化。

定理1 n 阶矩阵A 可对角化(与对角阵相似)A ?有n 个线性无关的特征向量。

推论 如果n 阶矩阵A 的n 个特征值互不相等,则A 与对角阵相似.(逆命题不成立) 注:(1)若A ~Λ,则Λ的主对角元素即为A 的特征值,如果不计i λ的排列顺序,则Λ唯

一,称之为矩阵A 的相似标准形。

(2)可逆矩阵P 由A 的n 个线性无关的向量构成。

把一个矩阵化为对角阵,不仅可以使矩阵运算简化,而且在理论和应用上都有意义。 可对角化的矩阵主要有以下几种应用:

三、实对称矩阵的相似矩阵

实对称矩阵是一类特殊的矩阵,它们一定可以对角化.即存在可逆矩阵P ,使得Λ=-AP P 1.更可找到正交可逆矩阵T ,使和Λ=-AT T 1

定理2 实对称矩阵的特征值为实数。

定理2的意义:因为对称矩阵A 的特征值1λ为实数,所以齐次线性方程组0)(=-x E A i λ是实系数方程组。又因为0=-E A i λ,可知该齐次线性方程组一定有实的基础解系,从而对应的特征向量可以取实向量。

定理3:实对称矩阵A 的对应于不同特征值的特征向量正交。

定理4:A 为n 阶实对称矩阵,0λ是A 的k 重特征值,则对应于0λ的特征向量中,线性无关的个数为k ,即0)(0=-X E A λ的基础解系所含向量个数为k 。

定理5:(实对称矩阵必可对角化)

对于任一n 阶实对称矩阵A ,一定存在n 阶正交矩阵T ,使得Λ=-AT T

1。其中Λ是以A

的n 个特征值为对角元素的对角阵。

定义2 若二次型Ax x f T =,则对称矩阵A 叫做二次型f 的矩阵,也把f 叫做对称矩阵A 的二次型.对称矩阵A 的秩就叫做二次型f 的秩.

推理 对称矩阵A 为正定的充分必要条件是:A 的特征值全为正.

定理3 对称矩阵A 正定的充分必要条件是:A 的各阶主子式都为正,即

011>a ,022211211

>a a a a ,0,1111>nn

n n a a a a ; 对称矩阵A 为负定的充分必要条件是:奇数阶主子式为负,而偶数阶主子式为正

1.设A 为正定阵,则*1,,A A A T -均为正定矩阵;

2.设B A ,均为正定矩阵,则B A +也是正定矩阵.

四、如果n 阶矩阵A 与B 相似,那么A 与B 的特征值相同吗?

答 一定相同。因为它们有相同的特征多项式。

证明 A 与B 相似,即存在可逆矩阵P ,使B AP P =-1

, E A E A P P E A P P E P AP P E B λλλλλ-=-=-=-=-∴----1111)()( 但务必注意:

1. 即使A 与B 的特征值都相同,A 与B 也未必相同。

2. 虽然相似矩阵有相同的特征值,但特征向量不一定相同。

五、判断矩阵A 是否可对角化的基本方法有哪些?

答 常有如下四种方法。

(1)判断A 是不是实对称矩阵,若是一定可对角化。

(2)求A 的特征值,若n 个特征值互异,则A 一定可对角化。

(3)求A 的特征向量,若有n 个线性无关的特征向量,则A 可对角化,否则不可对角化。

(4)方阵A 可对角化的充要条件是A 的每个重特征值对应的线性无关的特征向量的个数等于该特征值的重数。

一般来说,常用方法(2)和(4),且(2)中的条件仅仅是充分的。

六、已知n 阶方阵A 可对角化,如何求可逆矩阵P ,使得?),,,(diag 211n AP P λλλ =- 答 若n 阶方阵A 可对角化时,则求可逆矩阵P 的具体步骤为:

(1)求出A 的全部特征值s λλλ,,,21 ;

(2)对每个)1(s i i ≤≤λ,求齐次方程组0)(=-x E A i λ的基础解系,得n 个线性无关的特征向量n ααα ,,21;

(3)令),,,(21n P ααα =,则),,,(211n diag AP P λλλ =Λ=-,其中

n λλλ,,,21 为n ααα,,,21 对应的特征值。

七、对于实对称矩阵A ,如何求正交矩阵P ,使AP P 1

-为对角阵?

答 若A 为n 阶实对称矩阵,则一定存在正交阵P ,使AP P 1-为对角阵。可按以下步骤求出正交矩阵P 。

(1)求出方阵A 的全部特征值s λλλ,,,21 ,其中重根数分别为s k k k ,,,21 。

(2)对每一个i λ求出齐次线性方程组0)(=-x E A i λ的基础解系s i ik i i ,,2,1,,,,21 =ααα。

(3)将s i ik i i ,,2,1,,,,21 =ααα正交化(若1=i k ,则只须单位化)得正交单位特征向量组:n p p p ,,21。

令),,,(21n p p p P =

(4)??????

? ??=-n AP P λλλ 211 ,其中λ是特征向量i p 所对应的特征值。 九、如何判断一个二次型Ax x f T =是正定的?

答 判别二次型Ax x f T =正定性的方法通常有

(1)用定义,

(2)f 的标准形中的n 个系数全为正,

(3)对称矩阵A 的特征值全大于0,

(4)正惯性指数n p =,

(5)计算矩阵A 的各阶顺序主子式,各阶顺序主子式均大于0。

十三、什么叫矩阵的合同?矩阵合同与矩阵相似有什么区别与联系?

答 如果存在可逆矩阵P ,使,则称矩阵A 与B 合同。

合同关系是一种等价关系,矩阵合同在证明矩阵正定性和化二次型为标准型中有很广泛的应用,在此给出一个非常有用的结论:

如果矩阵A 与矩阵E 合同,则A 为正定矩阵。

合同与矩阵相似是有区别的,矩阵A 与B 相似,则存在可逆矩阵P ,使B AP P =-1。显然,若P 为正交矩阵,则1-=P P T ,矩阵合同与矩阵相似就有联系了,由此我们可得出: 如果A 为n 阶实对称矩阵,则存在正交矩阵P ,使Λ=-AP P 1,此时A 与Λ相似,A 与Λ合同。

矩阵合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12m P Q Q Q = 。 此时711T T T m n P Q Q Q -= 边为一系列初等矩阵的乘积 若111T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以 A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- 1||||||P I A P λ-=- ||I A λ=- 注①合同不一定有相同特征多项式 定理4:如果A 与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12,n λλλ ,因为A 与B 实对称矩阵,所以则在n 阶正 矩阵,,Q P 使得 112[]Q AQ λλ-= 11[]n P BP λλ-= 从而有11Q AQ P BP --=

矩阵的合同变换

矩阵的合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B : 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得 T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对 称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即1 2 m P Q Q Q =L 。 此时7 11 T T T m n P Q Q Q -=L 边为一系列初等矩阵的乘积 若111T T T T m n m B P AP Q Q Q AQ Q -==L L 则B 由A 经过一系 列初等变换得到。所以A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵

从而11 1 ()PQ QP ---= 又由于1 111()()()QP QP T QP P TQT ----= 1()T T QP P TQ -= T QQ = 1 QQ -= E = 1 QP -∴为正交矩阵 所以A B :且A B ? 定时5:两合同矩阵,若即PTAP B =,若A 为对称矩阵,则B 为对称阵,而两相似矩阵则不一定有些性质 证明:A B ?即T P AP B =,若对称阵,则T A A = ()T T T B P AP = T T P A P = T P AP = B = 所以B 边为对称阵 [注]:相似矩阵对此结论不具有一般性,它在什么情况下成立呢? 引理6:对称矩阵相似于对角阵?A 的每一个特征根λ有秩||I A n s λ-=-,S 为λ的重数.

矩阵的合同-等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=L ,12(,,,)m B βββ=L 1、若向量组(12,,,m βββL )是向量组(12,,,n λλλL )的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλL )?(12,,,m βββL )则有矩阵A,B 同型且()()~,,r A r B A B A B A B =??;r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>?L L 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

M矩阵的性质、定理及证明

M 矩阵的性质、定理及证明 一、M 矩阵的概念 定义1 设n n ij a A ?=)(,且0≤ij a ,j i ≠,01≥-A ,称A 为M 矩阵。 定义2 设n n ij a A ?=)(,且0≥ij a ,若1-A 为M 矩阵,则称A 为逆M 矩阵。 引理1 如果n n ij a A ?=)(,且0≤ij a ,j i ≠,A 为M 矩阵的充要条件是A 可做三角分解,R L A ?=,其中L 为下三角阵,R 为上三角阵,L 和R 的主对角元都是正值。 二、M 矩阵的判定定理与证明 定理1 若n n ij a A ?=)(为M 矩阵,则R L A ?=,其中下三角阵L 和上三角阵R 的主对角线元素为正,且其余元素为非正值。 证明 若A 为M 阵,则当j i ≠,0≤ij a ;j i =,0>ij a 。由引理1,A 可做三角分解R L A ?=。设 ????????????=nn n n l l l l l l L 21222111000 , ? ???? ? ??????=nn n n r r r r r r R 00 022211211 则?????? ??????+++++=nn nn n n n n n n n r l r l r l r l r l l r l r l r l r l r l r l r l A 1122 21211112212122221221112111112111111, 故0,,1111211≤n r l r l 。 因011>l ,故0,,112≤n r r ;因,0,0,,111111121>≤r r l r l n 故0,,121≤n r r ;因 022321231≤+r l r l ,故02221≤r l ,从而021≤l ;因023221321≤+r l r l ,故023≤r 。类

线性代数中的合同关系、正定矩阵

什么是线性代数中的合同?惯性定律? “合同”是矩阵之间的一种关系。两个n阶方阵A与B叫做合同的,是说存在一个满秩n阶方阵P,使得P′AP=B.“合同”这种关系,是一种“等价关系”。按照 它可以对n阶方阵的全体进行分类。对于n阶实对称矩阵而言,线性代数中有两个结果。 ①每个n阶实对称矩阵,都一定与实对角矩阵合同,并且此时P也是实的。 ②对于一个n阶实对称矩阵A,与它合同的实对角矩阵当然不只一个,(相应的P也变化)。但是这些实对角矩阵的对角元中,正数的个数是一定的(叫A的正惯性指数),负数的个数也是一定的(叫A的负惯性指数)。 结果②就是“惯性定理”。 一个矩阵是正定矩阵的充要条件是:矩阵的主对角线元素全大于0.这个命题是否正确? 不对,反例: 1 2 2 1 只有主对角矩阵才能说对角元素全大与0就正定 设M是n阶实系数对称矩阵,如果对任何非零向量 X=(x_1,...x_n) 都有XMX′>0,就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型,即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵. 正定矩阵的一些判别方法 由正定矩阵的概念可知,判别正定矩阵有如下方法: 1.n阶对称矩阵A正定的充分必要条件是A的n 个特征值全是正数。

证明:若,则有 ∴λ>0 反之,必存在U使 即:A正定 由上面的判别正定性的方法,不难得到A为半正定矩阵的充要条件是:A的特征值全部非负。 特征值都在主对角线上运算你知道的吧。

矩阵的合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A,B都是数域F上的n 阶矩阵,如果存在数域F 上的一个n阶可逆矩阵P,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12 m P Q Q Q =。 此时71 1T T T m n P Q Q Q -=边为一系列初等矩阵的乘积 若111 T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以A B ?, 从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- ??? 1||||||P I A P λ-=- ? ||I A λ=- 注①合同不一定有相同特征多项式 定理4:如果A与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12 ,n λλλ,因为A 与B 实对称矩阵,所以则在n 阶正 矩阵, ,Q P 使得 11 2[]Q AQ λλ-= 11[]n P BP λλ-= 从而有11Q AQ P BP --=

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

相似矩阵的性质及应用

华北水利水电大学相似矩阵的性质及应用 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2013年11月6 日

摘要:若矩阵P可逆,则矩阵P-1AP与A称为相似。矩阵相似的概念是为深入研究矩阵特性而提出的,其中一部分的问题可以转化为与一个对角化矩阵相似问题 进而使问题研究简化,而另一些矩阵不能与一个对角矩阵相似,那么这类问题就只能用定义或者若而当标准型来解决。相似矩阵有很多应用。例如:利用相似矩阵的性质来确定矩阵中未知元素方法的完整性;两个相似矩阵属于同一个特征值的特征向量之间的关系;矩阵相似与特征多项式的等价条件及相关结果;尤其是矩阵的标准形及其对角化问题,在高等代数和其他学科中都有极其广泛的应用。本文将讨论相似矩阵的有关性质及其应用。 关键词:相似矩阵;对角化;Jordan标准型;特征向量;特征值 英文题目:The properties and application of similar matrix Abstract:There are a lot of applications about similar matrix. Matrix for further research is the concept of similarity matrix characteristics, and that part of the problem can be converted into similar problems with a diagonalization matrix to simplify the problem study, while others matrix cannot be similar to a diagonal

矩阵相似的性质

1 矩阵的相似 1.1 定义 1.2性质 1.3定理(证明) 1.4 相似矩阵与若尔当标准形 2 相似的条件 3 相似矩阵的应用(相似矩阵与特征矩阵 相似矩阵与矩阵的对角化 相似矩阵在微分方程中的应用 【1 】) 矩阵的相似及其应用 1.1 矩阵的相似 定义 1.1:设,A B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得1B X AX -=,就说A 相似于B 记作A B ∽ 1.2 相似的性质 (1)反身性A A ∽:;这是因为1A E AE -=. (2)对称性:如果A B ∽,那么B A ∽;如果A B ∽,那么有X ,使1B X AX -=,令1Y X -=,就有11A XBX Y BY --==,所以B A ∽。 (3)传递性:如果A B ∽,B C ∽,那么A C ∽。已知有,X Y 使1B X AX -=, C 1Y BY -=。令Z XY =,就有111C Y X AXY Z AZ ---==,因此,A C ∽。 1.3 相似矩阵的性质 若,n n A B C ?∈,A B ∽,则: (1)()()r A r B =; 引理:A 是一个s n ?矩阵,如果P 是一个s s ?可逆矩阵,Q 是n n ?可逆矩阵, 那么秩(A )=秩(PA )=秩(AQ ) 证明:设,A B 相似,即存在数域P 上的可逆矩阵C ,使得1B C AC -=,由引理2可知,秩 (B )=秩(1 B C AC -=)=秩(AC )=秩(A ) (2)设A 相似于B ,()f x 是任意多项式,则()f A 相似于()f B ,即 11()()P AP B P f A P f B --=?= 证明:设1110()n n n n f x a x a x a x a --=+++ 于是,1 110()n n n n f A a A a A a A a E --=+++ 1 110()n n n n f B a B a B a B a E --=++ + 由于A 相似于B ,则k A 相似与k B ,(k 为任意正整数),即存在可逆矩阵X ,使得

矩阵性质

关于实正交矩阵的某些性质 华东师范大学数学系04级基地班高等代数与解析几何04学年第二学期大作业 10041510134裘鹏翔 正交矩阵是实数域上一类十分特殊的矩阵,具有很多特殊的性质,经过一个学期来学习,也积累收集了不少正交矩阵的性质,罗列如下: 定义:满足的方阵称为正交矩阵(orthogonal matrix)。 n阶正交矩阵的集合记为。 本文摘要: 1正交矩阵与运算的关系 1.1和:正交矩阵的和不一定是正交矩阵; 1.2差:正交矩阵的差也不一定是正交矩阵; 1.3乘积:正交矩阵的乘积是正交矩阵; 1.4数乘:正交矩阵数乘后一般不是正交矩阵; 1.5直积:正交矩阵的直积还是正交矩阵; 1.6圈积:正交矩阵的圈积还是正交矩阵; 1.7转置:正交矩阵的转置还是正交矩阵; 1.8逆:正交矩阵的逆还是正交矩阵; 1.9伴随:矩阵的伴随矩阵是正交矩阵的充分必要条件是这个矩阵是正交矩阵;2正交矩阵的特征 2.1迹:迹小于阶数; 2.2特征值:实数域上,复数域上模为1; 2.3不定性:正交矩阵是不定矩阵; 2.4对角化:正交矩阵在对角化中的作用; 3正交矩阵与特殊矩阵的关系 3.1与数量矩阵:只有的数量矩阵和正交矩阵的乘积还是正交矩阵; 3.2与整系数矩阵:如果n阶正交矩阵是整系数矩阵(即),则它共有! 种; 3.3与实可逆矩阵:分解为正交矩阵和三角矩阵; 与上(下)三角矩阵:每个实可逆矩阵的分解等等; 3.4与对角矩阵:特征值全是实数的对角化等等; 3.5与对称矩阵:特征值全是实数的正交矩阵是对称的等等; 3.6与反对称矩阵:可对角化情况下的典范型; 4正交矩阵的特殊构造 4.1整系数与非整系数实(反)对称正交矩阵; 5附录 :正规矩阵正交准对角化概述(纯矩阵的证明方法) 5.1定理1;上三角标准定理;

合同与相似概念区别

代数中“合同”与“相似”概念的区别辨析 在《高等代数》中队与多个矩阵有“合同”与“相似”的概念,关于这两组概念在定义上有很多相似的地方(合同——'B C A C =,相似——-1B C AC =),并且在《高等代数》在讲到“(欧式空间下)实对称矩阵的标准形”时有如下的定理: 因此在这里给我们一种印象,即矩阵间的合同与相似在某种条件下画了=“”,这究竟是怎么回事,为此我们应该去深入的探求矩阵“合同”与“相似”之间的联系。这个过称是循序渐进的,在学习“双线性函数”后,又对这个问题有了更深刻的理解,并且大胆的估计,“合同”与“相似”在概念上的区别会是代数问题上的一类大问题,现在对这个问题的思考结果归纳如下 让我们先从线性变换这一概念出发,我们知道在对线性空间上的线性变换的有关性质直接的进行研究是不好做的,为此我们引进了“线性变换的矩阵”这一概念,即在一个线性变换,n 维空间的一组基,一个n 阶矩阵之间建立起了一对一的关系,关系如图 而我们知道同一个线性变换在不同的一组基下,它所对应的矩阵是不同的,而这些矩阵之间的关系我们把它定义为“相似”,并且我们可以知道这些相似矩阵之间有这样的关系1B X AX -=,X 为这两组基之间的过渡矩阵,回顾“相似”概念,我们可以看出,“相似”的提出时基于“线性变换”。“相似”是同一个线性变换在不同基下的矩阵之间的关系,我们在提炼一下,“相似”的出现是同一个线性变换在不同背景之下的不同的表现形式之间的关系,这对后面区别“合同”与“相似”有很重要的意义 下面我们再来看看“合同”概念。《高等代数》在二次型的章节中对二次型化标准形的过程中首次提出了“合同“的概念。对一个二次型进行非退化的线性替换,这样的二次型的不同矩阵之间的关系定义为“合同”,即'B C A C =。而回顾“合同”的概念,我们可以发现,“合同”的概念是基于二次型的化简中产生的概念,而当我们学习了双线性函数的内容后就会发现“合同”的概念是基于双线性函数提出的,因此在这里我们有必要提出双线性函数的有关内容: 双线性函数类比欧式空间中的线性变换是线性空间上的一种映射,所谓的“双线性”是指在固定一个自变量的情况下,另一个自变量满足“线性”的关系。为了研究着这种特殊的映射在空间下的性质,我们有引进了双线性函数的“度量矩阵”,并以此矩阵来研究双线性函数的有关性质。于是双线性函数与空间的一组基、一个n 阶矩阵也建立起了一种一一对应的关系,如图 1'n A n T T AT T AT -=对于任意一个级实对称矩阵,都存在一个级正交矩阵,使得 → 对空间元素的作用直接体现在基上变换的运算可反映在矩阵的运算上线性变换空间的一组基一个矩阵线性变换→ 对空间元素的作用直接体现在基上变换的运算可反映在矩阵的运算上双线性函数空间的一组基一个矩阵双线性函数

幂等矩阵的性质及其应用

幂等矩阵的性质及其应用 0 引言 幂等矩阵是一类性质特殊的矩阵,不仅在高等代数中有着重要的应用,在其它课程中,如计量经济学、统计学课程中也有着重要应用。在代数学中,线性变换的许多问题都可以转化为幂等矩阵来解决。但是在通常的高等代数的教材中关于幂等矩阵的讨论是比较少的。因此本文对幂等矩阵的性质做出相关讨论。本文主要给出幂等矩阵特征值、特征子空间和Jordan标准型的基本性质,同时给出了一些相关的应用。 1 主要结果 首先给出幂等矩阵的定义和基本性质。 定义1:若n阶方阵A满足A2=A,则称A为幂等矩阵。 下面给出关于幂等矩阵的一些简单的性质。 定理1:幂等矩阵A的特征值只能是0或者1。 证明:设A为任意一个幂等矩阵。 由A2=A,可得 λ2=λ 其中λ为A的特征值。于是有 λ=1或0, 命题得证。 推论:可逆的幂等矩阵的特征值均为1。 证明:设A为一可逆的幂等矩阵。由A2=A可得 A2A-1=AA-1 即 A=E。 此时有 λE-E=0 即 λ=1 其中,λ为A的特征值。命题得证。 定理2:任意的幂等矩阵A都相似于对角阵,即存在可逆阵P,使得: P-1AP=E■ 00 0, 其中r=R(A)。 证明:A为任意幂等矩阵,J为其Jordan标准型,即存在可逆矩阵P,使得P-1AP=J=■, 其中Ji=■。 由此可得J 2=J。于是有,Ji 2=Ji。 此时,Ji只能为数量矩阵λ■E。 又因为A2=A,所以λ■=0或1,且r=R(A)。命题得证。 定理3:幂等矩阵的特征值为1的特征子空间为其值域,特征值为0的特征子空间为其零(核)空间。 证明:(i)A为一n阶幂等矩阵。?琢为其特征值1对应的特征向量。 则有,A?琢=?琢。由此可得?琢属于A的值域。

矩阵的合同,等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=,12(,,,)m B βββ= 1、若向量组(12,,,m βββ)是向量组(12,,,n λλλ)的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλ)?(12,,,m βββ)则有矩阵A,B 同 型且()()~,,r A r B A B A B A B =??r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>? 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

矩阵基本性质

矩阵的第?第列的元素为。我们?或()表?的单位矩阵。1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…, (2)矩阵乘法满足的运算法则 a.

b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2) (3), 8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4)

9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵 (2) 12.矩阵的逆(逆矩阵是唯一的) (1)A的逆矩阵记作,; (2)(为非奇矩阵)时, (3)且,则 (4)由,得 (5)

什么是合同矩阵

什么是合同矩阵 在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵 C,使得C^TAC=B,则称方阵A合同于矩阵B. 一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。 相似矩阵与合同矩阵的秩都相同。 定义 合同矩阵:设A,B是两个n阶方阵,若存在可逆矩阵C,使得 则称方阵A与B合同,记作A?B。 在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。 性质 合同关系是一个等价关系,也就是说满足: 1、反身性:任意矩阵都与其自身合同; 2、对称性:A合同于B,则可以推出B合同于A; 3、传递性:A合同于B,B合同于C,则可以推出A合同于C; 4、合同矩阵的秩相同。 矩阵合同的主要判别法: 设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同.

设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。 正定二次型 主条目:正定二次型 半正定二次型:其对应的对称矩阵在实数域内可以合同到一个对角线元素只由0和1构成的对角矩阵。 一个二次型是半正定二次型,当且仅当它的正惯性指数等于它对应矩阵的秩。 正定二次型:其对应的对称矩阵在实数域内合同于单位阵。 一个n元二次型是正定二次型,当且仅当它的正惯性指数是n。正定二次型对应矩阵一定是可逆矩阵,且行列式大于0。 同样的可以定义半负定、负定和不定的二次型。 合同矩阵发展史 1855 年,埃米特(C.Hermite,1822-1901) 证明了其他数学家发现的一些矩阵类的特征根的特殊性质,如称为埃米特矩阵的特征根性质等。后来,克莱伯施 (A.Clebsch,1831-1872) 、布克海姆(A.Buchheim) 等证明了对称矩阵的特征根性质。泰伯(H.Taber) 引入矩阵的迹的概念并得出了一些有关的结论。 在矩阵论的发展史上,弗罗伯纽斯(G.Frobenius,1849-1917) 的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。 1854 年,约当研究了矩阵化为标准型的问题。1892 年,梅茨勒(H.Metzler) 引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。

矩阵相关性质

等价:存在可逆矩阵Q P ,,使B PAQ =,则A 与B 等价; 相似:存在可逆矩阵P ,使B AP P =-1,则A 与B 相似; 合同:存在可逆矩阵C ,使B AC C T =,则A 与B 合同. 一、相似矩阵的定义及性质 定义1 设B A ,都是n 阶矩阵,若有可逆矩阵P ,使B AP P =-1 ,则称B 是A 的相似矩阵, 或说矩阵A 与B 相似,记为B A ~.对A 进行运算AP P 1-称为对A 进行相似变换,可逆矩阵P 称为把A 变成B 的相似变换矩阵. 注 矩阵相似是一种等价关系. (1)反身性:A A ~. (2)对称性:若B A ~,则A B ~. (3)传递性:若B A ~,C B ~,则C A ~. 性质1 若B A ~,则 (1)T T B A ~; (2)11~--B A ; (3)E B E A λλ-=-; (4)B A =; (5))()(B R A R =. 推论 若n 阶矩阵A 与对角矩阵??????? ? ?=Λn λλλ 21相似,则n λλλ,,,21 是A 的n 个特征值. 性质2 若1-=PBP A ,则A 的多项式1)()(-=P B P A φφ. 推论 若A 与对角矩阵Λ相似,则 1211)()()()()(--?????? ? ??=Λ=P P P P A n λφλφλφφφ . 注 (1)与单位矩阵相似的只有它本身;

(2)有相同特征多项式的矩阵不一定相似. 二、矩阵可对角化的条件 对n 阶方阵A ,如果可以找到可逆矩阵P ,使Λ=-AP P 1为对角阵,就称为把方阵A 对角化。 定理1 n 阶矩阵A 可对角化(与对角阵相似)A ?有n 个线性无关的特征向量。 推论 如果n 阶矩阵A 的n 个特征值互不相等,则A 与对角阵相似.(逆命题不成立) 注:(1)若A ~Λ,则Λ的主对角元素即为A 的特征值,如果不计i λ的排列顺序,则Λ唯 一,称之为矩阵A 的相似标准形。 (2)可逆矩阵P 由A 的n 个线性无关的向量构成。 把一个矩阵化为对角阵,不仅可以使矩阵运算简化,而且在理论和应用上都有意义。 可对角化的矩阵主要有以下几种应用: 三、实对称矩阵的相似矩阵 实对称矩阵是一类特殊的矩阵,它们一定可以对角化.即存在可逆矩阵P ,使得Λ=-AP P 1.更可找到正交可逆矩阵T ,使和Λ=-AT T 1 定理2 实对称矩阵的特征值为实数。 定理2的意义:因为对称矩阵A 的特征值1λ为实数,所以齐次线性方程组0)(=-x E A i λ是实系数方程组。又因为0=-E A i λ,可知该齐次线性方程组一定有实的基础解系,从而对应的特征向量可以取实向量。 定理3:实对称矩阵A 的对应于不同特征值的特征向量正交。 定理4:A 为n 阶实对称矩阵,0λ是A 的k 重特征值,则对应于0λ的特征向量中,线性无关的个数为k ,即0)(0=-X E A λ的基础解系所含向量个数为k 。 定理5:(实对称矩阵必可对角化) 对于任一n 阶实对称矩阵A ,一定存在n 阶正交矩阵T ,使得Λ=-AT T 1。其中Λ是以A 的n 个特征值为对角元素的对角阵。 定义2 若二次型Ax x f T =,则对称矩阵A 叫做二次型f 的矩阵,也把f 叫做对称矩阵A 的二次型.对称矩阵A 的秩就叫做二次型f 的秩. 推理 对称矩阵A 为正定的充分必要条件是:A 的特征值全为正. 定理3 对称矩阵A 正定的充分必要条件是:A 的各阶主子式都为正,即

对称矩阵的性质

对称矩阵的性质 Final revision by standardization team on December 10, 2020.

对称矩阵的基本性质 在学习中我们发现,对称矩阵中的特殊类型如:对角阵,实对称矩阵以及反对称矩阵经常出现,以下首先介绍一些基本概念. 1 对称矩阵的定义 定义1 设矩阵()ij s n A a ?=,记()T ji n s A a ?=为矩阵的转置.若矩阵A 满足条件T A A =,则称A 为对称矩阵.由定义知: 1. 对称矩阵一定是方阵. 2. 位于主对角线对称位置上的元素必对应相等.即ij ji a a =,对任意i 、j 都成立.对称 矩阵一定形如1112112 22212n n n n nn a a a a a a a a a ?? ? ? ? ??? . 定义2 形式为12000000l a a a ?? ? ? ? ???的矩阵,其中i a 是数(1,2,,)i l =,通常称为对角矩阵. 定义3 若对称矩阵A 的每一个元素都是实数,则称A 为实对称矩阵. 定义4 若矩阵A 满足T A A =-,则称A 为反对称矩阵.由定义知: 1. 反对称矩阵一定是方阵.

2. 反对称矩阵的元素满足ij ji a a =-,当i j =时,ii ii a a =-,对角线上的元素都为零. 反对称矩阵一定形如12112212000n n n n a a a a a a ?? ?- ? ? ?--?? . 下面就对称矩阵的一些基本性质展开讨论. 2 对称矩阵的基本性质 性质1 同阶对称矩阵的和、差、数乘还是对称矩阵. 性质2 设A 为n 阶方阵,则T A A +,T AA ,T A A 是对称矩阵. 性质3 设A 为n 阶对称矩阵(反对称矩阵),若A 可逆,则1A -是对称矩阵(反对陈矩阵). 性质4 任一n n ?矩阵都可表为一对称矩阵与一反对称矩阵之和. 性质5 设A 为对称矩阵,X 与A 是同阶矩阵,则T X AX 是对称矩阵. 性质6 设A 、B 都是n 阶对称矩阵,证明:AB 也对称当且仅当A 、B 可交换.

矩阵的合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12 m P Q Q Q =。 此时71 1T T T m n P Q Q Q -=边为一系列初等矩阵的乘积 若111T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以 A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- 1||||||P I A P λ-=- ||I A λ=- 注①合同不一定有相同特征多项式

6.1二次型及其矩阵表示、合同矩阵(全)

第六章二次型 §1 二次型及其矩阵表示、合同矩阵§2 化二次型为标准形 §3 二次型与对称矩阵的正定性

§1 二次型及其矩阵表示、合同矩阵

定义6.1.1:含有n 个变量x 1, x 2, … , x n 的二次齐次多项式 () n x x x f ,,,21 n n x x a x x a x x a x x a x a 1141143113211221 112222+++++= n n x x a x x a x x a x a 224224322322 22222+++++ 2n nn x a +当系数属于数域F 时,称为数域F 上的一个n 元二次型。本章讨论实数域上的n 元二次型,简称二次型。 n n x x a x x a x a 33433423 3322++++

22212111222 121213131,12111 12121122121222 2221122,1 222(,,,)n nn n n n n n n n n n n n n n nn n n ij i j i j f x x x a x a x a x a x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a x a x x --==++ +++++=++++++++ ++++= ∑i j j i ij i j i j i j j i i j

22212111222 121213131,12111 12121122121222 2221122,1 222(,,,)n nn n n n n n n n n n n n n n nn n n ij i j i j f x x x a x a x a x a x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a x a x x --==++ +++++=++++++++ ++++= ∑i j j i ij i j i j i j j i i j

理解矩阵的概念掌握一些特殊矩阵及其性质

第二章 矩阵 要求: 1) 理解矩阵的概念。掌握一些特殊矩阵及其性质,如零矩阵、单位矩阵、对角矩阵、三角 矩阵、对称矩阵等; 2) 掌握矩阵的基本运算及其运算规则,如线性运算、乘法运算、矩阵行列式运算等; 3) 理解逆矩阵概念,掌握逆矩阵性质及矩阵可逆的充分必要条件,了解伴随矩阵概念; 4) 掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,掌握用初等变换求逆 矩阵的方法。 5)掌握矩阵的分块运算。 2.1 矩阵 知识点:矩阵的定义,一些特殊矩阵 定义1(矩阵) 由 n m ?个实数ij a 排成的一个 m 行n 列的矩形数表 ?? ? ? ? ? ? ??mn m m n n a a a a a a a a a 2 12222111211, 称之为 n m ? 矩阵,位置( i ,j )上的元素,一般用ij a 表示(强调两个足标的意义)。 矩阵可简记为 n m A ? 或 }{ij a A = 或 n m ij a A ?=}{ . 例1 含有n 个未知数n x x x ,,,21 、m 个方程的线性方程组 ?? ???? ?=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112 22221211 1212111 把ij a 和i b 按原顺序可以组成一个)1(+?n m 矩阵: ???? ?? ? ??m mn m m n n b a a a b a a a b a a a 21 222221 111211 。 任何一个方程组都可以用这样一个矩阵来描述;反之,一个矩阵也完全刻划了一个方程组。

相关主题