搜档网
当前位置:搜档网 › 三角函数题型分类总结

三角函数题型分类总结

三角函数题型分类总结
三角函数题型分类总结

专题 三角函数题型分类总结

一 求值问题

类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4

sin 5

θ=

,θ是第二象限角,求cos ,tan θθ

类型2 给值求值 例1 已知2tan =θ,求(1)

θ

θθθsin cos sin cos -+;(2)θθθθ2

2cos 2cos .sin sin +-的值.

练习

1、sin330?= tan690° = o

585sin =

2、(1)α是第四象限角,12

cos 13

α=

,则sin α= (2)若4sin ,tan 05

θθ=->,则cos θ= . (3)已知△ABC 中,12

cot 5

A =-

,则cos A = . (4) α是第三象限角,2

1)sin(=-πα,则αcos = )25cos(απ

+=

3、(1) 已知sin 5

α=

则44sin cos αα-= .

(2)设(0,)2

π

α∈,若3sin 5α=

)4

π

α+= . (3)已知3(

,),sin ,25

π

απα∈=则tan()4π

α+=

4、下列各式中,值为

2

3

的是( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5. (1)sin15cos75cos15sin105+= (2)cos 43cos77sin 43cos167o

o

o

o

+= 。 6.(1) 若sin θ+cos θ=

1

5

,则sin 2θ= (2)已知3

sin()45

x π-=,则sin 2x 的值为

(3) 若2tan =α ,则

α

αα

αcos sin cos sin -+=

7. 若角α的终边经过点(12)P -,,则αcos = tan 2α=

8

.已知cos(

)2

?+=

,且||2

π

?<,则tan ?= 9.

cos 2πsin 4αα=?

?- ?

?

?cos sin αα+= 10.已知5

3

)2cos(=

-

π

α,则αα22cos sin -的值为 ( )

A .257

B .2516-

C .259

D .25

7-

11.已知sin θ=-13

12,θ∈(-

2π,0),则cos (θ-4π

)的值为 ( ) A .-

26

27 B .2627 C .-26217 D .26

217

二 最值问题 相关公式

两角和差公式;二倍角公式;化一公式

例 求函数3sin 4cos y x x =+的最大值与最小值 例 求函数2

3sin 4sin 4y x x =+-的最大值与最小值 例.求函数2

1sin cos (sin cos )y x x x x =++++的值域。

练习

1.函数()sin cos f x x x =最小值是 。

2.函数()(1)cos f x x x =,02

x π

≤<

,则()f x 的最大值为

3.函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ??

-

????

上的最小值是2-,则ω的最小值等于 5.设02x π??

∈ ???

,,则函数22sin 1sin 2x y x +=的最小值为 .

6.动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )

A .1 B

C

D .2

7.

2()sin cos f x x x x

=+在

,42ππ??

????

上的最大值是

( )

C.

3

2

三 单调性问题 相关公式:

(1) 正余弦函数的单调性; (2)化一公式

例 已知函数2

πππ()12sin 2sin cos 888f x x x x ??????=-+

+++ ? ? ??

????

?.求函数()f x 的单调增区间. 练习

1.函数]),0[()26

sin(2ππ

∈-=x x y 为增函数的区间是 ( ).

A. ]3,

0[π

B. ]127,12[ππ

C. ]6

5,3[π

π D. ],65[ππ 2.函数sin y x =的一个单调增区间是 ( )

A .ππ??- ?44??,

B .3ππ?? ?44??

C .3π??π ?2??

D .32π??

π

?2??

3.函数()sin ([,0])f x x x x π=∈-的单调递增区间是 ( ) A .5[,]6ππ--

B .5[,]66ππ--

C .[,0]3π-

D .[,0]6

π- 4. 设函数()sin ()3f x x x π?

?

=+

∈ ???

R ,则()f x ( ) A .在区间2736ππ??

?

???,上是增函数

B .在区间2π?

?

-π-????

上是减函数 C .在区间34

ππ??????

,上是增函数

D .在区间536

ππ??????

,上是减函数

四.周期性问题

相关公式:

二倍角公式;化一公式;两角和差公式 公式:(1) 正(余)弦型函数sin()(,0)y A x A ω?ω=+>的最小正周期2T π

ω

=

(2)正切型函数

tan()(0)y A x ωφω=+>的最小正周期T π

ω

=

, 例1 已知函数2

πππ()12sin 2sin cos 888f x x x x ??????=-++++ ? ? ??

?????

,求函数()f x 的最小正周期.

例2 函数()|sin |f x x =的周期是 。

结论:一般情况,函数|()|f x 的周期将减半。 方法总结:求函数的周期,必须将函数化为

sin()y A x k ωφ=++的形式才可以

练习

1.下列函数中,周期为

2

π

的是 ( ) A .sin

2x y = B .sin 2y x = C .cos 4

x

y = D .cos 4y x = 2.()cos 6f x x πω??

=-

??

?

的最小正周期为

5

π

,其中0ω>,则ω= 3.函数|2

sin |x

y =的最小正周期是 .

4.(1)函数x x x f cos sin )(=的最小正周期是 .

(2)函数)(1cos 22R x x y ∈+=的最小正周期为 .

5.(1)函数()sin 2cos 2f x x x =-的最小正周期是

(2)函数()(1)cos f x x x =+的最小正周期为 (3). 函数()(sin cos )sin f x x x x =-的最小正周期是 . (4)函数x x x x f cos sin 322cos )(-=的最小正周期是 . 6.函数1)4

(cos 22

--

x y 是 ( )

A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为

2

π的奇函数 D. 最小正周期为2π

的偶函数

7.函数2

(sin cos )1y x x =++的最小正周期是 . 五 对称性问题 以正弦型函数

sin()(,0)y A x A ω?ω=+>为例,说明对称问题的解法:

(1)求对称中心,令x k ωφπ+=,解得x ,写为(,0)x 的形式,即对称中心; (2)求对称轴,令2

x k π

ωφπ+=+

,解得0x ,则直线0x x =即为对称轴;

(3)若函数是奇函数,则必有(0)0f =,即sin 0φ=,故k φπ=;

若函数是偶函数,则必有(0)f A =±,即sin 1φ=±,故2

k π

φπ=+

例 2sin(2)3

y x π

=+的对称中心是 ,对称轴方程是 .

练习

1.函数4sin(2)3

y x π

=+图像的对称轴方程可能是 ( )

A .6

x π

=-

B .12

x π

=-

C .6

x π

=

D .12

x π

=

2.下列函数中,图象关于直线3

π

=x 对称的是 ( )

A )32sin(π

-

=x y B )62sin(π-=x y C )62sin(π+=x y D )6

2sin(π

+=x y 3.函数πsin 23y x ??

=+

??

?

的图象 ( ) A.关于点π03

?? ???

,对称 B.关于直线π4x =

对称 C.关于点π04??

???

,对称 D.关于直线π

3

x =

对称

4.如果函数3cos(2)y x φ=+的图像关于点4(

,0)3

π

中心对称,那么φ的最小值为 ( ) (A)6π (B) 4π (C) 3π (D) 2

π

5.已知函数y =sin ????x -π12cos ???

?x -π

12,则下列判断正确的是 ( ) A .此函数的最小正周期为2π,其图象的一个对称中心是????π12,0

B .此函数的最小正周期为π,其图象的一个对称中心是????π

12,0 C .此函数的最小正周期为2π,其图象的一个对称中心是????

π6,0 D .此函数的最小正周期为π,其图象的一个对称中心是????π6,0 六.图象变换问题

函数sin()(,0)y A x A ω?ω=+>中,A 叫振幅,周期2T π

ω

=

,φ叫初相,它的图象可以经过函数

sin y x =的图象经过平移,伸缩变形得到,具体方法是:

(1)纵向伸缩:是由A 的变化引起的.A >1,伸长;A <1,缩短.

(2)横向伸缩:是由ω的变化引起的.ω>1,周期变小,故横坐标缩短;ω<1,周期变大,故横坐标伸长.

(3)横向平移:是由φ的变化引起的.?>0,左移;?<0,右移. (法则:左+右-)

说明:上述3种变换的顺序可以是任意的,特别注意,在进行横向平移时考虑x 前的系数,比如

cos 2y x =向右平移

3π个单位,应得到2cos 2()cos(2)33

y x x ππ=-=-的图象 例 描述如何由sin y x =的图像得到3sin(2)4

y x π

=-

的图像。

例 将函数sin 2y x =的图象向左平移4

π

个单位, 再向上平移1个单位,所得图象的函数解析式是( ).

A.cos 2y x =

B.2

2cos y x = C.)4

2sin(1π

++=x y D.22sin y x =

例 已知函数()sin()(,0)4

f x x x R π

??=+

∈>的最小正周期为π,为了得到函数()cos g x x ?=的图

象,只要将()y f x =的图象

A 向左平移

8π个单位长度 B 向右平移8π

个单位长度 C 向左平移4π个单位长度 D 向右平移4

π

个单位长度例 若将函数()tan 04y x πωω?

?

=+> ??

?

的图像向右平移

6π个单位长度后,与函数tan 6y x πω?

?=+ ??

?的图

像重合,则ω的最小值为 A .

1

6

B.

1

4

C.

13

D.

12

练习

1.函数y =cos x (x ∈R)的图象向左平移

2

π

个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 2.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3

π

个单位长度,再把所得图象上所有点的横坐

标缩短到原来的1

2

倍(纵坐标不变),得到的图象所表示的函数是

3.将函数sin 2y x =的图象向左平移4

π

个单位, 再向上平移1个单位,所得图象的函数解析式是

4.要得到函数sin y x =的图象,只需将函数cos y x π??

=- ?3??

的图象向 平移 个单位 5.已知函数()sin()(,0)4

f x x x R π

ωω=+

∈>的最小正周期为π,将)(x f y =的图像向左平移||?个单

位长度,所得图像关于y 轴对称,则?的一个值是 ( ) A

2π B 83π C 4π D 8

π 6.将函数()3sin f x x x =-的图象向左平移 m (m > 0)个单位,所得到的图象关于 y 轴对称,则 m 的最小正值是 ( )

A. π6

B. π

3 C. 2π3 D. 5π6 7.若函数()θ+=x y sin 2的图象向右平移

6

π

个单位后,它的一条对称轴是4π=x ,则θ的一个可能的值是

A .

125π B .3π C .6π D .12

π

七.识图问题

例 已知函数()sin()(,0,||)2f x A x A π

ωφωφ=+><

的图像如图所示,则712

f π

??

= ???

总结:对于根据图像,求()sin()(,0,||)2

f x A x A π

ωφωφ=+><的表达式的题型,三个参数的确定方法:

(1) 根据最大(小)值求A ; (2) 根据周期求ω;

(3) 根据图中的一个点的坐标求φ,根据已知φ的范围确定值 (4) 一般先求周期、振幅,最后求?。

例 (2010天津文)

5y Asin x x R 66ππω???

=∈????

右图是函数(+)()在区间-,上的图象,

为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点 (A)向左平移3

π个单位长度,再把所得各点的横坐标缩短到原来的1

2倍,纵

坐标不变

(B) 向左平移

个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移6

π个单位长度,再把所得各点的横坐标缩短到原来的1

2倍,纵坐标不变

(D) 向左平移6

π

个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

例 函数y =-xc os x 的部分图象是( )

例 已知a 是实数,则函数()1sin f x a ax =+的图象不可能...

是 ( )

练习

1.函数

π

sin2

3

y x

??

=-

?

??

在区间

π

π

2

??

??

??

,的简图是()

2、在同一平面直角坐标系中,函数])

2

0[

)(

2

3

2

cos(π

π

+

=x

x

y的图象和直线

2

1

=

y的交点个数是A0 B1 C2 D4

3.已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=

A. 1

B. 2

C. 1/2

D. 1/3

4.下列函数中,图象的一部分如右图所示的是()

(A)sin

6

y x

π

??

=+

?

??

(B)sin2

6

y x

π

??

=-

?

??

(C)cos4

3

y x

π

??

=-

?

??

(D)cos2

6

y x

π

??

=-

?

??

5.已知函数f(x)=2sin(ωx+φ)的图象如图所示,则)

12

7

(

π

f=

6.已知函数f(x)=A sin(ωx+?)(A>0,ω>0,x∈R)在一个

x

-

y

2

1

-

4

π

4

周期内的图象如图所示,求直线y =3与函数f (x )图象的所有交点的坐标。

7、已知函数()f x =Acos(x ω?+)的图象如图所示,2

()23

f π

=-

,则(0)f =( )

A.23-

B. 23

C.- 12

D. 1

2

8、(2009辽宁卷文)已知函数()sin()(0)f x x ω?ω=+>的图象如图所示, 则ω =

解三角形题型总结

解三角形题型分类解析 类型一:正弦定理 1、计算问题: 例1、(2013?北京)在△ ABC 中,a=3, b=5 , sinA=2,贝U sinB= ________ 3 a + b + c = sin A sin B sin C 例2、已知.'ABC中,.A =60 , 例3、在锐角△ ABC中,内角A, B, C的对边分别为a, b, c,且2asinB= 7b. 求角A的大小; 2、三角形形状问题 例3、在ABC中,已知a,b,c分别为角A, B, C的对边, a cos A 1)试确定-ABC形状。 b cosB 2)若—=c°s B,试确定=ABC形状。b cos A 4 )在.ABC中,已知a2 ta nB=b2ta nA,试判断三角形的形状。 5)已知在-ABC中,bsinB=csinC,且sin2 A =sin2 B sin2 C ,试判断三角形的形状。 例4、(2016年上海)已知MBC的三边长分别为3,5,7,则该三角形的外接圆半径等于 __________ 类型二:余弦定理 1、判断三角形形状:锐角、直角、钝角 在厶ABC中, 若a2b2c2,则角C是直角; 若a2b2 ::: c2,则角C是钝角; 若a2b2c2,则角C是锐角. 例1、在厶ABC中,若a=9,bT0,c=12,则厶ABC的形状是______________ , 2、求角或者边 例2、(2016 年天津高考)在△ABC 中,若AB= 13 ,BC=3, Z C =120’ 则AC=. 例3、在△ ABC中,已知三边长a=3 , b=4 , c=—37 ,求三角形的最大内角.

例4、在厶ABC中,已知a=7,b=3,c=5,求最大的角和sinC? 3、余弦公式直接应用 例5、:在也ABC中,若a2=b2+c2+bc ,求角A 例6、:(2013重庆理20)在厶ABC中,内角A B, C的对边分别是a,b,c, 且a2+ b2+、、2 ab= c2. (1)求C 例7、设厶ABC的内角A , B , C所对的边分别为 a , b , c .若(a- c)(a ? b ? c) =ab , 则角C二例8 (2016年北京高考) 在ABC中,a2c^b^ . 2ac (1)求/ B的大小; (2 )求、、.2 cosA - cosC 的最大值. 类型三:正弦、余弦定理基本应用 例1.【2015高考广东,理11】设ABC的内角A , B , C的对边分别为a , b , c ,若a = <::'3 , 1 n sin B = —,C = 一,则b =. 2 6 例 2. (a c) J=1,贝q B等于。 ac 例3.【2015高考天津,理13】在厶ABC中,内角A,B,C所对的边分别为a,b,c,已知 MBC 的面积为3、'15 , b—c =2,cos A =-1,则a 的值为. 4 1 例 4.在厶ABC中,sin(C-A)=1 , sinB= ,求sinA=。 3 例5.【2015高考北京,理12】在厶ABC 中, c=6,则sin2A = sin C

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是 。 2.若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ??? ?上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高一三角函数题型总结

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2. 2. 3. 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) 33 (D)± 3 3.) 4. ) 5.) * 6.)

三角函数诱导公式 诱导公式可概括为把 απ ±?k 2 的三角函数值转化成角α的三角函数值。(k 指奇数或者偶数, α相当锐角) 口诀“奇变偶不变,符号看象限。”其中奇偶是指2 π 的奇数倍还是偶数倍,变与不变指函数名称的变化。 公式一:=+)2sin(απk =+)2c o s (απk =+)2t a n (απk

三角函数诱导公式练习题 1.若(),2,5 3 cos παππα<≤= +则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5 4 - 2.sin (-6 π 19)的值是( ) A 3 6 )= . 10.α是第四象限角,,则αsin 等于________. 13 12 cos =α

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

解三角形题型总结原创

解三角形题型总结 ABC ?中的常见结论和定理: 一、 内角和定理及诱导公式: 1.因为A B C π++=, 所以sin()sin ,cos()cos , tan()tan A B C A B C A B C +=+=-+=-; sin()sin ,cos()cos ,tan()tan A C B A C B A C B +=+=-+=-; sin()sin ,cos()cos ,tan()tan B C A B C A B C A +=+=-+=- 因为,22A B C π++= 所以sin cos 22A B C +=,cos sin 22 A B C +=,………… 2.大边对大角 3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°; (3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.

四、面积公式: (1)12a S ah = (2)1()2 S r a b c =++(其中r 为三角形内切圆半径) (3)111sin sin sin 222 S ab C bc A ac B === 五、 常见三角形的基本类型及解法: (1)已知两角和一边(如已知,,A B 边c ) 解法:根据内角和求出角)(B A C +-=π; 根据正弦定理 R C c B b A a 2sin sin sin ===求出其余两边,a b (2)已知两边和夹角(如已知C b a ,,) 解法:根据余弦定理2 2 2 2cos c a b ab C =+-求出边c ; 根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据内角和定理求角)(C A B +-=π. (3)已知三边(如:c b a ,,) 解法:根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据余弦定理的变形ac b c a B 2cos 2 22-+=求角B ; 根据内角和定理求角)(B A C +-=π (4)已知两边和其中一边对角(如:A b a ,,)(注意讨论解的情况) 解法1:若只求第三边,用余弦定理:222 2cos c a b ab C =+-; 解法2:若不是只求第三边,先用正弦定理R C c B b A a 2sin sin sin ===求B (可能出现一解,两解或无解的情况,见题型一); 再根据内角和定理求角)(B A C +-=π;. 先看一道例题: 例:在ABC ?中,已知0 30,32,6===B c b ,求角C 。(答案:045=C 或0135)

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案) 阳光老师:祝你学业有成 一、选择题(本大题共30小题,共150.0分) 1.点在函数的图象上,则m等于 A. 0 B. 1 C. D. 2 【答案】C 【解析】 【分析】本题主要考查了正弦函数的性质,属于基础题由题意知,求得m 的值. 【解答】解:由题意知, 所以, 所以. 2.用五点法画,的图象时,下列哪个点不是关键点 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的作法,属于基础题. 熟练掌握五点法作图即可. 【解答】 解:用“五点法”画,的简图时, 横坐标分别为, 纵坐标分别为0,1,0,,0, 故选A. 3.函数y x,x的大致图象是

A. B. C. D. 【答案】B 【解析】 【分析】 本题主要考查三角函数的图像,属于基础题利用“五点法”画出函数图像即可得出答案. 【解答】 解:“五点法”作图: x0 0100 10121 故选B. 4.用“五点法”作出函数的图象,下列点中不属于五点作图中的五个关 键点的是 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的画法以及余弦函数的性质,属于基础题. 分别令,,,,得,3,4,3,2,即可得到五点,再对照选项,即可得到答案. 【解答】 解:,分别令,,,,得,3,4,3,2,

所以五个关键点为,,,,, 可知A不属于. 故选A. 5.已知函数的图象与直线 恰有四个公共点,,,,其中,则 A. B. 0 C. 1 D. 【答案】A 【解析】 【分析】 本题考查了三角函数图象的作法及利用导数求函数图象的切线方程,属于较难题. 由三角函数图象及利用导数求函数图象的切线方程可得:切点坐标为,切线方程为:,又切线过点,则,即,得解. 【解答】 解:由 得 其图象如图所示,

三角函数解三角形题型归类

三角函数解三角形题型归类 一知识归纳: (一)任意角、弧度制及任意角的三角函数 1.角的概念 (1)任意角:①定义:角可以看成平面内 绕着端点从一个位置旋转到另一个位置所成的 ;②分类:角按旋转方向分为 、 和 . (2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S = . (3)象限角:使角的顶点与 重合,角的始边与 ,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制 (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个 ,负角的弧度数是一个负数 ,零角的弧度数是 . (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad , 1 rad =? ?? ?? ? 180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12 lr

=12 |α|·r 2. 3.任意角的三角函数 (1)定义:设α是一个任意角,它的终边与单位圆交于点 P (x ,y ),那么sin α= ,cos α= ,tan α = . (2)任意角α的终边与单位圆交于点P (x ,y )时,sin α =y ,cos α=x ,tan α=y x (x ≠0) 4.三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. (二)公式概念 1.三角函数诱导公式? ?? ???k 2π+α(k ∈Z)的本质 奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时把α看成是锐角). 2.两角和与差的三角函数公式 (1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β?sin αsin β; (3)tan(α±β)=tan α±tan β1?tan αtan β. 3.二倍角公式 (1)sin 2α=2sin αcos α; (2)cos 2α=cos 2 α-sin 2 α=2cos 2 α-1=1-2sin 2 α,

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

初中三角函数知识点题型总结+课后练习

锐角三角函数知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4 5、0 锐角三角函数题型训练 类型一:直角三角形求值 1.已知Rt △ABC 中,,12,4 3 tan ,90== ?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.已知A ∠是锐角,17 8 sin = A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:

1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B . 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则 tan EFC ∠的值为 ( ) A.34 B.43 C.35 D. 4 5 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若1tan 5 DBA ∠= ,则AD 的长为( )A .2 C .1 D .4. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD = 3 16求∠ B 的度数及边B C 、AB 的长. 例2.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,?=3 sin A (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B . 例3.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5. 求:sin ∠ABC 的值. 对应训练 1.(2012?重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号) 2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形 对应练习: 1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 特殊角的三角函数值 例1.求下列各式的值 ?-?+?30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0- 3 3 tan30°-tan45°= 0 30tan 2345sin 60cos 221 ??? ? ???-?+?+= ?-?+?60tan 45sin 230cos 2 tan 45sin 301cos 60?+? -? = B

必修四三角函数和三角恒等变换知识点及题型分类的总结

三角函数知识点总结 1、任意角: 正角: ;负角: ;零角: ; 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定()*n n α ∈N 所在象限的方法:先把各象限均分n 等份, 再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象 限对应的标号即为n α 终边所落在的区域. 5、 叫做1弧度. 6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 7、弧度制与角度制的换算公式: 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l= .S= 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距 离是() 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:. 12、同角三角函数的基本关系:(1) ; (2) ;(3) 13、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

三角函数题型分类总结

专题 三角函数题型分类总结 三角函数公式一览表 ............................................................................................................... 错误!未定义书签。 一 求值问题 ........................................................................................................................................................... - 1 - 练习 ................................................................................................................................................................. - 1 - 二 最值问题 ........................................................................................................................................................... - 2 - 练习 ................................................................................................................................................................. - 3 - 三 单调性问题 ....................................................................................................................................................... - 3 - 练习 ................................................................................................................................................................. - 3 - 四.周期性问题 ........................................................................................................................................................ - 4 - 练习 ................................................................................................................................................................. - 4 - 五 对称性问题 ....................................................................................................................................................... - 5 - 练习 ................................................................................................................................................................. - 5 - 六.图象变换问题 .................................................................................................................................................... - 6 - 练习 ................................................................................................................................................................. - 7 - 七.识图问题 ......................................................................................................................................................... - 7 - 练习 ................................................................................................................................................................. - 9 - 一 求值问题 类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4 s i n 5 θ=,θ是第二象限角,求cos ,tan θθ 类型2 给值求值 例1 已知2tan =θ,求(1) θ θθθsin cos sin cos -+;(2)θθθθ2 2cos 2cos .sin sin +-的值. 练习 1、sin 330?= tan 690° = o 585sin = 2、(1)α是第四象限角,12 cos 13 α=,则sin α= (2)若4 sin ,tan 05 θθ=- >,则cos θ= . (3)已知△ABC 中,12 cot 5 A =-,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) 已知5 sin ,5 α= 则44sin cos αα-= .

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

最新数学必修四三角函数题型分类

三角函数题型分类总结 题型一:求值(1)直接求值:一般角→0至360度之间的角→第一象限的角 (2)已知sin A ,求cos A 或tan A :1sin 22 =+ααcon α α αcon sin tan = 记住两类特殊的勾股数:3、4、5;5、12、13 (3)运用公式化简求值(4)齐次式问题(5)终边问题(6)三角函数在各象限的正负性 1、sin330?= tan690° = o 585sin = 2、(1)(07全国Ⅰ) α是第四象限角,12 cos 13 α= ,则sin α= (2)(09北京文)若4 sin ,tan 05 θθ=->,则cos θ= . (3) (07陕西) 已知sin 5 α= 则44sin cos αα-= . (4)(07浙江)已知cos( )2 π ?+= ,且||2 π ?<,则tan ?= 3、α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 4、 若2tan =α ,则α αα αcos sin cos sin -+= 5、 2sin cos sin 2cos =-+α αα α,则α在第_____象限; 6、 (08北京)若角α的终边经过点(12)P -,,则αcos = 7、已知 3)tan(=+απ,则)(απα-3sin )cos(?-=________ 8、3 1tan -=α,则αααα2 2cos 3cos sin 2sin -+=_________. 9、若2 cos 3 α= ,α是第四象限角,则sin(2)sin(3)cos(3)απαπαπ-+---=___ 10、已知sin 4πα??+= ???,则3sin 4πα?? - ??? 值为________; 11、αααsin 3cos sin 2=-,则αcos =________; 1、设)34sin(π-=a ,)35cos(π-=b ,)4 11 tan(π-=c ,则 ( ) A .a b c << B .a c b << C .b c a << D .b a c << 2、已知tan160o =a ,则sin2000o 的值是 ( )

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

高考三角函数重要题型总结

1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]122ππ -上的值域。 2.已知函数2()sin sin()(0)2f x x x x πωωωω=+f 的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求函数f (x )在区间[0,23 π]上的取值范围. 3.(本小题满分12分)已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n =g (Ⅰ)求tan A 的值; (Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. 4..(本小题满分13分)已知函数()sin()(00π)f x A x A ??=+><<,,x ∈R 的最 大值是1,其图像经过点π1 32M ?? ???,. (1)求()f x 的解析式; (2)已知π02αβ??∈ ??? ,,,且3()5f α=,12()13f β= ,求()f αβ-的值. 5. 已知函数2()sin cos cos 2.222 x x x f x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ω???π++>>∈的形式,并指出()f x 的周期; (Ⅱ)求函数17()[, ]12 f x ππ在上的最大值和最小值 6..已知函数x x x x f sin 2 sin 2cos )(22+-=. (I )求函数)(x f 的最小正周期; (II )当)4,0(0π ∈x 且524)(0=x f 时,求)6 (0π+x f 的值。 7.已知1tan 3 α=-,cos β=,(0,)αβπ∈ (1)求tan()αβ+的值; (2)求函数())cos()f x x x αβ=-++的最大值. 8.已知函数())cos()f x x x ω?ω?=+-+(0π?<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2 . (Ⅰ)求π8f ?? ???的值; (Ⅱ)将函数()y f x =的图象向右平移π 6 个单位后,得到函数()y g x =的图象,

高中数学三角函数常见习题类型及解法

高中数学三角函数常见习题类型及解法 高考试题中的三角函数题相对比较传统,难度较低,位置靠前,重点突出。因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。 一、知识整合 1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题. 2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数sin()y A x ω?=+的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化. 二、高考考点分析 20XX 年各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。主要考察内容按综合难度分,我认为有以下几个层次: 第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。如判断符号、求值、求周期、判断奇偶性等。 第二层次:三角函数公式变形中的某些常用技巧的运用。如辅助角公式、平方公式逆用、切弦互化等。 第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。如分段函数值,求复合函数值域等。 三、方法技巧 1.三角函数恒等变形的基本策略。 (1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2 θ=tanx ·cotx=tan45°等。 (2)项的分拆与角的配凑。如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2 x ;配凑角:α=(α+β)-β,β= 2 β α+- 2 β α-等。 (3)降次与升次。(4)化弦(切)法。 (4)引入辅助角。asin θ+bcos θ=22b a +sin(θ+?),这里辅助角?所在象限由a 、b 的符号确定,?角的值由tan ?= a b 确定。 2.证明三角等式的思路和方法。 (1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。 (2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。 3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用

相关主题