搜档网
当前位置:搜档网 › 高等代数自学总结 多项式

高等代数自学总结 多项式

高等代数自学总结 多项式
高等代数自学总结 多项式

高等代数自学总结

多项式环

引言:经过这段时间的自学学习。我对多项式理论有了更深的了解。我觉得难的是sturm 定理的证明和牛顿公式的证明。让我印象最深的是带余除法在λ-矩阵相抵标准型中的应用。

在当今信息时代,多项式在计算机科学,现代通信,编码和密码等领域都有应用。——李珍珍2016.9.30

重点学习目标:

1,理解概念

2,掌握重要定理

3,会求多项式函数在各数域上的标准分解式

4.会判断根所在的范围

5.会做相应习题各数系数多项式唯一因式分解定理

s

l s l l c x a c x a c x a x f x f )))的标准分解式为

的复系数多项式次数大于---=(...(()()(02121t s k t t k r s r q x p x q x p x c x c x a x f x f )...()()...()()()(02112111++++--=的标准分解式为

的实系数多项式

次数大于

各数域上的不可约多项式

(复系数多项式唯一因式分解定理)

每一个次数大于0的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积。

(实数域多项式唯一因式分解定理)

每一个次数大于0的实系数多项式在实数域上都可以唯一地分解成一次因式与二次因式乘积。(△<0))

(是两个解,那么

和中必有解,如果在)()()(则同余方程组

个整数。

是任意给定的是两两互素的正整数,设中国剩余定理

s s s s s m m m d c d c Z m b

x m b x m b x s b b b m m m ...mod mod ...

....................mod mod ,...,,,...,,2122112121≡???????≡≡≡次数的和)

与积的次数与们的较大次数

和差的次数小于等于它与(}

{,则

,设命题g f g f g f g

f f

g g f g f x K x g x f =+=≤±∈deg deg )deg(deg ,deg max )deg(][)(),(1.

()(首项的乘积)等于这两个多项式乘积的首项两个非零多项式例如:(3x 2+5x 3)(2x 4+3x 2)=6x 6+9x 4+10x 7+15x 5

(3x 2+5x 3)(2x 4+3x 2)首项5x 3·2x 4=10x 7

满足加,乘两种代数运算和6条运算法则叫环。

满足交换率的环叫交换环。

有单位元e 的环叫整环。

命题2环R 的一个非空子集R1为一个子环的充要条件是R1对于R 的减法与乘法都封闭。证明:必要性:因为R1是R 的子环a,b 属于R1→a+b=a-(-b)属于R1,ab=-a(-b)属于R1充分性。由于R1非空,所以存在c 属于R1。

因为c-c 属于R ,所以0属于R1。

任给a,b 属于R1,则-b 属于R1,

因为a+b=a-(-b)属于R1,ab 属于R1。

所以R 的加法和乘法可看成是R1的加法和乘法,显然R1的加法满足交换率,结合率,因为0属于R1,对于任意b 属于R1,有-b 属于R1。

显然R1的乘法满足结合率,和对加法的左右分配率。

所以R1成为一个环,所以R1是R 的一个子环。

设R是有单位元e的交换环,如果R有一个子环R1满足下述条件:1°e属于R1

2°数域K到R1有一个双射τ,且τ保持加法与乘法运算;

那么R可看成是K的一个扩环。

(单位元属于子环,K到子环有双射,满足加乘)

Τ(1)是交换环R1的单位元。因为R的单位元e属于R1,所以τ(1)=e

定理1如果在K[x]中,有f(x)+g(x)=h(x),f(x)g(x)=p(x)。

那么在R中,有f(t)+g(t)=h(t),f(t)g(t)=p(t)

还有σ

t (x)=t.映射σ

t

称为x用t代入。证明略

例1设数域K上的n级矩阵A

1-12312210...0001...000..........10...b 1A A b b b b

b b b A A n K n n n n 可逆,求说明为

级矩阵上习题,数域???????

? ?

?=----整除

注意:整除关系不具有对称性

如果两个多项式能互相被整除,说明这两个多项式相伴。

命题1在K[x]中,f(x)与g(x)相伴?存在c 属于K *

,使

f(x)=cg(x)

证明:f(x)=cg(x),则g(x)|f(x)(这是根据整除的定义)

由于g(x)=f(x)/c=1/cf(x),所以f(x)|g(x),从而f(x)与g(x)相伴

必要性:设f(x)与g(x)相伴,则存在h1(x),h2(x)属于K[x],

使得g(x)=h1(x)f(x),f(x)=h2(x)g(x)

(∵g(x)=h1(x)f(x))于是f(x)=h2(x)h1(x)f(x)等量代换

如果f(x)=0,那么g(x)=0,从而f(x)与g(x)相伴,

设f(x)≠0,运用消去律。

从f(x)=h2(x)h1(x)f(x)得:1=h2(x)h1(x)。

.degh1(x)=degh2(x)=0,从而h2(x)=c,c 属于K*,于是f(x)=cg(x)

命题2在K[x]中,如果g(x)|f i (x),那么对任意的k i 属于K[x],

都有g(x)|∑k i f i (x)

证明:根据已知,存在h i 属于K[x],使

.f i (x)=k i g(x),i=1,2,...,s

从而k 1f 1(x)+...+k s f s (x)=k 1h 1g(x)+...k s h s g(x)

提取公因式=[k 1h 1+...+k s h s ]g(x)。

因此g(x)|[k 1f 1(x)+...+k s f s (x)]

(带余除法)在K[x]中存在唯一的一对多项式h(x),r(x),使得

,f(x)=h(x)g(x)+r(x).deg r(x)<deg g(x)。这叫除法算式

证明:可根据数学归纳法证明。可将g(x)的次数等于0。

分类讨论,1°m=0。2°m>0且deg f(x)<m,3°m>0且deg f(x)≥m。

推论:设f(x),g(x)属于K[x],且g(x)≠0,则g(x)|f(x)?g(x)除f(x)的余式为0.命题3子域能整除,域中也能整除。

整除性不随数域的扩大而改变。

定理2任给a,b 属于Z,b≠0,则存在唯一的一对整数q,r,使得

.a=qb+r.0≤r<|b|

例:1设f(x)=x 4+2x 3-5x+7,g(x)=x 2-3x+1,用g(x)去除f(x),求商式和余式。

2设f(x)=x 4-x 3+4x 2+a 1x+a 0,g(x)=x 2

+2x-3,求g(x)整除f(x)的充要条件

3用综合除法求x+3除f(x)=2x 4-x 3+5x-3的商式和余式

4.求下述λ-矩阵的一个相抵标准型

23212)1)(3()(1)(1()1)(3(00010001776874431776874431)(+-===??

??

? ??+-→????? ??---+---????

? ??---+---=λλλλλλλλλλλλλλd d d A ,,)解:最大公因式

任意两个最大公因式相伴d1(x)|d2(x)?d2(x)}d2(x)

(下面的f(x)与g(x)字省略)

公因=公因?最大公因=最大公因

最大公因=ki 最大公因

最大公因式=k1f(x)+k2g(x),k1,k2属于K[x],f(x),g(x)是两个多项式。

求两个多项式的最大公因式,可用辗转相除法。

K 1f(x)+k 2f(x)=1?互素,k1,k2属于K[x],

★f(x)与g(x)的首一最大公因式不随数域的扩大而改变。

★互素性不随数域的扩大而改变。

互素的三条性质:

①如果f(x)|g(x)h(x),且(f(x),g(x))=1,那么f(x)|h(x)

②如果f(x)|h(x),g(x)|h(x),且(f(x),g(x))=1,那么f(x)|g(x)h(x)

③(f(x),g(x))=1,(g(x),h(x))=1,那么(f(x)g(x),h(x))=1

和单个多项式类似,多个多项式互素也有

K 1f 1(x)+...+k s f s (x)=1?互素

定理ua+vb=最大公约数

任给两个整数a,b,都存在它们的一个最大公约数d,并且存在整数u,v 使

.ua+vb=d

整数m 是整数a 与b 的最小公倍数,若

1°a|m,b|m

2°从a|l,b|l,→m|l

举例:6|18,9|18

6|54,9|54→18|54

]

[][正的最大公因数正的最小公倍数ab

=例1把f(x)与g(x)的最大公因式表示成f(x)与g(x)的倍式和

.f(x)=x 4+3x-2g(x)=3x 3-x 2-7x+4

不可约多项式:只有非0数和相伴元的叫不可约多项式。

(唯一因式分解定理)K[x]中任一次数>0的多项式都能唯一的分解成数域K 上有限多个不可约多项式的乘积。

(算数基本定理)任一大于1的整数a 都能唯一地分解成有限多个素数的乘积。

例1证明x 2+1在有理数域上不可约

2分解x 4+1在复数域上不可约多项式的乘积。

)()()(1)(),(32,06

212,0216943)(),()(),()()()(,43)(,][.1'23''23=====-++

-=+-←→≠--++-=a Q x f Q x f x f x f x f a c a a a x c x a a a Q x f c a x f x f x f x f c x x f c x x f c Q x f a ax x x x f x Q 中有重根当且仅当在综上所述,中没重根在没有重因式,所以,),(当是且中的重根

)在(是时,

),当用辗转相除法求()的因式

是(所以的重因式

是所以的重根,

是解:因为中有重根

在,使求中在2f(x)=x 3-3x 2+x-3,g(x)=x 4-x 3+2x 2-x+1,f(x)与g(x)有无公共复根

解:用辗转相除法求出(f(x),g(x))=x 2+1=(x-i)(x+i)

所以i 和-i 是f(x)和g(x)的公共复根

3求f(x)=3x 4+8x 3+6x 2+3x-2的全部有理根

(完整版)高等代数多项式习题解答.doc

第一章多项式习题解答1.用g( x)除f ( x),求商q( x)与余式r ( x) . 1)f ( x) x3 3x2 x 1, g (x) 3x2 2x 1 3x 2 2x 1 x3 3x 2 x 1 1 x 7 x3 2 x2 1 x 3 9 3 3 7 x2 4 x 1 3 3 7 x2 14 x 7 3 9 9 26 x 2 9 9 1 x 7 , r ( x) 26 x 2 q( x) 9 9 . 3 9 2)f ( x) x4 2x 5, g(x) x2 x 2 x2 x 2 x 4 0x3 0 x2 2 x 5 x2 x 1 x4 x3 2x2 x3 2x2 2x x3 x2 2x x2 4x 5 x2 x 2 5x 7 q( x) x2 x 1, r ( x) 5x 7 . 2.m, p, q 适合什么条件时,有 1)x2 mx 1| x3 px q x 2 mx 1 x3 0 x2 px q x m x3 mx2 x mx2 ( p 1) x q m x2 m2 x m (m2 p 1) x ( q m) 当且仅当 m2 m 时x2 1| x3 px q .

本题也可用待定系数法求解.当x2 mx 1| x3 px q 时,用 x2 mx 1 去除x3 px q ,余式为零,比较首项系数及常数项可得其商为x q .于是有x3 px q ( x q)( x2 mx 1) x3 (m q)x2 (mq 1) x q . 因此有 m2 p 1 0, q m . 2)x2 mx 1| x4 px2 q 由带余除法可得 x4 px2 q ( x2 mx 1)( x2 mx p 1 m2 ) m(2 p m2 ) x (q 1 p m2 ) 当且仅当 r ( x) m(2 p m2 ) x (q 1 p m2 ) 0 时 x2 mx 1 | x4 px2 q .即 m(2 p m2 ) 0 ,即m 0, 或 p m2 2, q 1 p m2 0 q 1 p, q 1. 本题也可用待定系数法求解 .当x2 mx 1| x4 px2 q 时,用 x2 mx 1 去除x4 px2 q ,余式为零,比较首项系数及常数项可得其商可设为x2 ax q .于是有 x4 px2 q (x 2 ax q)( x2 mx 1) x4 (m a) x3 (ma q 1) x2 (a mq) x q. 比较系数可得 m a 0, ma q 1 p, a mq 0. 消去 a 可得 m 0, 或p m2 2, q 1 q 1. p, 3.求g( x)除f ( x)的商q( x)与余式r ( x) . 1)f ( x) 2x5 5x3 8x , g (x) x 3; 解:运用综合除法可得 3 2 0 5 0 8 0 6 18 39 11 7 327 2 6 1 3 39 109 327 商为 q(x) 2x4 6x3 13x2 39 x 109 ,余式为 r (x) 327.

高等代数多项式习题解答

第一章 多项式习题解答 1.用)(x g 除)(x f ,求商)(x q 与余式)(x r . 1)123)(,13)(223+-=---=x x x g x x x x f 9731929269 791437134373 132131232223232 ----+----+----+-x x x x x x x x x x x x x x 9 2926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f 1 752 5 422225200222223232 342342-++--+-+--+---+-+-+++-x x x x x x x x x x x x x x x x x x x x x x 75)(,1)(2+-=-+=x x r x x x q . 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1 m x m q x p m m x m x m q x p mx x mx x q px x x mx x --++++--+++--++++-+) ()1()1(01 222223232 当且仅当m q p m ==++,012时q px x mx x ++-+32|1.

本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有 q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323. 因此有m q p m ==++,012. 2)q px x mx x ++++242|1 由带余除法可得 )1()2()1)(1(2222224m p q x m p m m p mx x mx x q px x --++--++-+-++=++ 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即 ???=--+=--0 10)2(22m p q m p m ,即???=+=,1,0p q m 或???==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有 )1)((2224++++=++mx x q ax x q px x .)()1()(234q x mq a x q ma x a m x ++++++++= 比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得 ???=+=,1,0p q m 或???==+. 1,22q m p 3.求)(x g 除)(x f 的商)(x q 与余式)(x r . 1);3)(,852)(35+=--=x x g x x x x f 解:运用综合除法可得 327 1093913623271170 83918605023--------- 商为109391362)(234+-+-=x x x x x q ,余式为.327)(-=x r

高数极限求法总结

首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方 1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!) E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母!!!!!!!!!!!

《高等代数一》知识点

高等代数知识点 第一章 多项式 1. 数域的定义、常见数域 2. (系数在)数域P 上的多项式的定义 3. 多项式相等 4. 多项式的次数、零多项式和零次多项式 5. 一元多项式的运算(加减乘)、运算律、多项式环、次数定理 6. 整除的定义:()()g x f x ?()()()f x g x h x =(证明,不整除则用反证法)、因式和倍式 7. 整除的性质: (1) 一些特殊的整除性(0,常数,自身) (2) 整除的反身性 (3) 整除的传递性 (4) 整除的组合性 8. 带余除法()()()()f x q x g x r x =+、综合除法 9. 整除的判定法则:余式为零 10. 整除不受数域的影响 11. 公因式及最大公因式的定义、()()(),f x g x ,()0,()()g x g x =,()0,00= 12. 最大公因式的求法(辗转相除法)P44:5 13. 最大公因式可以表示为()(),f x g x 的一个组合()()()()()d x u x f x v x g x =+——P45:8 14. 互素的定义 15. 互素的相关定理(证明)P45:12、14 (1) ()()(),11()()()()f x g x u x f x v x g x =?=+ (2) ()()()()()()()(),1,f x g x f x g x h x f x h x =? (3) ()()()()()()() ()()()121212,,,1,f x g x f x g x f x f x f x f x g x =? 16. 不可约多项式的定义(次数大于等于1) 17. 平凡因式、不可约等价于只有平凡因式 18. 可约性与数域有关 19. 不可约多项式的性质: (1) ()p x 不可约,则()cp x 也不可约 (2) ()p x 不可约,()[],f x P x ?∈ ()()|(),(),()1p x f x or f x p x ?= (3) ()p x 不可约,()()()p x f x g x ()()()|(),p x f x or p x g x ? 20. 标准分解式1212()()()()s r r r s f x cp x p x p x =

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

(完整版)高等代数知识点归纳

1122,, 0,.i j i j in jn A i j a A a A a A i j ?=?++=?≠?? L = =()mn A O A A O A B O B O B B O A A A B B O B O * = =* *=-1 (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 范德蒙德行列式: ()12222 1211 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 分块对角阵相乘:11 112222,A B A B A B ???? == ? ???? ??11112222A B AB A B ??= ???,1122n n n A A A ?? = ??? 分块矩阵的转置矩阵:T T T T T A B A C C D B D ?? ??= ? ????? () 1121112 222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ??? L L M M M L ,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A -=, 1 1A A --=. 分块对角阵的伴随矩阵:* * *A BA B AB ?? ??= ? ???? ?

高等代数多项式习题解答(供参考)

第一章 多项式习题解答 1.用)(x g 除)(x f ,求商)(x q 与余式)(x r . 1)123)(,13)(223+-=---=x x x g x x x x f 9 2926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f 75)(,1)(2+-=-+=x x r x x x q . 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1 当且仅当m q p m ==++,012时q px x mx x ++-+32|1. 本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有 q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323. 因此有m q p m ==++,012. 2)q px x mx x ++++242|1 由带余除法可得 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即 ???=--+=--010)2(22m p q m p m ,即???=+=,1,0p q m 或? ??==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有 比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得 ???=+=,1,0p q m 或???==+. 1,22q m p

知识点总结高等代数

第二章行列式知识点总结 一行列式定义 1、n 级行列式1112121 22 212 n n ij n n n nn a a a a a a a a a a = (1)等于所有取自不同行不同列的n 个元素的乘积1212n j j nj a a a (2)的代 数和,这里12n j j j 是一个n 级排列。当12 n j j j 是偶排列时,该项前面带正号;当12 n j j j 是奇排列时,该项前 面带负号,即: 12 1212 1112121222() 1212 (1)n n n n n j j j ij j j nj n j j j n n nn a a a a a a a a a a a a a τ= = -∑ 。 2、等价定义 121212() 12(1)n n n i i i ij i i i n n i i i a a a a τ = -∑和12 1211221212 ()() (1)n n n n n n i i i j j j ij i j i j i j n i i i j j j a a a a ττ+= -∑ 和 3、由n 级排列的性质可知,n 级行列式共有!n 项,其中冠以正号的项和冠以负号的项(不算元素本身所带的负号)各占一半。 4、常见的行列式 1)上三角、下三角、对角行列式 11 11 11 222222 112200nn nn nn nn a a a a a a a a a a a a *===* 2)副对角方向的行列式 111(1)21 2,1 2,1 2 12,111 1 1 0(1) n n n n n n n n n n n n n n a a a a a a a a a a a a -----* ===-* 3)范德蒙行列式: 1222212 11 1112 111() (2) n n i j j i n n n n n a a a a a a a a a a a n ≤<≤---= -≥∏ 二、行列式性质 1、行列式与它的转置行列式相等。

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

高等代数行列式知识点总结

第一章 行列式( * * * ) 一、复习指导:行列式在高等代数中是十分重要的,它不仅是每年必要的一道大题,而且还是一个基础章节,它与学好后面的章节也有一定的联系,是学习后面重要章节的基础。在首师大真题中,行列式往往会以求数字型n 阶行列式的值作为一道大题出现,分值15分。具体可以参考真题。 二、考点精讲: (一)基本概念 定义1 逆序—设j i ,是一对不等的正整数,若j i >,则称),(j i 为一对逆序。 定义2 逆序数—设n i i i Λ21是n ,,2,1Λ的一个排列,该排列所含逆序总数称为该排列的逆序数,记为)(21n i i i Λτ,逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。 定义3 行列式—称nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 称为n 阶行列式,规定 n n n nj j j j j j j j j a a a D ΛΛΛ21212121) ()1(∑-= τ 。 定义4 余子式与代数余子式—把行列式nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 中元素ij a 所在的i 行元素和j 列元素去掉,剩下的1-n 行和1-n 列元素按照元素原来的排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,称ij j i ij M A +-=) 1(为元素ij a 的代数余子式。 (二)、几个特殊的高阶行列式 1、对角行列式—形如 n a a a Λ ΛO ΛΛΛΛ0 00 02 1 称为对角行列式,n n a a a a a a ΛΛ ΛO ΛΛΛΛ21210 00 0=。

高等数学求极限的16种方法

高等数学求极限的16种方法 首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)

高数中求极限的16种方法——好东西 )

假如高等数学是棵树木得话,那么极限就是他的根,??函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,??可见这一章的重要性。 为什么第一章如此重要?? ?各个章节本质上都是极限,??是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先??对??极限的总结??如下 极限的保号性很重要? ?就是说在一定区间内??函数的正负与极限一致 1??极限分为? ?一般极限? ?,??还有个数列极限,??(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,? ?(只能在乘除时候使用,但是不是说一定在加减时候不能用??但是前提是必须证明拆分后极限依然存在) e的X次方-1? ?或者(1+x)的a次方-1等价于Ax??等等。??全部熟记 (x趋近无穷的时候还原成无穷小) 2??LHopital?法则? ?(大题目有时候会有暗示??要你使用这个方法) ??首先他的使用有严格的使用前提!!!!!! ? ?必须是??X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,??当然n趋近是x趋近的一种情况而已,是必要条件?? (还有一点??数列极限的n当然是趋近于正无穷的??不可能是负无穷!) ? ?必须是函数的导数要存在!!!!!!!!(假如告诉你g(x),??没告诉你是否可导,直接用无疑于找死!!) ??必须是??0比0??无穷大比无穷大!!!!!!!!! ? ?当然还要注意分母不能为0?? ??LHopital? 法则分为3中情况 1 0比0? ?无穷比无穷??时候??直接用 2? ?0乘以无穷? ?无穷减去无穷? ?(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后? ?这样就能变成1中的形式了 3??0的0次方? ? 1的无穷次方无穷的0次方? ? ??对于(指数幂数)方程方法主要是取指数还取对数的方法,??这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(??这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0??当他的幂移下来趋近于无穷的时候??LNX趋近于0) 3泰勒公式? ? (含有e的x次方的时候??,尤其是含有正余旋??的加减的时候要特变注意??!!!!) E的x展开? ?sina??展开? ?cos??展开? ?ln1+x展开 对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 ??取大头原则? ? 最大项除分子分母!!!!!!!!!!! ??看上去复杂处理很简单!!!!!!!!!!

高等代数多项式试题库(精品文档)

§1 数域[达标训练题] 一 填空题 1.数集{0}对 运算封闭. 2.自然数集N 对 运算封闭. 3.数集},{Z b a bi a ∈+对 封闭. 二 判断题 1. 数域必含有无穷多个数. 2. 所有无理数构成的集合是数域. 三 证明 1. 证明},{)(Q b a n b a n Q ∈+=是数域,这里n 不是完全平方数. 2. 证明},2{3 Q b a b a ∈+不是数域. 3. 若21,P P 是数域,证明21P P 也是数域,而21P P 不一定是数域. §1 数域[达标训练题解答] 一 填空题 1.加法、 减法、 乘法;2.加法、乘法 ;3.加法、减法、乘法. 二 判断题 1. ( T); 2. ( F) 三、解答题 1.证明显然n Q ∈1,0. 对任意的)(,2211n Q n b a n b a ∈++, )()(2211n b a n b a +±+=)(21a a ±+n b b )(21±)(n Q ∈; )()(2211n b a n b a +?+ n b a b a bn b a a )()(12212121+++=)(n Q ∈. 当011≠+n b a 时, n b a n b a 1122++ ) (21212 12121212121n Q n n b a a b b a n b a n b b a a ∈?--+--= .故},{)(Q b a n b a n Q ∈+=对加法减法乘法除法 封闭.即},{)(Q b a n b a n Q ∈+=是数域. 2.证明 因为 ∈3 2},2{3 Q b a b a ∈+, ?=?333 422},2{3 Q b a b a ∈+. 即} ,2{3Q b a b a ∈+对乘法不封闭.所以 } ,2{3Q b a b a ∈+不是数域. 3.证明 由于任意数域都包含有理数, 故21,P P 也包含有理数域, 从而2 1P P 包含有理数域.令21,P P b a ∈, 则1,P b a ∈, 2,P b a ∈.由于21,P P 是数域,故

高等代数例题(全部)

高等代数例题 第一章 多项式 1.44P 2 (1)m 、p 、q 适合什么条件时,有2 3 1x mx x px q +-++ 2.45P 7 设3 2 ()(1)22f x x t x x u =++++,3 ()g x x tx u =++的最大公因式是一个二次多项式,求t 、 u 的值。 3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3 x px q ++有重根的条件。 5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x - 6.46P 25 证明:如果233 12(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1n x -在复数域内和实数域内的因式分解。 8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约? 9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。求证: 11((),())((),())f x g x f x g x =。 10.48P 5 多项式()m x 称为多项式()f x ,()g x 的一个最小公倍式,如果(1)()()f x m x ,()()g x m x ; (2)()f x ,()g x 的任意一个公倍式都是()m x 的倍式。我们以[(),()]f x g x 表示首项系数为1的那个最 小公倍式。证明:如果()f x ,()g x 的首项系数都为1,那么()() [(),()]((),()) f x g x f x g x f x g x = 。 11.设 m 、n 为整数,2()1g x x x =++除33()2m n f x x x =+-所得余式为 。 12. 求证:如果()d x |()f x ,()d x |()g x ,且()d x 是()f x 与()g x 的一个组合,那么()d x 是()f x 与 ()g x 的一个最大公因式。 13. 14 3 4141)g( , 21212321)(23423456 -+--=+--+-- =x x x x x x x x x x x x f 求())(),(x g x f 。 14. 设22()(1) 21m n f x x x x =+--- (m ,n 是正整数),2()g x x x =+ 。证:()g x |()f x 。

高数 数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x) 当x →x 0时的极限,记作。[2] 单侧极限:①.左极限:或 ②.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0)()()()()(0000lim x f x f x f x f x f x x ==?=+ -→)(x f 0x x →)()()(lim 0 00x f x f x f x x →+ -==0,,,x x x x x →-∞→+∞→∞→0x x →

高等代数的知识结构

高等代数知识结构一、高等代数知识结构图 高等代数线性代数 工具 线性方程组 中心课题 线性典范型 研究范围 线性空间 行列式 矩阵 线性方程组 向量相关性 行列式的计算 行列式的性质 矩阵的秩 矩阵的运算 与逆 矩阵的初等变换 线性方程组的解法及判别定理 线性方程组解的结构 极大线性无关组 线性相关和线性无关 二次型 线性流形 线性函数 若尔当典范性 化为标准型(配方法, 线性方程组法,正交法) 对角化 正定性,合同 单线性函数 对称双线性函数 J矩阵 II-C定理 矩阵的可对角化 线性空间 欧式空间 酉空间 线性空间的性质与同构, 子空间的判定 线性变换 坐标变换与基变换 特征值与特征向量 可对角化及不变子空间 欧式空间的性质 正交化与正交补的求法 正交变换与正交矩阵 酉空间的性质 复数域上的正交变换

二、高等代数知识结构内容 (一)线性代数: 工具:线性方程组 1.行列式: 1行列式的计算设有2n 个数,排成n 行n 列的数表 nn n n n n a a a a a a a a a 21 2222111211 ,即n 阶行 列式.这个行列式等于所有取自不同行不同列的n 个元素的乘积 n 21nj j 2j 1a a a ⑴的代数和,这里n 21j j j 是n 21,,, 的一个排列,每一项⑴都按下列规则带有符号:当n 21j j j 是偶排列时, ⑴带正号;当n 21j j j 是奇排列时, ⑴带负号.即 nn n n n n a a a a a a a a a 2 12222111211 =() ()n 21n 21n 21nj j 2j 1j j j j j j 1a a a τ∑-, 这里∑n 21j j j 表示对所有n 级排列求和. a.行列式的性质: 性质1.行列互换,行列式不变。 性质2.一行的公因子可以提出来(或以一数乘行列式的一行就相当于用这个数 多项式理论 整除理论 因式分解理论 多项式根的理论 多元多项式/ 对称多项式 最大公因式定理 互素与同于 因式分解唯一性 重因式 复数域 实数域 有理数域 求法 判定(爱绅斯坦因) 根的判别式 韦达定理

高等代数考研真题 第一章 多项式

第一章 多项式 1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4 (1)X -整除,而()1f x -能 被4(1)X +整除。 2、(南航2001—20分) (1)设x 2-2px+2∣x 4+3x 2 +px+q ,求p,q 之值。 (2)设f(x),g(x),h(x)∈R[x],而满足以下等式 (x 2 +1)h(x)+(x -1) f(x)+ (x -2) g(x)=0 (x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0 证明:x 2 +1∣f(x),x 2 +1∣g(x) 3、(北邮2002—12分)证明:x d -1∣x n -1的充分必要条件是d ∣n (这里里记号d ∣n 表 示正整数d 整除正整数n )。 4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x ),g 3(x ),f(x),已知g 1(x)∣f(x), g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由: (1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。证 明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。 6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项 式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出 f(x)∣g(x),或者对某一正整数m ,f(x)∣h m (x)。 7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。 若存在数α使得f(α)=g(α)=0,则f(x)∣g(x)。 8、(南航2004—30分)(1)设f(x)=x 7+2x 6 -6x 5-8 x 4 +19x 3+9x 2-22x+8,g(x)=x 2+x -2, 将f(x)表示成g(x)的方幂和,即将f(x)表示成 f(x)=C k (x)g(x)k + C k-1(x)g(x)k-1+ … + C 1(x)g(x)+C 0(x) 其中次(C i (x))<次(g(x))或C i (x)=0,i=0,1, …,k。(15分 ) (2)设d(x)=( f(x),g(x)),f(x)∣g(x)和g(x)∣h(x)。证明:f(x)g(x)∣d(x)h(x)。(15分) 9、(北京化工大2005—20分)设f 1(x)≠0,f 2(x),g 1(x),g 2(x)是多项式,且g 1(x)g 2(x)∣f 1(x) f 2(x),证明:若f 1(x)∣g 1(x), 则g 2(x)∣f 2(x)。

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

相关主题