搜档网
当前位置:搜档网 › 第10章 凸轮传动解析法

第10章 凸轮传动解析法

解析法设计凸轮

解析法设计凸轮Ⅱ的实际轮廓曲线代码: Private Sub Command1_Click() Form2.Show '焦点出现form2 End Sub Private Sub Command1_Click() Dim l1, l2, l3 As Single Form2.Picture2.Scale (-0.1, 400)-(7, -400) l1 = -Abs(Form2.Picture1.ScaleHeight / Form2.Picture1.ScaleWidth) l3 = -Abs(Form2.Picture3.ScaleHeight / Form2.Picture3.ScaleWidth) '定义两个图框的高宽比Form2.Picture1.ScaleWidth = 9.5 Form2.Picture3.ScaleWidth = 150 '设定图框的长度 Form2.Picture1.ScaleHeight = l1 * Form2.Picture1.ScaleWidth Form2.Picture3.ScaleHeight = l3 * Form2.Picture3.ScaleWidth Form2.Picture1.ScaleLeft = -0.1 Form2.Picture3.ScaleLeft = -70 Form2.Picture1.ScaleTop = 7 Form2.Picture3.ScaleTop = 63 '规定高度的起点 Dim dt1, dt2, dt3, dt4, dt5, s1, v1, s2, v2, k1, s0 As Single Dim n, m As Integer Dim h, e As Integer Dim dt6, dt7, dt8, dt9, dt10, dt11, x1, y1, x2, y2, r As Single Dim x3, y3, x4, y4, rg '定义各种量 h = Form2.Text3 e = Form2.Text2 k1 = Form2.Text4 s0 = Form2.Text1 rg = Form2.Text5 '试各种变量与文本框相等,用于输入数据 Const pi = 3.1415926 n = 1000 '把每一步定义为360°/1000 dt11 = 0 dt1 = pi / 3 dt2 = pi / 3 dt3 = pi / 2 / n dt4 = 0 dt6 = pi / 18 Form2.Picture3.Line (-70, 0)-(70, 0) Form2.Picture3.Line (0, 70)-(0, -70) Form2.Picture1.Line (0, 0)-(7, 0) Form2.Picture1.Line (0, 6.5)-(0, 0) Form2.Picture2.Line (0, 0)-(7, 0) Form2.Picture2.Line (0, 390)-(0, -390) '画出各个两个图框的坐标轴 s1 = h * ((dt4 / dt1) - Sin(2 * pi * dt4 / dt1) / (2 * pi)) v1 = h * k1 * (1 - Cos(2 * pi * dt4 / dt1)) / dt1 '计算第一个点的速度和推程,选择正弦加速度规

matlab解析法画凸轮轮廓线

m a t l a b解析法画凸轮 轮廓线 -CAL-FENGHAI.-(YICAI)-Company One1

班级:姓名:学号: 基于matlab的凸轮轮廓设计 一、设计凸轮机构的意义 在工业生产中,经常要求机器的某些部件按照规定的准确路线运动,仅应用连杆机构已难以满足这个要求,所以需要利用工作表面具有一定形状的凸轮。凸轮在所有基本运动链中,具有易于设计和能准确预测所产生的运动的优点。如果设计其他机构来产生给定的运功、速度、和加速度,其设计工作是很复杂的,但是设计凸轮机构则比较容易,而且运动准确、有效。所以在许多机器中,如纺织机、包装机、自动机床、自动化专用机床、数控机床、印刷机、内燃机、建筑机械、矿山机械、计算机的辅助装备及农业机具等,都可以找到凸轮机构。 在进行研究时,先设计一个简单的凸轮,在给定的旋转角度内有一定的总升距。设计凸轮轮廓的基本方法是把凸轮固定,使从动件以其与凸轮的相关位置绕凸轮回转而形成凸轮轮廓。因此设计凸轮时,必须画出足够多的点,使凸轮轮廓平滑可靠。 Matlab软件提供了强大的矩阵处理和绘图功能,具有核心函数工具箱。其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好。因此,基于matlab软件进行凸轮机构的设计可以解决设计工作量大的问题。运用解析法进行设计,matlab可以精确的计算出轮廓上每一点的坐标,然后更为精确的绘制出凸轮轮廓曲线。 二、设计凸轮机构的已知条件 凸轮做逆时针方向转动,从动件偏置在凸轮轴心右边。从动件在推程做等加/减速运动,在回程做余弦加速运动。基圆半径rb=50mm,滚子半径 rt=10mm,推杆偏距e=10mm,推程升程h=50mm,推程运动角ft=100o,远休止角fs=60o,回程运动角fh=90o。 三、分析计算 1、建立坐标系 以凸轮轴心为坐标原点建立平面直角坐标系XOY,取杆件上升方向为Y轴正方向。 2、推杆运动规律计算 凸轮运动一周可分为5个阶段:推程加速阶段、推程减速阶段、远休止阶段、回程阶段、进休止阶段。 根据已知条件,推程阶段为等加/减速,故推程阶段的运动方程为:

机械原理大作业——凸轮机构运动分析

机械原理大作业 凸轮机构运动分析 学号 姓名 院系 专业 完成日期 设计题号 指导教师 一、设计如图1所示直动从动件盘形凸轮机构。其原始参数见表1。

图1 行程(mm)升程运 动角 (°) 升程运 动规律 升程许 用压力 角(°) 回程运 动角 (°) 回程运 动规律 回程许用 压力角 (°) 远休止 角 (°) 近休止 角 (°) 35 80 余弦加 速度35 60 3-4-5 多项式 70 100 120 表1 二、计算流程图

凸轮机构分析 建立数学模型 位移方程速度方程 加速度方程 速度线图位移线图加速线图 ds/d Ψ-s 曲线升程压力角回程压力角 确定轴向及基圆半径 压力角图确定滚子半径实际轮廓理论轮廓 轮廓图 结束 三、建立数学模型 1. 位移、速度、加速度、ds/dψ-s 、压力角图 (1)运动方程: A.升程运动方程(余弦加速度): ? ?? ? ? ≤≤π?940 ??????-= )cos(12h 01?φπs )sin(20 011?φπφωπh v =

)cos(202 212 1 ?φπφωπh a = B.远休止方程: ?? ? ??≤≤π?π94 h s =2 02=v 02=a C.回程运动方程(3-4-5多项式): ??? ? ?≤≤π?π34 ])(*6)(*15)( *101[5 0' 040'030'03φφφ?φφφ?φφφ?s s s h s -----+---= ])(*30)(*60)( *30[4 '030'020'00'1 3φφφ?φφφ?φφφ?φωs s s h v --+------ = ])(*120)(*180)( *60[3 ' 020'00'02 0'2 1 3φφφ?φφφ?φφφ?φωs s s h a --+------ = D.近休止方程: ?? ? ??≤≤π?π34 04=s 04=v 04=a (2)源代码及作图(matlab ) syms a1 a2 a3 a4;

凸轮廓线解析法

凸轮解析法设计 预备知识:坐标旋转 cos sin 'sin cos 'x x y y αααα-??????= ? ????????? 问题1:对心尖顶盘状凸轮 00''x r s y ????= ? ?+???? 问题2:偏置尖顶盘状凸轮 ''e x y s ????=? ????? 问题3:摆动尖顶盘状凸轮 32020cos()'sin()'l l x l y ????-+????= ? ?+???? 问题4:平底直动盘状凸轮 12120',/'oP x oP v r s y ω????== ? ?+???? 问题5:滚子直动盘状凸轮 包络线方程(,,)0 0f x y f θθ =????=??? 1)222()()0T x X y Y r -+--=(理论廓线任一点(x ,y )为圆心的滚子上必有一点属于工作廓线,即(X ,Y )) 2)() ()0dx dy x X y Y d d ??-+-= T X x r =± ,T Y y r =

练习1:4-10 练习2: (10分)图示凸轮机构中凸轮是一偏心圆盘,该圆盘几何中心为A,半径 e=,图示位置从动杆垂直AO,主动件凸轮转向R=,偏心距40mm 100mm 如图所示。在图中标出从动件位移最大的位置,并计算出最大位移? h=及推程角? Φ=(注意:图形应画在答题纸上,不要直接画在题签上。) 练习3: 4、(10分)一偏置直动尖项从动件盘形凸轮机构如图所示。已知凸轮为一偏心圆盘,圆盘半径30mm R=,几何中心为A,回转中心为O,从动件偏距 OA=。凸轮以等角速度ω逆时针方向转动。当凸轮在图==,10mm OD e 10mm 示位置,即AD CD ⊥时,试求: (1)凸轮的基圆半径 r;(2)图示位置的凸轮机构压力角α; (3)图示位置的凸轮转角?;(4)图示位置的从动件的位移s; (5)该凸轮机构中的从动件偏置方向是否合理,为什么?

凸轮机构设计及运动分析

凸轮机构设计及运动分析 问题描述: 如图1所示为以对心直动尖顶盘形凸轮机构。从动杆位移s随时间变化曲线如图2所示。要求设计凸轮机构并分析从动件速度v,加速度a随时间变化的规律,及应力、应变随时间变化的规律。 任务与要求 1.设计满图2运动规律的凸轮机构;(要有设计计算步骤) 2.对所设计的机构运用ansys软件分析从动件速度、加速度随时间变化的规律; 3.查阅资料、了解所给机构的在生产、生活中的应用,说明其工作原理,并附相应的图片或视频。 凸轮机构设计及运动分析指导书

一、设计的目的 通过设计,训练学生机构设计的能力,掌握运用ANSYS Workbench进行瞬态动力学分析的方法、步骤和过程,提高学生解决实际问题的能力。 二、设计报告的主要要求 设计报告包括设计报告书Word文档和Powerpoint演示文稿两部分。 1.设计报告书内容包括目录、任务书、正文、参考文献、组员工作内容表。 (1)文档格式严格遵守设计书文档规范要求。 (2)目录必须层次清楚,并标有页码数。 (3)正文按章节编写,按照任务书要求合理安排内容,并附有参考文献。 2.Powerpoint演示文稿要求内容简洁,重点突出。 三、人员要求:1人 四、时间安排 1.布置任务、准备、查阅资料:2天; 2.机构设计及动画:6天; 3.Ansys分析:6天; 4.编写报告书、Powerpint演示文稿、验收:2天。 5.答辩。 五、成绩形成: 设计报告书:50分;答辩:50分 组内成员按实际完成工作量评定每位学生最终成绩;不参加答辩的学生没有答辩成绩。 六、参考资料:机械原理的平面机构,ansys机械工程应用精华59例

凸轮曲线设计

凸轮曲线设计 当根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,即可进行凸轮轮廓曲线的设计。设计方法有几何法和解析法,两者所依据的设计原理基本相同。几何法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,所以按几何法所得轮廓数据加工的凸轮只能应用于低速或不重要的场合。对于高速凸轮或精确度要求较高的凸轮,必须建立凸轮理论轮廓曲线、实际轮廓曲线以及加工刀具中心轨迹的坐标方程,并精确地计算出凸轮轮廓曲线或刀具运动轨迹上各点的坐标值,以适合在数控机床上加工。 圆柱凸轮的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。本节分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。 1 几何法 反转法设计原理: 以尖底偏置直动从动件盘形凸轮机构为例: 凸轮机构工作时,凸轮和从动件都在运动。为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用如下的反转法:使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。根据这种关系,不难求出一系列从动件尖底的位置。由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。 1). 直动从动件盘形凸轮机构 尖底偏置直动从动件盘形凸轮机构: 已知从动件位移线图,凸轮以等角速w顺时针回转,其基圆半径为r0,从动件导路偏距为e,要求绘出此凸轮的轮廓曲线。 运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下: 1) 以r0为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。 2) 将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。 3) 自OC0开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运动角(1900)、近休止角(600),在基圆上得C4、C5、C9诸点。将推程运动角和回程运动角分成与从动件位移线图对应的等分,得C1、C2、C3

凸轮机构的设计计算和运动分析

% ******** 偏置移动从动件盘形凸轮设计绘图和运动分析******** disp ' ######## 已知条件########' disp ' 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边' disp ' 从动件在推程作等加速/等减速运动,在回程作余弦加速度运动' % 基圆半径;滚子半径;从动件偏距;从动件升程 rb=40;rt=10;e=15;h=50; % 推程运动角;远休止角;回程运动角;推程许用压力角;凸轮转速 ft=100;fs=60;fh=90;alpha_p=35;n=200; % 角度和弧度转换系数;机构尺度 hd=pi/180;du=180/pi;se=sqrt(rb^2-e^2); w=n*pi/30; omega=w*du; % 凸轮角速度(°/s) fprintf(' 基圆半径rb = %3.4f mm \n',rb) fprintf(' 滚子半径rt = %3.4f mm \n',rt) fprintf(' 推杆偏距 e = %3.4f mm \n',e) fprintf(' 推程升程h = %3.4f mm \n',h) fprintf(' 推程运动角ft = %3.4f 度\n',ft) fprintf(' 远休止角fs = %3.4f 度\n',fs) fprintf(' 回程运动角fh = %3.4f 度\n',fh) fprintf(' 推程许用压力角alpha_p = %3.4f 度\n',alpha_p) fprintf(' 凸轮转速n = %3.4f r/min \n',n) fprintf(' 凸轮角速度(弧度) w = %3.4f rad/s \n',w) fprintf(' 凸轮角速度(度) omega = %3.4f 度/s \n',omega) disp ' ' disp ' 计算过程和输出结果' disp ' ' % (1)---校核凸轮机构的压力角和轮廓曲率半径' disp ' *** 计算凸轮理论轮廓的压力角和曲率半径***' disp ' 1 推程(等加速/等减速运动)' for f=1:ft if f<=ft/2 s(f)=2*h*f^2/ft^2;s=s(f); % 等加速-位移方程 ds(f)=4*h*f*hd/(ft*hd)^2;ds=ds(f); d2s(f)=4*h/(ft*hd)^2;d2s=d2s(f); vt(f)=4*h*omega*f/ft^2; % 等加速-速度方程else s(f)=h-2*h*(ft-f)^2/ft^2;s=s(f); % 等减速-位移方程 ds(f)=4*h*(ft-f)*hd/(ft*hd)^2;ds=ds(f); d2s(f)=-4*h/(ft*hd)^2;d2s=d2s(f); vt(f)=4*h*omega*(ft-f)/ft^2; % 等减速-速度方程end alpha_t(f)=atan(abs(ds-e)/(se+s)); % 推程压力角(弧度) alpha_td(f)=alpha_t(f)*du; % 推程压力角(度) pt1=((se+s)^2+(ds-e)^2)^1.5; pt2=abs((se+s)*(d2s-se-s)-(ds-e)*(2*ds-e));

凸轮机构解析法综合及动画指导

一、实验目的 1.培养学生平面凸轮机构解析法综合的能力。 2. 培养学生创新意识及综合设计的能力。 二、实验前的准备工作 1.要求预习本实验,掌握实验原理; 2.初步了解一下True Basic常用命令及其使用; 3.熟练掌握各种基本平面凸轮机构的解析法综合; 4.熟悉教师给定的凸轮机构。(亦可自己选择一个凸轮机构) 三、实验原理 凸轮机构解析法综合(参见MMT第五章) 五、实验方法与步骤 1.编写主程序 (1)编写从动件运动规律的程序并绘制从动件的位移、速度和加速度曲线图,初步检验其正确性。为此,编写了“在TB中绘制SV A三曲线”和“在ACAD 中绘制SV A三曲线”的学习指导,祥见“附件Ⅰ、Ⅱ”。 (2)编写凸轮廓线解析法综合的程序并绘制凸轮廓线(实际廓线和理论廓线)和刀具中心线。为此,编写了“在TB中绘制滚子直动凸轮廓线”、“在TB 中绘制滚子摆动凸轮廓线”的学习指导,祥见“附件Ⅲ、Ⅳ”。 (3)编程求凸轮廓线上任一点的压力角和曲率半径,以检验其是否合适,并绘制相应曲线(方法类似于附件Ⅰ、Ⅱ)编写程序将相应的数据保存成文件输出(可参阅附件Ⅴ:如何将TRUE BASIC 的输出数值打印出来)。 (4)编写程序将凸轮廓线数据保存成相应的.Scr文件并导入AUTOCAD。在AUTOCAD中绘制正式的凸轮机构运动简图。编写了“在ACAD中绘制凸轮廓线”的学习指导,祥见“附件Ⅵ” (5)编写凸轮机构的动画程序。为此,编写了“滚子直动从动件凸轮动画”和“滚子摆动从动件凸轮动画”的实习指导,祥见“附件Ⅶ、Ⅷ”。 2.上机调试

3.编写实验报告

在TB中绘制SV A三曲线 DIM S(0 TO 360) ! 从动件位移S的数值 DIM S1(0 TO 360) ! 从动件位移速度的数值 DIM S11(0 TO 360) ! 从动件位移加速度的数值 OPTION NOLET SET WINDOW -230,240,-200,140 H=80 DELTA0=140*PI/180 !DELTA0代表推程角δ0 DELTAS=40*PI/180 !DELTAS代表远休止角δS DELTA01=100*PI/180 !DELTA01代表回程角δ0’ DELTAS1=80*PI/180 !DELTAS1代表近休止角δS’ S0=SQR(RP^2-E^2) !S0是常数,不要放在循环中 FOR I=0 TO 360 STEP 1 DELTA=I*PI/180 ! 需将凸轮转角转化为弧度δ IF DELTA<=DELTA0 THEN !推程区 D2=DELTA/DELTA0 S(I)=H*(10*D2^3-15*D2^4+6*D2^5) S1(I)=H*(30*D2^2-60*D2^3+30*D2^4)/DELTA0 S11(I)=H*(60*D2-180*D2^2+120*D2^3)/DELTA0^2 ELSEIF DELTA<=(DELTA0+DELTAS) THEN ! 远休止区 S(I)=H S1(I)=0 S11(I)=0 ELSEIF DELTA<=(DELTA0+DELTAS+DELTA01) THEN !回程区 D4=(DELTA-DELTA0-DELTAS)/DELTA01 S(I)=H*(1-D4+1/(2*PI)*SIN(2*PI*D4)) S1(I)=-H/DELTA01*(1-COS(2*PI*D4)) S11(I)=-2*PI*H/DELTA01^2*SIN(2*PI*D4) ELSE !近休止区 S(I)=0 S1(I)=0 S11(I)=0 END IF NEXT I FOR I=0 TO 360 STEP 1 PLOT I,S(I);!每一点坐标后面要有分号,表示连续画折线!需在TB窗口调试合适的比例系数,使得各曲线都能清晰的显示出来。!每一点坐标后面要有分号,表示连续画折线。!由于位移、速度、加速度的单位不相同,有时需要将位移曲线放大或缩小或再上下平移,以使得三曲线都能够清晰地显示出来。

凸轮机构运动分析及创新毕业设计试验平台研制

摘要 凸轮机构是工程中用来实现机械化和自动化的重要驱动和控制机构之一,在轻工、食品、纺织、印刷、医药、标准零件制造、交通运输等领域运行的工作机械中都获得广泛应用。但随着社会发展和科技进步,为了提高产品的质量和生产率,作为机械设备核心部件的凸轮机构而言,必须进一步提高它的设计水平,在解析法设计的基础上开展计算机辅助设计的研究和推广应用。因此,开展对凸轮机构运动分析的研究,对于揭示机构的运动性能,进行机构的优化设计和动力学分析有着重要的实际意义。 本文首先介绍了凸轮机构的发展概况,提出课题的背景和意义,接着指出国内外研究的趋势和国内高校凸轮机构实验仅局限于对运动参数的测量与分析,然后提出以现实生活中最常用的一些凸轮为基础来研究凸轮机构试验平台中从凸轮轮廓设计到加工到试验这一整个系统构成。凸轮轮廓线的设计在解析法的基础上用计算机软件进行绘制。凸轮加工的方法用最常见的线切割加工,用CAXA线切割软件来辅助写代码。平台可测量盘形凸轮,圆柱凸轮,直动从动件及摆动从动件组成的不同的凸轮机构的运动特性。从动件的回复力采用恒定重力的重力回复,直动的轨道用直线导轨,进一步的提高测量精度。在实验台中各个传感器的设计位置,可以让学生直观去观察从动件的速度、加速度;同时,为了让实验台的测量数据更加丰富,在实验台上加上旋转编码器,就可以观察和研究凸轮机构的在运行中输入轴的速度,让整个实验台的功能更加的强大,实验内容更加丰富,对凸轮机构运动研究也很有帮助。 关键词:凸轮机构;运动分析;解析法;试验台;软件辅助设计

Abstract The cam mechanism is one of the drive and control mechanism used to achieve the mechanization and automation project, running in the field of light industry, food, textile, printing, medicine, standard parts manufacturing, transportation machinery are widely available. With the social development and scientific and technological progress in order to improve product quality and productivity, as the core components of the cam mechanism of the machinery and equipment necessary to further improve the design level, on the basis of the analytical method designed to carry out the study of computer-aided design and application. Therefore, to carry out the analysis of motion of the cam mechanism to reveal the kinematic performance, the optimal design of the institutions and dynamics analysis has important practical significance. This paper first introduces the overview of the development of the cam mechanism, put forward the background and significance of the topic, then pointed out that research trends at home and abroad and domestic universities cam mechanism experiment is only limited to the measurement and analysis of motion parameters, and then put forward to the most commonly used in real life cam based design of an innovative test platform to conduct a series of experiments to design, analysis and testing of the cam mechanism. Cam profile design computer software to draw on the basis of the analytical method. Cam processing method with the most common line cutting, with CAXA line cutting software to assist write code. Platform to measure disk cam, cylindrical cam, direct-acting the motion characteristics of the follower and oscillating follower cam mechanism. The restoring force of the driven member with constant gravity gravity reply movable straight track with a linear guide, and further improve the measurement accuracy. In the experimental Taichung sensor design, allows students intuitive to observe the follower velocity, acceleration; richer, in order

凸轮机构基本参数的设计

凸轮机构基本参数的设计 前节所先容的几何法和解析法设计凸轮轮廓曲线,其基圆半径r0、直动从动件的偏距e或 摆动从动件与凸轮的中心距a、滚子半径rT等基本参数都是预先给定的。本节将从凸轮机 构的传动效率、运动是否失真、结构是否紧凑等方面讨论上述参数的确定方法。 1 凸轮机构的压力角和自锁 图示为偏置尖底直动从动件盘形凸轮机构在推程的一个位置。Q为从动件上作用的载荷(包 括工作阻力、重力、弹簧力和惯性力)。当不考虑摩擦时,凸轮作用于从动件的驱动力F是 沿法线方向传递的。此力可分解为沿从动件运动方向的有用分力F'和使从动件紧压导路的有 害分力F''。驱动力F与有用分力F'之间的夹角a(或接触点法线与从动件上力作用点速度方 向所夹的锐角)称为凸轮机构在图示位置时的压力角。显然,压力角是衡量有用分力F'与有 害分力F''之比的重要参数。压力角a愈大,有害分力F''愈大,由F''引起的导路中的摩擦阻 力也愈大,故凸轮推动从动件所需的驱动力也就愈大。当a增大到某一数值时,因F''而引 起的摩擦阻力将会超过有用分力F',这时无论凸轮给从动件的驱动力多大,都不能推动从动 件,这种现象称为机构出现自锁。机构开始出现自锁的压力角alim称为极限压力角,它的 数值与支承间的跨距l2、悬臂长度l1、接触面间的摩擦系数和润滑条件等有关。实践说明, 当a增大到接近alim时,即使尚未发生自锁,也会导致驱动力急剧增大,轮廓严重磨损、 效率迅速降低。因此,实际设计中规定了压力角的许用值[a]。对摆动从动件,通常取[a]=40~ 50;对直动从动件通常取[a]=30~40。滚子接触、润滑良好和支承有较好刚性时取数据的上 限;否则取下限。 对于力锁合式凸轮机构,其从动件的回程是由弹簧等外力驱动的,而不是由凸轮驱动的,所 以不会出现自锁。因此,力锁合式凸轮机构的回程压力角可以很大,其许用值可取[a]=70~ 80。

第4章_凸轮机构及其设计习题解答2

4.1如图4.3(a)所示的凸轮机构推杆的速度曲线由五段直线组成。要求:在题图上画出推杆的位移曲线、加速度曲线;判断哪几个位置有冲击存在,是刚性冲击还是柔性冲击;在图示的F 位置,凸轮与推杆之间有无惯性力作用,有无冲击存在? 图4.3 【分析】要正确地根据位移曲线、速度曲线和加速度曲线中的一个画出其余的两个,必须对常见四推杆的运动规律熟悉。至于判断有无冲击以及冲击的类型,关键要看速度和加速度有无突变。若速度突变处加速度无穷大,则有刚性冲击;若加速度的突变为有限值,则为柔性冲击。 解:由图4.3(a)可知,在OA段内(0≤δ≤π/2),因推杆的速度v=0,故此段为推杆的近休段,推杆的位移及加速度均为零。在AB段内(π/2≤δ≤3π/2),因v>0,故为推杆的推程段。且在AB段内,因速度线图为上升的斜直线,故推杆先等加速上升,位移曲线为抛物线运动曲线,而加速度曲线为正的水平直线段;在BC段内,因速度曲线为水平直线段,故推杆继续等速上升,位移曲线为上升的斜直线,而加速度曲线为与δ轴重合的线段;在CD段内,因速度线为下降的斜直线,故推杆继续等减速上升,位移曲线为抛物线,而加速度曲线为负的水平线段。在DE段内(3π/2≤δ≤2π),因v<0,故为推杆的回程段,因速度曲线为水平线段,故推杆做等速下降运动。其位移曲线为下降的斜直线,而加速度曲线为与δ轴重合的线段,且在D和E处其加速度分别为负无穷大和正无穷大。综上所述作出推杆的速度v及加速度a线图如图4.3(b)及(c)所示。 由推杆速度曲线和加速度曲线知,在D及E处,有速度突变,且相应的加速度分别为负无穷大和正无穷大。故凸轮机构在D和E处有刚性冲击。而在A,B,C及D处加速度存在有限突变,故在这几处凸轮机构有柔性冲击。 在F处有正的加速度值,故有惯性力,但既无速度突变,也无加速度突变,因此,F处无冲击存在。 【评注】本例是针对推杆常用的四种运动规律的典型题。解题的关键是对常用运动规律的位移、速度以及加速度线图熟练,特别是要会作常用运动规律的位移、速度以及加速度线图。 4.2对于图4.4(a)所示的凸轮机构,要求: (1)写出该凸轮机构的名称; (2)在图上标出凸轮的合理转向。 (3)画出凸轮的基圆; (4)画出从升程开始到图示位置时推杆的位移s,相对应的凸轮转角?,B点的压力角α。 (5)画出推杆的行程H。

凸轮轮廓课程设计

广东工业大学华立学院 课程设计(论文) 课程名称机械原理课程设计 题目名称对心直动平底从动件盘形凸轮机构的设计 学生学部(系)机电工程学部 专业班级 10机械2班 学号 (40) 学生姓名 ~开 指导教师 2012年06月30日 广东工业大学华立学院 课程设计(论文)任务书

一、课程设计(论文)的内容 通过利用AutoCAD软件、AutoCAD二次开发技术绘制对心直动平底从动件盘形凸轮轮廓,用图解法进行对心直动平底从动件盘形凸轮机构的设计,计算出平底推杆平底尺寸长度,最后检验压力角是否满足许用压力角的要求。 1)二、课程设计(论文)的要求与数据 1.用图解法设计盘形凸轮机构,并用CAD画出凸轮轮廓。 2.用图解法设计盘形凸轮机构,并求出平底推杆平底尺寸长度。 3.根据从动件的运动规律计算出位移并绘画该曲线在图纸上; 4.检验压力角是否满足许用压力角的要求; 5.编写课程设计说明书 三、课程设计(论文)应完成的工作 1.绘制对心直动平底从动件盘形凸轮轮廓机构的设计简图。 2.绘制出从动件的位移曲线图。 3.检验压力角是否满足许用压力角的要求并且计算出平底推杆平底尺寸长度。 4.完成课程设计说明书。 四、课程设计(论文)进程安排 五、应收集的资料及主要参考文献 [1] ]孙恒.机械原理(第七版)[M] .北京:高等教育出版社,2006 [2]孙恒.机械原理(第六版)[M] .北京:高等教育出版社,2001

[3]曹金涛.凸轮机构设计[M].北京:机械工业出版社,1985. [4]管荣法.凸轮与凸轮机构基础.[M] 北京:国防工业出版社,1985 发出任务书日期: 2012 年 6 月 16日指导教师签名: 计划完成日期: 2012 年 6 月 30 日教学单位责任人签章: 目录 (一).设计题目:对心直动平底从动件盘形凸轮轮廓机构的设计 (4) (二)凸轮轮廓曲线的设计的基本原理: (5) (三)运动规律分析: (5) (四)用作图法设计对心直动平底从动件盘形凸轮机构: (6) (五)计算平底推杆平底尺寸长度 (10) (六)压力角分析 (11) 参考文献 (14)

第六章 凸轮机构的应用,间歇运动机构

机械基础电子教案(26) 第6章常用机构 【课程名称】 凸轮机构的应用,间歇运动机构 【教材版本】 李世维主编,中等职业教育国家规划教材――机械基础(机械类)。第2版。北京:高等教育出版社,2006。 【教学目标与要求】 一.知识目标 1.掌握凸轮机构的应用实例。了解凸轮机构的有关参数。 2.熟悉棘轮机构和槽轮机构的组成及运动特点。 二.能力目标 1.能够分析凸轮机构中的凸轮运动与从动件运动轨迹的关系。 2.熟悉常用棘轮机构与槽轮机构的间歇运动特性。 三.素质目标 1.善于从凸轮应用的实例中归纳总结出凸轮应用的规律。 2.能够分析棘轮机构和槽轮机构的运动特点和应用实例,培养善于理论联系实际的思维方式。 四.教学要求 1.熟悉几种常用的凸轮应用实例,让学生尽力举出所见到的应用凸轮机构工作的例子。 2.了解常用间歇运动机构的运动特点与应用。 【教学重点】 1.凸轮应用举例。讲授时重点放在为什么要选用凸轮机构,而不用四杆机构来代替。 并注意凸轮机构的选型思考。 2.棘轮机构和槽轮机构的运动特点。 【难点分析】 1.如何根据工作条件来选择合适的凸轮机构。 2.棘轮机构和槽轮机构运动特点比较。 【教学方法】 应用课件,教具进行动态演示,讲授凸轮机构的应用,分析间歇运动机构的运动特点。 【学生分析】 1.实物与课件,教具的演示将会提高学生的学习兴趣,增强感性认识,提高教学效果。 2.注意从演示中让学生比较各种间歇运动机构之间的特点。 【教学资源】 1.机械基础网络课程。北京:高等教育出版社,2006。 2.吴联兴主编。机械基础练习册。北京:高等教育出版社,2006。 3.教具,实物或课件。 【教学安排】 2学时(90分钟) 【教学过程】 一.导入新课 从上节课中已经知道凸轮机构的运动特点和常用类型,凸轮机构有着广泛的用途,

杨可桢《机械设计基础》(第6版)笔记和课后习题详解(凸轮机构)

第3章凸轮机构 3.1 复习笔记 【通关提要】 本章主要介绍了凸轮机构的常用运动规律、凸轮压力角以及图解法设计凸轮轮廓。学习时需要掌握不同运动规律的特点、凸轮压力角与凸轮作用力和凸轮尺寸的关系以及图解法设计凸轮轮廓等内容。本章主要以选择题、填空题、简答题和计算题的形式考查,复习时需把握其具体内容,重点记忆。 【重点难点归纳】 一、凸轮机构的应用和类型(见表3-1-1) 表3-1-1 凸轮机构的应用和类型

二、从动件的运动规律 1.基本概念(见表3-1-2) 表3-1-2 从动件运动规律的基本概念 图3-1-1 凸轮轮廓与从动件位移线图

2.推杆的运动规律(见表3-1-3) 表3-1-3 推杆的运动规律

三、凸轮机构的压力角 压力角指作用在从动件上的驱动力与该力作用点绝对速度之间所夹的锐角。对于高副机构,压力角即接触轮廓法线与从动件速度方向所夹的锐角,如图3-1-2所示。

1.压力角与作用力的关系 F′′=F′tanα 式中,F′′为有害分力;F′为有用分力。 图3-1-2 凸轮机构的压力角 对于直动从动件凸轮机构,建议取许用压力角[α]=30°;对于摆动从动件凸轮机构,建议取许用压力角[α]=45°。 2.压力角与凸轮机构尺寸的关系

如图3-1-2所示,直动从动件盘形凸轮机构的压力角计算公式为 tan e α= 式中,s为对应凸轮转角φ的从动件的位移;r0为基圆半径;e为从动件导路偏离凸轮回转中心的距离,称为偏距。 注: ①导路与瞬心P在凸轮轴心O点同侧,取“-”号,此时可使推程压力角α减小; ②导路与瞬心P在凸轮轴心O点异侧,取“+”号,此时可使推程压力角α增大。 四、图解法和解析法设计凸轮轮廓(见表3-1-4) 表3-1-4 图解法和解析法设计凸轮轮廓

凸轮设计-习题

第03章 凸轮机构及其设计 一、填空题 1.凸轮机构中的压力角是 和 所夹的锐角。 2.凸轮机构中,使凸轮与从动件保持接触的方法有 和 两种。 3.在回程过程中,对凸轮机构的压力角加以限制的原因是 。 4.在推程过程中,对凸轮机构的压力角加以限制的原因是 。 5.在直动滚子从动件盘形凸轮机构中,凸轮的理论廓线与实际廓线间的关系是 。 6.凸轮机构中,从动件根据其端部结构型式,一般有 、 、 等三种型式。 7.设计滚子从动件盘形凸轮机构时,滚子中心的轨迹称为凸轮的 廓线;与滚子相包络的凸轮廓线称为 廓线。 8.盘形凸轮的基圆半径是 上距凸轮转动中心的最小向径。 9.根据图示的?? -22d d s 运动线图,可判断从动件的推程运动是_____________,从动件的回程运动是______________。 题9图 10.从动件作等速运动的凸轮机构中,其位移线图是 线,速度线图是 线。 11.当初步设计直动尖顶从动件盘形凸轮机构中发现有自锁现象时,可采用 、 、 等办法来解决。 12.在设计滚子从动件盘形凸轮轮廓曲线中,若出现 时,会发生从动件运动失真现象。此时,可采用 方法避免从动件的运动失真。 13.用图解法设计滚子从动件盘形凸轮轮廓时,在由理论轮廓曲线求实际轮廓曲线的过程中,若实际轮廓曲线出现尖点或交叉现象,则与 的选择有关。 14.在设计滚子从动件盘形凸轮机构时,选择滚子半径的条件是 。 15.平底从动件盘形凸轮机构中,凸轮基圆半径应由 来决定。 16.凸轮的基圆半径越小,则凸轮机构的压力角越 ,而凸轮机构的尺寸越 。

17.凸轮基圆半径的选择,需考虑到、,以及凸轮的实际廓线是否出现变尖和失真等因素。 18.在许用压力角相同的条件下,从动件可以得到比从动件更小的凸轮基圆半径。或者说,当基圆半径相同时,从动件正确偏置可以凸轮机构的推程压力角。 19.直动尖顶从动件盘形凸轮机构的压力角是指 ;直动滚子从动件盘形凸轮机构的压力角是指 ;而直动平底从动件盘形凸轮机构的压力角等于。 20.凸轮机构从动件的基本运动规律有, ,,。其中运动规律在行程始末位置有刚性冲击。 二、判断题 21.偏置直动尖顶从动件盘形凸轮机构中,其推程运动角等于凸轮对应推程廓线所对中心角;其回程运动角等于凸轮对应回程廓线所对中心角。( ) 22.在直动从动件盘形凸轮机构中进行合理的偏置,是为了同时减小推程压力角和回程压力角。( ) 24.当凸轮机构的压力角的最大值超过许用值时,就必然出现自琐现象。() 25.凸轮机构中,滚子从动件使用最多,因为它是三种从动件中的最基本形式。()26.直动平底从动件盘形凸轮机构工作中,其压力角始终不变。() 27.滚子从动件盘形凸轮机构中,基圆半径和压力角应在凸轮的实际廓线上来度量。()28.滚子从动件盘形凸轮的实际轮廓曲线是理论轮廓曲线的等距曲线。因此,只要将理论廓线上各点的向径减去滚子半径,便可得到实际轮廓曲线上相应点的向径。()29.从动件按等加速等减速运动规律运动时,推程的始点、中点及终点存在柔性冲击。因此,这种运动规律只适用于中速重载的凸轮机构中。() 30.从动件按等加速等减速运动规律运动是指从动件在推程中按等加速运动,而在回程中则按等减速运动,且它们的绝对值相等。() 31.从动件按等速运动规律运动时,推程起始点存在刚性冲击,因此常用于低速的凸轮机构中。() 32.在对心直动尖顶从动件盘形凸轮机构中,当从动件按等速运动规律运动时,对应的凸轮廓线是一条阿米德螺旋线。() 33.凸轮的理论廓线与实际廓线大小不同,但其形状总是相似的。() 34.设计对心直动平底从动件盘形凸轮机构时,若要求平底与导路中心线垂直,则平底左右两侧的宽度必须分别大于导路中心线到左右两侧最远切点的距离,以保证在所有位置平底都能与凸轮廓线相切。( ) 三、选择题 35.理论廓线相同而实际廓线不同的两个对心直动滚子从动件盘形凸轮机构,其从动件的运动规律。(A)相同;(B)不相同。 36.对于转速较高的凸轮机构,为了减小冲击和振动,从动件运动规律最好采用运动规律。(A)等速;(B)等加速等减速;(C)正弦加速度。 37.凸轮机构中从动件作等加速等减速运动时将产生冲击。它适用于场合。 (A)刚性;(B)柔性;(C)无刚性也无柔性;(D)低速;(E)中速;(F)高速。

解析法精确绘制圆柱凸轮(周杰平)

解析法精确绘制圆柱凸轮 深圳市百特兴科技有限公司 周杰平 摘要:在SolidWorks中建立模型,借助3D模型找出相关结构要素的对应关系(立体几何);采用解析几何方法,建立起凸轮表面与辊子移动角度之间的数学模型;在EXCEL中, 将公式直接导入,自动计算得到相关参数;在SolidWorks 中导入txt文件绘制曲线,最终 精确绘制出圆柱凸轮。 关键词:圆柱凸轮;解析法;余弦加速度;切线;SolidWorks;EXCEL; 凸轮/连杆机构以其快速、稳定的特点,在很多的场合尤其是传统的制程设备中得以运用。但其缺点也很明显:适应性较差,结构相对比较复杂,开发周期长,凸轮加工精确要求 比较高等。随着伺服/步进技术、PLC/单片机/工控机控制技术、传感器/视觉技术等不断发展,非标设备因其开发周期短,且要有一定的适应性(柔性),凸轮连杆机构应用越来越少,导致真正了解凸轮/连杆机构应用和设计的工程师不多。 近年来,由于对设备产能要求越来也高,传统的凸轮/连杆机构又受到用户青睐。以动 力电池制造设备中塑封制程为例。进口设备核心机构采用凸轮/连杆机构,产能在140件/分 钟以上,国产设备采用伺服/丝杆驱动,产能则在50件/分钟左右。更为重要的是前者用于 制程的有效时间更长,确保了品质的可靠性。本文结构模型即以其中核心结构为研究对象。 尽管现在绘制凸轮的软件比较多,但要做到知其然也知其所以然,从基础模型建立开始,运用相关软件,可以达到事半功倍的效果。 一、基本参数 1.1、凸轮基本参数 项目 代号 参数值 凸轮外径 D 600 凸轮壁厚 W 30 辊子直径 d 30 基础高度 H 100 升程 S 50 1.2、辊子运动规律 动作 角度数(Φ) 起始角度位置 终止角度位置 运动规律 高度起始位置 高度终止位置 上升 120 0 120 余弦加速度 100 150 停止 30 120 150 150 150 下降 60 150 210 余弦加速度150 100 停止 150 210 360 100 100

相关主题