搜档网
当前位置:搜档网 › 高等代数自学总结,多项式

高等代数自学总结,多项式

高等代数自学总结,多项式
高等代数自学总结,多项式

(完整版)高等代数多项式习题解答.doc

第一章多项式习题解答1.用g( x)除f ( x),求商q( x)与余式r ( x) . 1)f ( x) x3 3x2 x 1, g (x) 3x2 2x 1 3x 2 2x 1 x3 3x 2 x 1 1 x 7 x3 2 x2 1 x 3 9 3 3 7 x2 4 x 1 3 3 7 x2 14 x 7 3 9 9 26 x 2 9 9 1 x 7 , r ( x) 26 x 2 q( x) 9 9 . 3 9 2)f ( x) x4 2x 5, g(x) x2 x 2 x2 x 2 x 4 0x3 0 x2 2 x 5 x2 x 1 x4 x3 2x2 x3 2x2 2x x3 x2 2x x2 4x 5 x2 x 2 5x 7 q( x) x2 x 1, r ( x) 5x 7 . 2.m, p, q 适合什么条件时,有 1)x2 mx 1| x3 px q x 2 mx 1 x3 0 x2 px q x m x3 mx2 x mx2 ( p 1) x q m x2 m2 x m (m2 p 1) x ( q m) 当且仅当 m2 m 时x2 1| x3 px q .

本题也可用待定系数法求解.当x2 mx 1| x3 px q 时,用 x2 mx 1 去除x3 px q ,余式为零,比较首项系数及常数项可得其商为x q .于是有x3 px q ( x q)( x2 mx 1) x3 (m q)x2 (mq 1) x q . 因此有 m2 p 1 0, q m . 2)x2 mx 1| x4 px2 q 由带余除法可得 x4 px2 q ( x2 mx 1)( x2 mx p 1 m2 ) m(2 p m2 ) x (q 1 p m2 ) 当且仅当 r ( x) m(2 p m2 ) x (q 1 p m2 ) 0 时 x2 mx 1 | x4 px2 q .即 m(2 p m2 ) 0 ,即m 0, 或 p m2 2, q 1 p m2 0 q 1 p, q 1. 本题也可用待定系数法求解 .当x2 mx 1| x4 px2 q 时,用 x2 mx 1 去除x4 px2 q ,余式为零,比较首项系数及常数项可得其商可设为x2 ax q .于是有 x4 px2 q (x 2 ax q)( x2 mx 1) x4 (m a) x3 (ma q 1) x2 (a mq) x q. 比较系数可得 m a 0, ma q 1 p, a mq 0. 消去 a 可得 m 0, 或p m2 2, q 1 q 1. p, 3.求g( x)除f ( x)的商q( x)与余式r ( x) . 1)f ( x) 2x5 5x3 8x , g (x) x 3; 解:运用综合除法可得 3 2 0 5 0 8 0 6 18 39 11 7 327 2 6 1 3 39 109 327 商为 q(x) 2x4 6x3 13x2 39 x 109 ,余式为 r (x) 327.

高等代数多项式习题解答

第一章 多项式习题解答 1.用)(x g 除)(x f ,求商)(x q 与余式)(x r . 1)123)(,13)(223+-=---=x x x g x x x x f 9731929269 791437134373 132131232223232 ----+----+----+-x x x x x x x x x x x x x x 9 2926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f 1 752 5 422225200222223232 342342-++--+-+--+---+-+-+++-x x x x x x x x x x x x x x x x x x x x x x 75)(,1)(2+-=-+=x x r x x x q . 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1 m x m q x p m m x m x m q x p mx x mx x q px x x mx x --++++--+++--++++-+) ()1()1(01 222223232 当且仅当m q p m ==++,012时q px x mx x ++-+32|1.

本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有 q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323. 因此有m q p m ==++,012. 2)q px x mx x ++++242|1 由带余除法可得 )1()2()1)(1(2222224m p q x m p m m p mx x mx x q px x --++--++-+-++=++ 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即 ???=--+=--0 10)2(22m p q m p m ,即???=+=,1,0p q m 或???==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有 )1)((2224++++=++mx x q ax x q px x .)()1()(234q x mq a x q ma x a m x ++++++++= 比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得 ???=+=,1,0p q m 或???==+. 1,22q m p 3.求)(x g 除)(x f 的商)(x q 与余式)(x r . 1);3)(,852)(35+=--=x x g x x x x f 解:运用综合除法可得 327 1093913623271170 83918605023--------- 商为109391362)(234+-+-=x x x x x q ,余式为.327)(-=x r

高数极限求法总结

首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方 1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!) E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母!!!!!!!!!!!

《高等代数一》知识点

高等代数知识点 第一章 多项式 1. 数域的定义、常见数域 2. (系数在)数域P 上的多项式的定义 3. 多项式相等 4. 多项式的次数、零多项式和零次多项式 5. 一元多项式的运算(加减乘)、运算律、多项式环、次数定理 6. 整除的定义:()()g x f x ?()()()f x g x h x =(证明,不整除则用反证法)、因式和倍式 7. 整除的性质: (1) 一些特殊的整除性(0,常数,自身) (2) 整除的反身性 (3) 整除的传递性 (4) 整除的组合性 8. 带余除法()()()()f x q x g x r x =+、综合除法 9. 整除的判定法则:余式为零 10. 整除不受数域的影响 11. 公因式及最大公因式的定义、()()(),f x g x ,()0,()()g x g x =,()0,00= 12. 最大公因式的求法(辗转相除法)P44:5 13. 最大公因式可以表示为()(),f x g x 的一个组合()()()()()d x u x f x v x g x =+——P45:8 14. 互素的定义 15. 互素的相关定理(证明)P45:12、14 (1) ()()(),11()()()()f x g x u x f x v x g x =?=+ (2) ()()()()()()()(),1,f x g x f x g x h x f x h x =? (3) ()()()()()()() ()()()121212,,,1,f x g x f x g x f x f x f x f x g x =? 16. 不可约多项式的定义(次数大于等于1) 17. 平凡因式、不可约等价于只有平凡因式 18. 可约性与数域有关 19. 不可约多项式的性质: (1) ()p x 不可约,则()cp x 也不可约 (2) ()p x 不可约,()[],f x P x ?∈ ()()|(),(),()1p x f x or f x p x ?= (3) ()p x 不可约,()()()p x f x g x ()()()|(),p x f x or p x g x ? 20. 标准分解式1212()()()()s r r r s f x cp x p x p x =

高等代数复习题精选

第一章多项式自测题 一、填空题 1. 设()()g x f x ,则()f x 与()g x 的一个最大公因式为 . 2. 1110()[]n n n n f x a x a x a x a P x --=++ ++∈,若|()x f x ,则0a = ;若 1()x f x =是的根,则012n a a a a +++ += . 3.若((),())1f x f x x '=+,则 是()f x 的 重根. 4.44x -在有理数域,实数域,复数域上的标准分解式为 , , . 二、选择题(以下所涉及的多项式,都是数域P 上的多项式) 1.设()|(),()|(),()0,()()x f x x g x x g x f x ???≠且与不全为0,则下列命题为假的是( ). A.()|(()()()())x u x f x v x g x ?+ B.deg(())min{deg (),deg(())}x f x g x ?≤(deg 意思为次数) C.若存在(),()u x v x ,使()()()()(),u x f x v x g x x ?+=则((),())()f x g x x ?= D.若|(),x a x ?-则()()0f a g a == 2.若((),())1f x g x =,则以下命题为假的是( ). A.23((),())1f x g x = B.1))()(),((=+x g x f x f C.()|()()g x f x h x 必有()|()g x h x D. 以上都不对 3.下列命题为假的是( ). A.在有理数域上存在任意次不可约多项式 B.在实数域上3次多项式一定可约 C.在复数域上次数大于0的多项式都可约 D.在实数域上不可约的多项式在复数域上没有重根 4.下列命题为真的是( ). A.若2()()p x f x ,则()()p x f x 是二重因式 B.若()(),(),()p x f x f x f x '''是的公因式,则()p x 的根是()f x 的三重根 C.()f x 有重根(),()f x f x ''?有一次因式

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

(完整版)高等代数知识点归纳

1122,, 0,.i j i j in jn A i j a A a A a A i j ?=?++=?≠?? L = =()mn A O A A O A B O B O B B O A A A B B O B O * = =* *=-1 (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 范德蒙德行列式: ()12222 1211 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 分块对角阵相乘:11 112222,A B A B A B ???? == ? ???? ??11112222A B AB A B ??= ???,1122n n n A A A ?? = ??? 分块矩阵的转置矩阵:T T T T T A B A C C D B D ?? ??= ? ????? () 1121112 222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ??? L L M M M L ,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A -=, 1 1A A --=. 分块对角阵的伴随矩阵:* * *A BA B AB ?? ??= ? ???? ?

高等代数多项式习题解答(供参考)

第一章 多项式习题解答 1.用)(x g 除)(x f ,求商)(x q 与余式)(x r . 1)123)(,13)(223+-=---=x x x g x x x x f 9 2926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f 75)(,1)(2+-=-+=x x r x x x q . 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1 当且仅当m q p m ==++,012时q px x mx x ++-+32|1. 本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有 q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323. 因此有m q p m ==++,012. 2)q px x mx x ++++242|1 由带余除法可得 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即 ???=--+=--010)2(22m p q m p m ,即???=+=,1,0p q m 或? ??==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有 比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得 ???=+=,1,0p q m 或???==+. 1,22q m p

知识点总结高等代数

第二章行列式知识点总结 一行列式定义 1、n 级行列式1112121 22 212 n n ij n n n nn a a a a a a a a a a = (1)等于所有取自不同行不同列的n 个元素的乘积1212n j j nj a a a (2)的代 数和,这里12n j j j 是一个n 级排列。当12 n j j j 是偶排列时,该项前面带正号;当12 n j j j 是奇排列时,该项前 面带负号,即: 12 1212 1112121222() 1212 (1)n n n n n j j j ij j j nj n j j j n n nn a a a a a a a a a a a a a τ= = -∑ 。 2、等价定义 121212() 12(1)n n n i i i ij i i i n n i i i a a a a τ = -∑和12 1211221212 ()() (1)n n n n n n i i i j j j ij i j i j i j n i i i j j j a a a a ττ+= -∑ 和 3、由n 级排列的性质可知,n 级行列式共有!n 项,其中冠以正号的项和冠以负号的项(不算元素本身所带的负号)各占一半。 4、常见的行列式 1)上三角、下三角、对角行列式 11 11 11 222222 112200nn nn nn nn a a a a a a a a a a a a *===* 2)副对角方向的行列式 111(1)21 2,1 2,1 2 12,111 1 1 0(1) n n n n n n n n n n n n n n a a a a a a a a a a a a -----* ===-* 3)范德蒙行列式: 1222212 11 1112 111() (2) n n i j j i n n n n n a a a a a a a a a a a n ≤<≤---= -≥∏ 二、行列式性质 1、行列式与它的转置行列式相等。

习题与复习题详解(线性空间)----高等代数

习题5. 1 1. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是. 因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间. 2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R +⊕==∈∈o 其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈. 因为,a b R a b ab R + + ?∈?⊕=∈, ,R a R a a R λλλ++?∈∈?=∈o , 所以R + 对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕; (2) ()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕; (3) R +中存在零元素1, ?a R +∈, 有11a a a ⊕=?=; (4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==o ; (6)()()a a a a a λ μμλμλμλλμ??==== ??? o o o o ; (7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕o o o ; 所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为 按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否. A B B A ∴⊕⊕与不一定相等. 故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间.

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

高等代数行列式知识点总结

第一章 行列式( * * * ) 一、复习指导:行列式在高等代数中是十分重要的,它不仅是每年必要的一道大题,而且还是一个基础章节,它与学好后面的章节也有一定的联系,是学习后面重要章节的基础。在首师大真题中,行列式往往会以求数字型n 阶行列式的值作为一道大题出现,分值15分。具体可以参考真题。 二、考点精讲: (一)基本概念 定义1 逆序—设j i ,是一对不等的正整数,若j i >,则称),(j i 为一对逆序。 定义2 逆序数—设n i i i Λ21是n ,,2,1Λ的一个排列,该排列所含逆序总数称为该排列的逆序数,记为)(21n i i i Λτ,逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。 定义3 行列式—称nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 称为n 阶行列式,规定 n n n nj j j j j j j j j a a a D ΛΛΛ21212121) ()1(∑-= τ 。 定义4 余子式与代数余子式—把行列式nn n n n n a a a a a a a a a D Λ ΛΛΛΛΛΛ 21 22221112 11 = 中元素ij a 所在的i 行元素和j 列元素去掉,剩下的1-n 行和1-n 列元素按照元素原来的排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,称ij j i ij M A +-=) 1(为元素ij a 的代数余子式。 (二)、几个特殊的高阶行列式 1、对角行列式—形如 n a a a Λ ΛO ΛΛΛΛ0 00 02 1 称为对角行列式,n n a a a a a a ΛΛ ΛO ΛΛΛΛ21210 00 0=。

高等代数作业 第一章 多项式答案复习进程

高等代数作业第一章多项式答案

高等代数第一次作业 第一章 多项式 §1—§3 一、填空题 1. 如果()|()f x g x ,()|()g x h x ,则 。()|()f x h x 2. 若()|()()f x g x h x +,()|()f x g x ,则 。()|()f x h x 3. 若()|()f x g x ,()|()/f x h x ,则 。()|()()/f x g x h x + 二、判断题 1. 数集}{1,,|2-=+i b a bi a 是有理数是数域( )√ 2. 数集}{1,,|2-=+i b a bi a 是整数是数域 ( )× 3. 若()|()()f x g x h x ,()|()/f x g x ,则()|()f x h x ( ) × 4. 若()|()()f x g x h x +,()|()f x g x ,则()|()f x h x ( )√ 5. 数集}{ 是有理数b a b a ,|2+是数域 ( )√ 6. 数集}{为整数n n |2是数域 ( )× 除法不封闭 7. 若()|()()f x g x h x ,则()|()f x g x 或()|()f x h x ( ) × 当()f x 是不可约时才成立 8. 若()|()/f x g x ,()|()/f x h x ,则()|()()/f x g x h x ( ) × 如2()f x x =,()()g x h x x ==时不成立 9. 若()|()()f x g x h x +,()|()()f x g x h x -,则()|()f x g x 且()|()f x h x ( ) √ 三、选择题 1. 以下数集不是数域的是( )B A 、{是有理数b a bi a ,|+,21i =-} B 、{是整数b a bi a ,|+,21i =-} C 、{ }是有理数b a b a ,|2+ D 、{}全体有理数 2. 关于多项式的整除,以下命题正确的是 ( )C A 、若()|()()f x g x h x 且()|()/f x g x ,则()|()f x h x B 、若()|()g x f x ,()|()h x f x ,则()()|()g x h x f x C 、若()|()()f x g x h x +,且()|()f x g x ,则()|()f x h x D 、若()|()/f x g x ,()|()/f x h x ,则()|()()/f x g x h x 四、计算题 数域P 中的数q p m ,,适合什么条件时, 多项式q px x mx x ++-+32|1? 解:由假设,所得余式为0,即 0)()1(2=-+++m q x m p 所以当???=-=++0 012m q m p 时有q px x mx x ++-+32|1 五、证明题 试证用21x -除()f x 所得余式为 2 )1()1(2)1(1-++--f f x f f )(。 证明:设余式为ax b +,则有2()(1)()f x x q x ax b =-++ (1),(1)f a b f a b =+-=-+ 求得a =2)1()1(,2)1()1(-+=--f f b f f 高等代数第二次作业

高等数学求极限的16种方法

高等数学求极限的16种方法 首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)

高数中求极限的16种方法——好东西 )

假如高等数学是棵树木得话,那么极限就是他的根,??函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,??可见这一章的重要性。 为什么第一章如此重要?? ?各个章节本质上都是极限,??是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先??对??极限的总结??如下 极限的保号性很重要? ?就是说在一定区间内??函数的正负与极限一致 1??极限分为? ?一般极限? ?,??还有个数列极限,??(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,? ?(只能在乘除时候使用,但是不是说一定在加减时候不能用??但是前提是必须证明拆分后极限依然存在) e的X次方-1? ?或者(1+x)的a次方-1等价于Ax??等等。??全部熟记 (x趋近无穷的时候还原成无穷小) 2??LHopital?法则? ?(大题目有时候会有暗示??要你使用这个方法) ??首先他的使用有严格的使用前提!!!!!! ? ?必须是??X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,??当然n趋近是x趋近的一种情况而已,是必要条件?? (还有一点??数列极限的n当然是趋近于正无穷的??不可能是负无穷!) ? ?必须是函数的导数要存在!!!!!!!!(假如告诉你g(x),??没告诉你是否可导,直接用无疑于找死!!) ??必须是??0比0??无穷大比无穷大!!!!!!!!! ? ?当然还要注意分母不能为0?? ??LHopital? 法则分为3中情况 1 0比0? ?无穷比无穷??时候??直接用 2? ?0乘以无穷? ?无穷减去无穷? ?(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后? ?这样就能变成1中的形式了 3??0的0次方? ? 1的无穷次方无穷的0次方? ? ??对于(指数幂数)方程方法主要是取指数还取对数的方法,??这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(??这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0??当他的幂移下来趋近于无穷的时候??LNX趋近于0) 3泰勒公式? ? (含有e的x次方的时候??,尤其是含有正余旋??的加减的时候要特变注意??!!!!) E的x展开? ?sina??展开? ?cos??展开? ?ln1+x展开 对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 ??取大头原则? ? 最大项除分子分母!!!!!!!!!!! ??看上去复杂处理很简单!!!!!!!!!!

高等代数多项式试题库(精品文档)

§1 数域[达标训练题] 一 填空题 1.数集{0}对 运算封闭. 2.自然数集N 对 运算封闭. 3.数集},{Z b a bi a ∈+对 封闭. 二 判断题 1. 数域必含有无穷多个数. 2. 所有无理数构成的集合是数域. 三 证明 1. 证明},{)(Q b a n b a n Q ∈+=是数域,这里n 不是完全平方数. 2. 证明},2{3 Q b a b a ∈+不是数域. 3. 若21,P P 是数域,证明21P P 也是数域,而21P P 不一定是数域. §1 数域[达标训练题解答] 一 填空题 1.加法、 减法、 乘法;2.加法、乘法 ;3.加法、减法、乘法. 二 判断题 1. ( T); 2. ( F) 三、解答题 1.证明显然n Q ∈1,0. 对任意的)(,2211n Q n b a n b a ∈++, )()(2211n b a n b a +±+=)(21a a ±+n b b )(21±)(n Q ∈; )()(2211n b a n b a +?+ n b a b a bn b a a )()(12212121+++=)(n Q ∈. 当011≠+n b a 时, n b a n b a 1122++ ) (21212 12121212121n Q n n b a a b b a n b a n b b a a ∈?--+--= .故},{)(Q b a n b a n Q ∈+=对加法减法乘法除法 封闭.即},{)(Q b a n b a n Q ∈+=是数域. 2.证明 因为 ∈3 2},2{3 Q b a b a ∈+, ?=?333 422},2{3 Q b a b a ∈+. 即} ,2{3Q b a b a ∈+对乘法不封闭.所以 } ,2{3Q b a b a ∈+不是数域. 3.证明 由于任意数域都包含有理数, 故21,P P 也包含有理数域, 从而2 1P P 包含有理数域.令21,P P b a ∈, 则1,P b a ∈, 2,P b a ∈.由于21,P P 是数域,故

高等代数例题(全部)

高等代数例题 第一章 多项式 1.44P 2 (1)m 、p 、q 适合什么条件时,有2 3 1x mx x px q +-++ 2.45P 7 设3 2 ()(1)22f x x t x x u =++++,3 ()g x x tx u =++的最大公因式是一个二次多项式,求t 、 u 的值。 3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3 x px q ++有重根的条件。 5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x - 6.46P 25 证明:如果233 12(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1n x -在复数域内和实数域内的因式分解。 8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约? 9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。求证: 11((),())((),())f x g x f x g x =。 10.48P 5 多项式()m x 称为多项式()f x ,()g x 的一个最小公倍式,如果(1)()()f x m x ,()()g x m x ; (2)()f x ,()g x 的任意一个公倍式都是()m x 的倍式。我们以[(),()]f x g x 表示首项系数为1的那个最 小公倍式。证明:如果()f x ,()g x 的首项系数都为1,那么()() [(),()]((),()) f x g x f x g x f x g x = 。 11.设 m 、n 为整数,2()1g x x x =++除33()2m n f x x x =+-所得余式为 。 12. 求证:如果()d x |()f x ,()d x |()g x ,且()d x 是()f x 与()g x 的一个组合,那么()d x 是()f x 与 ()g x 的一个最大公因式。 13. 14 3 4141)g( , 21212321)(23423456 -+--=+--+-- =x x x x x x x x x x x x f 求())(),(x g x f 。 14. 设22()(1) 21m n f x x x x =+--- (m ,n 是正整数),2()g x x x =+ 。证:()g x |()f x 。

高数 数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x) 当x →x 0时的极限,记作。[2] 单侧极限:①.左极限:或 ②.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0)()()()()(0000lim x f x f x f x f x f x x ==?=+ -→)(x f 0x x →)()()(lim 0 00x f x f x f x x →+ -==0,,,x x x x x →-∞→+∞→∞→0x x →

相关主题