搜档网
当前位置:搜档网 › 射频基础

射频基础

射频及传输线基础知识

传输线的基本知识 传输射频信号的线缆泛称传输线,常用的有两种:双线与同轴线。频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本传输特性都由传输线公式所表征。 不妨先让我们作一个实验,在一台PNA3620上测一段同轴线的输入阻抗。我们会发现在某个频率上同轴线末端开路时其输入阻抗却呈现短路,而末端短路时入端反而呈现开路。通过这个实验可以得到几个结论或想法:首先,这个现象按低频常规电路经验看是想不通的,因此一段线或一个网络必须在使用频率上用射频仪器进行测试才能反映其真实情况。其二,出现这种现象时同轴线的长度为测试频率下的λ/ 4或其奇数倍;因此传输线的特性通常是与长度的波长数有关,让我们习惯用波长数来描述传输线长度,而不是绝对长度,这样作就更通用更广泛一些。最后,这种现象必须通过传输线公式来计算(或阻抗圆图来查出),熟悉传输线公式或圆图是射频、天馈线工作者的基本功。 传输线公式是由著名的电报方程导出的,在这里不作推导而直接引用其公式。对于一般工程技术人员,只需会利用公式或圆图即可。 这里主要讲无耗传输线,有耗的用得较少,就不多提了。 射频器件(包括天线)的性能是与传输线(也称馈线)有关的,射频器件的匹配过程是在传输线上完成的,可以说射频器件是离不开传输线的。先熟悉传输线是合理的,而电路的东西是比较具体的。即使是天线,作者也尽量将其看成是个射频器件来处理,这种作法符合一般基层工作者的实际水平。 1.1 传输线基本公式 1.电报方程 对于一段均匀传输线,在有关书上可 查到,等效电路如图1-1所示。根据线的 微分参数可列出经典的电报方程,解出的 结果为: V 1= 2 1(V 2+I 2Z 0)e гx + 2 1 (V 2-I 2Z 0)e -гx (1-1) I 1= 21Z (V 2+I 2Z 0)e г x - 21Z (V 2-I 2Z 0)e -г x (1-2) 2 x 为距离或长度,由负载端起算,即负载端的x 为0 2г= α+j β, г为传播系数,α为衰减系数, β为相移系数。无耗时г = j β. 一般情况下常用无耗线来进行分析,这样公式简单一些,也明确一些,或者说理想化一些。而这样作实际上是可行的,真要计算衰减时,再把衰减常数加上。 2 Z 0为传输线的特性阻抗。 2 Z i 为源的输出阻抗(或源内阻),通常假定亦为Z 0;若不是Z 0,其数值仅影响线上电压的幅度大小,并不影响其分布曲线形状。

最详细解读射频芯片

最详细解读射频芯片 传统来说,一部可支持打电话、发短信、网络服务、APP应用的手机,一般包含五个部分部分:射频部分、基带部分、电源管理、外设、软件。 射频部分:一般是信息发送和接收的部分; 基带部分:一般是信息处理的部分; 电源管理:一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要; 外设:一般包括LCD,键盘,机壳等; 软件:一般包括系统、驱动、中间件、应用。 在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。那么射频芯片和基带芯片是什么关系? 1. 射频芯片和基带芯片的关系 先讲一下历史,射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。 基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。 但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。 言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片,则可看做是最简单的基带调制信号的上变频和下变频。 所谓调制,就是把需要传输的信号,通过一定的规则调制到载波上面让后通过无线收发器(RF Transceiver)发送出去的工程,解调就是相反的过程。 2.工作原理与电路分析 射频简称RF射频就是射频电流,是一种高频交流变化电磁波,为是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围在300KHz~300GHz之间。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。射频技术在无线通信领域中被广泛使用,有线电视系统就是采用射频传输方式。

射频基本知识

引言 在进入射频测试前,让我们回顾一下单相交流电的基本知识。 一、单相交流电的产生 在一组线圈中,放一能旋转的磁铁。当磁铁匀速旋转时,线圈内的磁通一会儿大一会 儿小,一会儿正向一会儿反向,也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等幅的交流电压,这就是一个原理示意性交流发电机。若磁铁每秒旋转50周,则电压的变化必然也是50周。每秒的周期数称为频率f,其单位为赫芝Hz。103Hz=千赫kHz,,106Hz=兆赫MHz,109Hz=吉赫GHz。b5E2RGbCAP 在示波器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。即转了2π弪,每秒旋转了f个2π,称2πf为ω<常称角频率,实质为角速率)。则单相交流电的表达式可写成:p1EanqFDPw V=Vm=Vm 式中Vm(电压最大值>=Ve(有效值或Vr.m.s.>。t为时间<秒),为初相。 二、对相位的理解 1、由电压产生的角度来看 ·设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴<磁铁的磁极)

位置完全相同时,两者发出的电压是同相的。而当两者转轴错开角度时,用双线示波器来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。相位领先为正,滞后为负。DXDiTa9E3d ·假如在单相发电机上再加一组线圈,两组线圈互成90°<也即两电压之间相位差 90°),即可形成两相电机。假如用三组线圈互成120°<即三电压之间,相位各差120°)即可形成三相电机。两相电机常用于控制系统,三相电机常用于工业系统。RTCrpUDGiT 2、同频信号<电压)之间的叠加 当两个电压同相时,两者会相加;而反相时,两者会抵消。也就是说两者之间为复数运算关系。若用方位平面来表示,也就是矢量关系。矢量的模值<幅值)为标量,矢量的角度为相位。5PCzVD7HxA 虽然人们关心的是幅值,但运算却必须采用矢量。 虽然一般希望信号相加,但作匹配时,却要将反射信号抵消。 三、射频 交流电的频率为50Hz时,称为工频。20Hz到20kHz为音频,20kHz以上为超声波 ,当频率高到100 kHz以上时,交流电的辐射效应显著增强;因此100 kHz以上的频率泛称射频。有时会以3 GHz为界,以上称为微波。常用频段划分见附录。jLBHrnAILg

RF测试的基础知识

1. 什么是RF 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等) 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 4. RF仿真软件在手机设计调试中的作用是什么 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么 答:基本原则是使EMC(电磁兼容性)最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能二者有何区别

答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以及由此对硬件的性能要求等内容 答:可以看看和,或许有所帮助。关于TI的wireless solution,可以看看中的wireless communications. 11. 为什么GSM使用GMSK调制,而W-CDMA采用HPSK调制 答:主要是由于GSM和WCDMA标准所定。有兴趣的话,可以看一些有关数字调制的书,了解使用不同数字调制技术的利与弊。 12. 如何解决LCD model对RF的干扰 答:PCB设计过程中,可以在单个层中进行LCD布线。 13. 手机设计过程中,在新增加的功能里,基带芯片发射数据时对FM产生噪声干扰,如何解决这个问题

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3G Hz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(LO) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstop10格的频率差,例如:Span=1MHz,则100kHz/div.

2016年《射频电路设计》实验

实验三RFID标签的设计、制作及测试一、【实验目的】 在实际的生产过程中,RFID电子标签在设计并测试完成后,都是在流水线上批量制造生产的。为了让学生体会RFID标签天线设计的理念和工艺,本实验为学生提供了一个手工蚀刻制作RFID电子标签的平台,再配合微调及测试,让学生在亲自动手的过程中,不断地尝试、提炼总结,从而使学生对RFID标签天线的设计及生产工艺,有进一步深刻的理解。 二、【实验仪器及材料】 计算机一台、HFSS软件、覆铜板、Alien Higgs芯片、热转印工具、电烙铁、标签天线实物,UHF测试系统,皮尺 三、【实验内容】 第一步(设计):从UHF标签天线产品清单中,挑选出一款天线结构,或者自己设计一款标签天线结构,进行HFSS建模画图 第二步(制作):将第一步中设计好的标签模型用腐蚀法进行实物制作 第三步(测试):利用UHF读写器测试第二步中制作的标签实物性能 四、【实验要求的知识】 下图是Alien(意联)公司的两款标签天线,型号分别为ALN-9662和ALN-9640。这两款天线均采用弯折偶极子结构。弯折偶极子是从经典的半波偶极子结构发展而来,半波偶极子的总长度为波长的一半,对于工作在UHF频段的半波偶极子,其长度为160mm,为了使天线小型化,采用弯折结构将天线尺寸缩小,可以适用于更多的场合。ALN-9662的尺寸为70mm x 17mm,ALN-9640的尺寸为94.8mm x 8.1mm,之所以有不同的尺寸是考虑到标签的使用情况和应用环境,因为天线的形状和大小必须能够满足标签顺利嵌入或贴在所指定的目标上,也需要适合印制标签的使用。例如,硬纸板盒或纸板箱、航空公司行李条、身份识别卡、图书等。 ALN-9662天线版图 ALN-9640天线版图

射频基础知识培训

射频基础知识培训 1、无线通信基本概念 利用电磁波的辐射和传播,经过空间传送信息的通信方式称之为无线电通信(Wireless Communication),也称之为无线通信。利用无线通信可以传送电报、电话、传真、数据、图像以及广播和电视节目等通信业务。 目前无线通信使用的频率从超长波波段到亚毫米波段(包括亚毫米波以下),以至光波。无线通信使用的频率范围和波段见下表1-1 表1-1 无线通信使用的电磁波的频率范围和波段

由于种种原因,在一些欧、美、日等西方国家常常把部分微波波段分为L、S、C、X、Ku、K、Ka等波段(或称子波段),具体如表1 - 2所示 表1-2 无线通信使用的电磁波的频率范围和波段

无线通信中的电磁波按照其波长的不同具有不同的传播特点,下面按波长分述如下: 极长波(极低频ELF)传播 极长波是指波长为1~10万公里(频率为3~30Hz)的电磁波。理论研究表明,这一波段的电磁波沿陆地表面和海水中传播的衰耗极小。 1.2超长波(超低频SLF)传播 超长波是指波长1千公里至1万公里(频率为30~300Hz)的电磁波。这一波段的电磁波传播十分稳定,在海水中衰耗很小(频率为75Hz时衰耗系数为m)对海水穿透能力很强,可深达100m以上。 甚长波(甚低频VLF)传播 甚长波是指波长10公里~100公里(频率为3~30kHz)的电磁波。无线通信中使用的甚长波的频率为10~30kHz,该波段的电磁波可在大地与低层的电离层间形成的波导中进行传播,距离可达数千公里乃至覆盖全球。 长波(低频LF)传播 长波是指波长1公里~10公里(频率为30~300kHz)的电磁波。其可沿地表面传播(地波)和靠电离层反射传播(天波)。 中波(中频MF)传播 中波是指波长100米~1000米(频率为300~3000kHz)的电磁波。中波可沿地表面传播(地波)和靠电离层反射传播(天波)。中波沿地表面传播时,受地表面的吸收较长波严重。中波的天波传播与昼夜变化有关。 短波(高频HF)传播 短波是指波长为10米~100米(频率为3~30MHz)的电磁波。短波可沿地表面传播(地波),沿空间以直接或绕射方式传播(空间波)和靠电离层反射传播(天波)。 超短波(甚高频VHF)传播

射频电路和射频集成电路线路设计

射频电路和射频集成电路线路设计(9天) 培训时间为9天 课程特色 1)本讲座总结了讲演者20多年的工作,报告包括 o设计技术和技巧的经验, o获得的美国专利, o实际工程设计的例子, o讲演者的理论演译。 o 【主办单位】中国电子标准协会 【协办单位】智通培训资讯网 【协办单位】深圳市威硕企业管理咨询有限公司 o 2)本讲座分为三个部分: A. 第一部分讨论和強调在射频电路设计中的设计技术和技巧, 着重论述设计中关鍵性 的技术和技巧,譬如,阻抗匹配,射频接地, 单端线路和差分线路之間的主要差別,射频集成电路设计中的难题……可以把它归类为橫向论述. 到目前为止,这种着重于设计技巧的論述是前所未有的,也是很独特的。讲演者认为,作为一位合格的射频电路设计的设计者,不论是工程师,还是教授,应当掌握这一部分所论述的基本的设计技术和技巧,包括: ?阻抗匹配; ?接地; ?射频集成电路设计; ?测试 ?画制版图; ? 6 Sigma 设计。 B. 第二部分: 描述射频系统的基本参数和系统设计的基本原理。

C. 第三部分: 提供个别射频线路设计的基本知识。这一部份和现有的有关射频电路和 射频集成电路设计的书中的论述相似, 其內容是讨论一个个射频方块,譬如,低噪声放大器,混频器,功率放大器,壓控振蕩器,頻率综合器……可以把它归类为纵向论述,其中的大多数内容来自本讲座的讲演者的设计 ?在十几年前就已经找到了最佳的低噪声放大器的设计方法但不曾经发表过。在低噪声放大器的设计中可以同时达到最大的增益和最小的噪 声; ?获得了可调谐濾波器的美国专利; ?本讲座的讲演者所建立的用单端线路的设计方法来进行差分对线路的设计大大简化了设计并缩短了线路仿真的时间; ?获得了双线巴伦的美国专利。 学习目标在本讲座结束之后,学员可以了解到 o比照数码电路,射頻电路设计的主要差別是什麼? o什么是射频设计中的基本概念? o在射频电路设计中如何做好窄带的阻抗匹配? o在射频电路设计中如何做好宽带的阻抗匹配? o在射频线路板上如何做好射频接地的工作? o为什么在射频和射频集成电路设计中有从单端至双差分的趋势? o为什么在射频电路设计中容许误差分析如此重要? o什么是射频和射频集成电路设计中的主要难题?射频和射频集成电路设计师如何克服这些障碍?

射频基础知识

第一部分射频基本概念 第一章常用概念 一、特性阻抗 特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。 在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。当不相等时则会产生反射,造成失真和功率损失。反射系数(此处指电压反射系数)可以由下式计算得出: z1 二、驻波系数 驻波系数式衡量负载匹配程度的一个指标,它在数值上等于: 由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。射频很多接口的驻波系数指标规定小于1.5。 三、信号的峰值功率 解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。峰值功率即是指以某种概率出现的尖峰的瞬态功率。通常概率取为0.1%。

四、功率的dB表示 射频信号的功率常用dBm、dBW表示,它与mW、W的换算关系如下: dBm=10logmW dBW=10logW 例如信号功率为x W,利用dBm表示时其大小为 五、噪声 噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。 六、相位噪声

相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。 例如晶体的相位噪声可以这样描述: 七、噪声系数 噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:

ADS射频电路设计基础与典型应用解析

实验报告 课程名称: ADS射频电路设计基础与典型应用实验项目名称:交直流仿真分析 学院:工学院 专业班级:11级信息 姓名: 学号:1195111016 指导教师:唐加能 2014年12月23 日 预习报告

一、 实验目的 通过本节实验课程进一步熟悉使用ADS 软件,并学会使用ADS 软件进行交直流分析。 二、 实验仪器 电脑,ADS 仿真软件 三、 实验原理 (一)ADS 软件的直流,交流仿真功能 1.直流仿真 电路的直流仿真是所有射频有源电路分析的基础,在执行有源电路交流分析、S 参数仿真或谐波平衡仿真等其他仿真前,首先需要进行直流仿真,直流仿真主要用来分析电路的直流工作点。直流仿真元件面板主要包括直流仿真控制器、直流仿真设置控制器、参数扫描计划控制器、参数扫描控制器、节点设置和节点名控件、显示模板控件和仿真测量等式控件,这些面板上的原件经过设置以后既可以提供有源电路单点的直流分析,又可以提供有源电路参数扫描分析。 2.交流仿真 交流仿真能获得电路小信号时的多种参数,如电压增益、电流增益、跨导和噪声等。交流仿真执行时,首先对电路进行直流分析,并找到非线性原件的直流工作点,然后将非线性器件在静态工作点附近进行线性化处理,分析小信号在静态工作点附近的输入输出关系。 (二)交直流仿真面版与控制原件 1.直流仿真 图1中元件面板列出了直流仿真的所有仿真控件。 直流仿真控制器(DC ):直流仿真控制器(DC ) 是控制直流仿真的最重要控件,使用直流仿真控制器可以设置仿 真的扫描参数和参数的扫描范围等相关参数。 直流仿真设置控制器(OPTIONS ):直流仿真设置控制器主要用来设置直流仿真的外部环境和计算方式,例如,环境温度、设备温度、仿真的收敛性、仿真的状态提示和输出文件的特性等相关内容。

射频介绍

《射频集成电路设计基础》讲义 课程概述 关于射频(RF) 关于射频集成电路 无线通信与射频集成电路设计 课程相关信息 RFIC相关IEEE/IEE期刊和会议

关于射频 ? 射频= Radio Frequency (RF) → Wireless! ? Why Wireless? – 可移动(Mobile) – 个人化(Personalized) – 方便灵活(Self-configuring) – 低成本(在某些情况下) – and more ... ? Why Wired? <<>><>?

<<>><>? ? 多高的频率才是射频? ? 为什么使用高频频率? 30-300kHz LF 中波广播530-1700 kHz 300kHz-3MHz MF 短波广播 5.9-26.1 MHz 3-30MHz HF RFID 13 MHz 30-300MHz VHF 调频广播88-108 MHz 我们关心的频段 300-1000MHz UHF (无线)电视54-88, 174-220 MHz 1-2 GHz L-Band 遥控模型72 MHz 2-4 GHz S-Band 个人移动通信900MHz, 1.8, 1.9, 2 GHz 4-8 GHz C-Band WLAN, Bluetooth (ISM Band) 2.4-2.5GHz, 5-6GHz 注1:本表主要参考国外标准 注2:ISM =Industrial, Scientific and Medical

关于射频集成电路 ? 是什么推动了RFIC的发展? – Why IC? – 体积更小,功耗更低,更便宜→移动性、个人化、低成本 – 功能更强,适合于复杂的现代通信网络 – 更广泛的应用领域如生物芯片、RFID等 ? Quiz: why not fully integrated? ? 射频集成电路设计最具挑战性之处在于,设计者向上必须 懂得无线系统的知识,向下必须具备集成电路物理和工艺 基础,既要掌握模拟电路的设计和分析技巧,又要熟悉射频 和微波的理论与技术。(当然,高技术应该带来高收益:) <<>><>?

ADS射频电路设计基础与典型应用

实验报告 课程名称:ADS射频电路设计基础与典型应用实验项目名称:交直流仿真分析 学院:工学院 专业班级:11级信息 姓名: 学号:1195111016 指导教师:唐加能 2014年12月23 日

预 习 报 告 一、 实验目的 通过本节实验课程进一步熟悉使用ADS 软件,并学会使用ADS 软件进行交直流分析。 二、 实验仪器 电脑,ADS 仿真软件 三、 实验原理 (一)ADS 软件的直流,交流仿真功能 1.直流仿真 电路的直流仿真是所有射频有源电路分析的基础,在执行有源电路交流分析、S 参数仿真或谐波平衡仿真等其他仿真前,首先需要进行直流仿真,直流仿真主要用来分析电路的直流工作点。直流仿真元件面板主要包括直流仿真控制器、直流仿真设置控制器、参数扫描计划控制器、参数扫描控制器、节点设置和节点名控件、显示模板控件和仿真测量等式控件,这些面板上的原件经过设置以后既可以提供有源电路单点的直流分析,又可以提供有源电路参数扫描分析。 2.交流仿真 交流仿真能获得电路小信号时的多种参数,如电压增益、电流增益、跨导和噪声等。交流仿真执行时,首先对电路进行直流分析,并找到非线性原件的直流工作点,然后将非线性器件在静态工作点附近进行线性化处理,分析小信号在静态工作点附近的输入输出关系。 (二)交直流仿真面版与控制原件 1.直流仿真 图1中元件面板列出了直流仿真的所有仿真控件。 直流仿真控制器(DC ):直流仿真控制器(DC ) 是控制直流仿真的最重要控件,使用直流仿真控制器可以设置仿 真的扫描参数和参数的扫描范围等相关参数。 直流仿真设置控制器(OPTIONS ):直流仿真设置控制器主要用

无线射频识别技术(RFID)基础知识

无线射频识别技术(RFID)基础知识 无线射频识别技术的基本原理是利用空间电磁感应(Inductive Coupling)或者电磁传播(Propagation Coupling)来进行通信,以达到自动识别被标识物体的目的。基本工作方法是将无线射频识别标签(Tags)安装在被识别物体上(粘贴、插放、挂佩、植入等),当被标识物体进入无线射频识别系统阅读器(Readers)的阅读范围时,标签和阅读器之间进行非接触式信息通讯,标签向阅读器发送自身信息如ID号等,阅读器接收这些信息并进行解码,传输给后台处理计算机,完成整个信息处理过程。 无线射频识别技术是一本多门学科多种技术综合利用的应用技术。所涉及的关键技术大致包括:芯片技术、天线技术、无线通信技术、数据变换与编码技术、电磁场与微波技术等。 一、基本概念 无线射频识别技术(Radio Frequency Identification,RFID)是一种非接触的自动识别技术,其基本原理是利用射频信号的空间耦合(电磁感应或者电磁传播)传输特性,实现对被识别物体的自动识别。图1所示为RFID系统配置示意图。 图1 RFID系统配置示意图 电磁感应,即所谓的变压器模型,通过空间高频交变磁场实现耦合,依据的是电

磁感应定律,如图2所示。电磁感应方式一般适合于中、低频工作的近距离射频识别系统。典型的工作频率有:125KHz、225KHz和13.56MHz。识别作用距离小于1m,典型作用距离为10~20cm。 图2 电感耦合 电磁传播或者电磁反向散射(Back Scatter)耦合,即所谓的雷达原理模型,发射出去的电磁波,碰到目标后反射,同时携带回目标信息,依据的是电磁波的空间传播规律,如图3所示。电磁反向散射耦合方式一般适合于超高频、微波工作的远距离射频识别系统。典型的工作频率有:433MHz、915MHz、2.45GHz、5.8GHz。识别作用距离大于1m,典型作用距离为3~l0m。 图3 电磁耦合 射频识别系统一般由两个部分组成,即电子标签和阅读器。在RFID的实际应用中,电子标签附着在被识别的物体上(表面或者内部),当带有电子标签的被识别物品通过阅读器的可识读区域时,阅读器自动以无接触的方式将电子标签中的约定识别信息取出,从而实现自动识别物品或自动收集物品标识信息的功能。阅读器系统又包括阅读器和天线,有的阅读器是将天线和阅读器模块集成在一个设备单元中的,成为集成式阅读器(Integrated Reader)。 由上可见,为了完成RFID系统的主要功能,RFID系统具有两个基本的构成部

射频(RF)基础知识

●什么是RF? 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)? 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高? 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 ● 4. RF仿真软件在手机设计调试中的作用是什么? 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么? 答:基本原则是使EMC最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代 表何意? 答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能?二者有何区别? 答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么? 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点? 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。 详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以 及由此对硬件的性能要求等内容? 答:可以看看https://www.sodocs.net/doc/a815591686.html,和https://www.sodocs.net/doc/a815591686.html,,或许有所帮助。关于TI的wireless solution,可以看看https://www.sodocs.net/doc/a815591686.html,中的wireless communications.

课程名称:射频集成电路设计方法学专题

课程名称:射频集成电路设计方法学专题 先修课程:微波电路、微波技术 适用学科范围:电磁场与微波技术 开课形式:双语授课方式 课程目的和基本要求: 射频,通常指包括高频、甚高频和超高频,其频率在 3 MHz-1000 MHz ,是无线通信领域最为活跃的频段。在最近十几年里,无线通信技术得到了飞跃式的发展,射频器件快速的代替了使用分立半导体器件的混合电路,这些技术都是对设计者的挑战。现在使用的数字、模拟手机电话,个人通信服务和一些新技术都离不开RFIC的应用和设计,例如,无线局域网、汽车的无钥进入、无线收费、全球自动定位(GPS)自动导航系统、自动跟踪系统、远端控制。形成了对收发信机射频集成电路(RFIC)的巨大需求。随着特征尺寸的减小,深亚微米工艺MOS管的特征频率已经达到50GHz以上,使得利用CMOS工艺实现GHz频段的高频模拟电路成为可能,并在全世界形成了一个研究热点。 目前,IC工作的频率越来越高,在设计中必须考虑信号频率高带来的相应问题。具有RF电路的知识有助于提高IC设计能力。本课程从设计方法学角度讲解射频集成电路设计的问题、方法和常用电路。主要包括:RF基本原理、分析方法、常用电路和技术,以及相关仿

真软件的使用等,使学生了解通信系统中的RFIC的应用和使用RF 电路仿真软件正确设计RF电路。本课程重点是如何设计和构造主要射频电路模块以使IC技术与RF技术相结合的方法学。 课程主要内容: 对于RFIC设计而言,只有在工艺出现后才可能有RF器件模型和库,因此RFIC具有其特殊半导体集成工艺与射频电路相结合所具有的独特的特点而形成了一门新的学科方向。随着低功耗、可移动个人无线通信的发展和CMOS工艺性能的提高,用CMOS工艺实现无线通信系统的射频前端不仅必要而且可能,.本课程讨论用CMOS工艺实现射频集成电路的特殊问题.首先介绍各种收发器的体系结构,对它们的优缺点进行比较,指出在设计中要考虑的一些问题。其次讨论CMOS 射频前端的重要功能单元,包括低噪声放大器、混频器、频率综合器和功率放大器。对各单元模块在设计中的技术指标,可能采用的电路结构以及应该注意的问题进行了讨论。 本课程还讨论射频频段电感、电容等无源器件集成的可能性以及方法。本课程还讨论对射频模块的不同的设计限制,包括设计中主要涉及的频率响应、增益、稳定性、噪声、失真(非线性)、阻抗匹配和功率损耗。本课程重点是如何设计和构造主要射频电路模块以使IC技术与RF技术相结合的方法学。第一章介绍RF基本原理、分析方法、常用电路和技术,以及相关仿真软件的使用等。第二章主要描述模块

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交 调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的 电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 中 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振 (L0)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振 比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整 流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3GHz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(L0) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号, 然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstopIO格的频率差,例如:

最新射频电路设计原理与应用

射频电路设计原理与 应用

【连载】射频电路设计——原理与应用 相关搜索:射频电路, 原理, 连载, 应用, 设计 随着通信技术的发展,通信设备所用频率日益提高,射频(RF)和微波(MW)电路在通信系统中广泛应用,高频电路设计领域得到了工业界的特别关注,新型半导体器件更使得高速数字系统和高频模拟系统不断扩张。微波射频识别系统(RFID)的载波频率在915MHz和2450MHz频率范围内;全球定位系统(GPS)载波频率在1227.60MHz和1575.42MHz的频率范围内;个人通信系统中的射频电路工作在1.9GHz,并且可以集成于体积日益变小的个人通信终端上;在C波段卫星广播通信系统中包括4GHz的上行通信链路和6GHz的下行通信链路。通常这些电路的工作频率都在1GHz以上,并且随着通信技术的发展,这种趋势会继续下去。但是,处理这种频率很高的电路,不仅需要特别的设备和装置,而且需要直流和低频电路中没有用到的理论知识和实际经验。 下面的内容主要是结合我从事射频电路设计方向研究4年来的体会,讲述在射频电路设计中必须具备的基础理论知识,以及我个人在研究和工作中累积的一些实际经验。 作者介绍 ChrisHao,北京航空航天大学电子信息工程学院学士、博士生;研究方向为通信系统中的射频电路设计;负责或参与的项目包括:主动式射频识别系统设计、雷达信号模拟器射频前端电路设计、集成运算放大器芯片设计,兼容型GNSS接收机射频前端设计,等。 第1章射频电路概述 本章首先给出了明确的频谱分段以及各段频谱的特点,接着通过一个典型射频电路系统以及其中的单元举例说明了射频通信系统的主要特点。 第1节频谱及其应用 第2节射频电路概述 第2章射频电路理论基础 本章将介绍电容、电阻和电感的高频特性,它们在高频电路中大量使用,主要用于:(1)阻抗匹配或转换(2)抵消寄生元件的影响(扩展带宽)(3)提高频率选择性(谐振、滤波、调谐)(4)移相网络、负载等 第1节品质因数 第2节无源器件特性 第3章传输线 工作频率的提高意味着波长的减小,当频率提高到UHF时,相应的波长范围为10-100cm,当频率继续提高时,波长将与电路元件的尺寸相当,电压和电流不再保持空间不变,必须用波的特性来分析它们。 第1节传输线的基本参数 第2节终端带负载的传输线分析 (1) 第3节终端带负载的传输线分析 (2) 第4章史密斯圆图 为了简化反射系数的计算,P.H.Smith开发了以保角映射原理为基础的图解方法。这种近似方法的优点是有可能在同一个图中简单直观的显示传输线阻抗以及反射系数。本小节将对史密斯圆图进行系统的介绍。第1节史密斯圆图

模拟射频IC设计理论学习过程

模拟射频IC设计基础理论知识学习及进阶过程 模拟集成电路设计最重要的是基础理论知识,基础理论的重要性很多人一开始并没有意识到,工作一段时间,做过几个项目以后就会深有感触。除此之外就是个人的学习能力和分析问题、解决问题的能力,其实这些能力还是与基础知识有极大关系。 因为理论知识的学习需要一个系统的学习过程,其中涉及到非常多的相关课程,并不是一门实践课所能解决的。基础理论知识的学习途径很多,可以是学校的基础课和专业课,也可以是个人自学相关课程,IC设计所需要的理论知识的深度不是完成学业应付考试的水平所能比拟的,因此需要一个刻苦的深入学习过程。本文主要介绍模拟射频IC设计中所需要的相关基础理论知识的学习过程。 本文就从模拟、射频IC所需要的基础理论知识说起,一步一步说明如何进阶学习。最基础的是高等数学,电路分析基础,模拟电路基础,数字电路,信号与系统,自动控制理论,高频电路基础,射频微波电路理论,无线通信原理,这些是电路方面需要具备的基础知识,其中模拟电路和射频电路需要深入学习,学校课程上的那点皮毛是完全不够用的,需要做到知其然也知其所以然,很多公式及理论的计算推导过程最好彻底吃透;射频电路的S参数、smith圆图、阻抗匹配、噪声系数、线性度、射频收发机结构等理论知识很关键,这个过程非常考验个人的学习能力;无线通信原理是做射频ic必须熟悉的系统方面的知识,射频ic绝大部分是用于通信领域的。然后需要学习的是半导体工艺相关的基础知识,包括半导体器件物理、半导体工艺技术及流程等微电子基础理论知识,因为模拟射频集成电路用到的晶体管、无源器件建模和半导体工艺关系紧密,射频电路实际设计中采用的增强隔离性及降低噪声耦合等的方法和工艺息息相关。 基础知识扎实以后可以开始具体模拟ic设计的课程学习,当然这部分的学习过程也可以和基础知识学习过程结合起来,很多经典ic设计教材都是从基础知识开始讲起,一步一步进阶模拟ic设计的。这个过程比较推荐P.R.Gray的《模拟集成电路分析与设计》,当然最好是英文原版,翻译版本错误多多,容易把初学者带沟里,这本教材的分析推导过程无比详细,能够跟着推导一遍的话绝对收获无穷,从基础的工艺,器件模型,基本放大电路到模拟电路的精髓---运算放大器每一部分都是ic设计的核心基础。其它经典模拟ic教材还有Allen的《CMOS analog circuit design》,拉扎维的《Design of Analog CMOS Integrated Circuits》等等。 模拟ic课程以后就可以进入到射频集成电路的设计课程,这里也有很多经典教材,拉扎维的《射频微电子》,托马斯李的《CMOS射频集成电路设计》,还有清华池保永编写的《CMOS

射频基础知识知识讲解

第一部分 射频基础知识 目录 第一章与移动通信相关的射频知识简介 (1) 1.1 何谓射频 (1) 1.1.1长线和分布参数的概念 (1) 1.1.2射频传输线终端短路 (3) 1.1.3射频传输线终端开路 (4) 1.1.4射频传输线终端完全匹配 (4) 1.1.5射频传输线终端不完全匹配 (5) 1.1.6电压驻波分布 (5) 1.1.7射频各种馈线 (6) 1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 无线电频段和波段命名 (9) 1.3 移动通信系统使用频段 (9) 1.4 第一代移动通信系统及其主要特点 (12) 1.5 第二代移动通信系统及其主要特点 (12) 1.6 第三代移动通信系统及其主要特点 (12) 1.7 何谓“双工”方式?何谓“多址”方式 (12) 1.8 发信功率及其单位换算 (13) 1.9 接收机的热噪声功率电平 (13) 1.10 接收机底噪及接收灵敏度 (13) 1.11 电场强度、电压及功率电平的换算 (14) 1.12 G网的全速率和半速率信道 (14) 1.13 G网设计中选用哪个信道的发射功率作为参考功率 (15) 1.14 G网的传输时延,时间提前量和最大小区半径的限制 (15)

1.15 GPRS的基本概念 (15) 1.16 EDGE的基本概念 (16) 第二章天线 (16) 2.1天线概述 (16) 2.1.1天线 (16) 2.1.2天线的起源和发展 (17) 2.1.3天线在移动通信中的应用 (17) 2.1.4无线电波 (17) 2.1.5 无线电波的频率与波长 (17) 2.1.6偶极子 (18) 2.1.7频率范围 (19) 2.1.8天线如何控制无线辐射能量走向 (19) 2.2天线的基本特性 (21) 2.2.1增益 (21) 2.2.2波瓣宽度 (22) 2.2.3下倾角 (23) 2.2.4前后比 (24) 2.2.5阻抗 (24) 2.2.6回波损耗 (25) 2.2.7隔离度 (27) 2.2.8极化 (29) 2.2.9交调 (31) 2.2.10天线参数在无线组网中的作用 (31) 2.2.11通信方程式 (32) 2.3.网络优化中天线 (33) 2.3.1网络优化中天线的作用 (33) 2.3.2天线分集技术 (34) 2.3.3遥控电调电下倾天线 (1) 第三章电波传播 (3) 3.1 陆地移动通信中无线电波传播的主要特点 (3) 3.2 快衰落遵循什么分布规律,基本特征和克服方法 (4)

相关主题