搜档网
当前位置:搜档网 › 高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)
高中数学数列知识点总结(精华版)

一、数列

1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.

⑵在数列中同一个数可以重复出现.

⑶项a n 与项数n 是两个根本不同的概念.

⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列

2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.

3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.

4.数列的前n 项和与通项的公式

①n n a a a S +++= 21; ②???≥-==-)2()1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法.

6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.

①递增数列:对于任何+∈N n ,均有n n a a >+1.

②递减数列:对于任何+∈N n ,均有n n a a <+1.

③摆动数列:例如: .,1,1,1,1,1 ---

④常数数列:例如:6,6,6,6,…….

⑤有界数列:存在正数M 使+∈≤N n M a n ,.

⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.

1、已知*2()156

n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125); 2、数列}{n a 的通项为1

+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a )

; 3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);

4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是

()(答:A )

二、 等差数列

1、 等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,

那么这个数列叫做等差数列,这个常数叫等差数列的公差。即)2,*(1≥∈=--n N n d a a n n 且.(或)*(1N n d a a n n ∈=-+).

2、 (1)等差数列的判断方法:

①定义法:)(1常数d a a n n =-+?{}a n 为等差数列。

② 中项法: a a a n n n 212+++=?{}a n 为等差数列。

③通项公式法:b an a n +=(a,b 为常数)?{}a n 为等差数列。

④前n 项和公式法:Bn n A s n +=2(A,B 为常数)?{}a n 为等差数列。

如设{}n a 是等差数列,求证:以b n =

n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。

(2)等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。公式变形为:b an a n +=. 其中a=d, b= a 1-d.

如1、等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +);

2、首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833

d <≤) (3)等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。公式变形为:Bn n A s n +=2,其中A=2d

,B=2

1d a -.注意:已知n,d, a 1,a n , s n 中的三者可以求另两者,即所谓的“知三求二”。

如 数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152

n S =-,则1a =_,n =_(答:13a =-,10n =);

(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:2*2*12(6,)1272(6,)

n n n n n N T n n n n N ?-≤∈?=?-+>∈??).

(4)等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2

a b A +=。 提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )

3.等差数列的性质:

(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+

=+-是关于n 的二次函数且常数项为0. 等差数列{a n }中,

n S n 是n 的一次函数,且点(n ,n S n )均在直线y =2d x + (a 1-2

d )上 (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

(3)对称性:若{}a n 是有穷数列,则与首末两项等距离的两项之和都等于首末两项之和.当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.

如1、等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____(答:27);

2、在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则A 、1210,S S S 都小于0,1112,S S 都大于0 B 、1219,S S S 都小于0,2021,S S 都大于0 C 、125,S S S 都小于0,67,S S 都大于0 D 、1220,S S S 都小于0,2122,S S 都大于0 (答:B )

(4) 项数成等差,则相应的项也成等差数列.即),,...(,,*2N m k a a a m k m k k ∈++成等差.若

{}n a 、{}n b 是等差数列,

则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、232,,n n n n n S S S S S --(公差为d n 2)

.,…也成等差数列,而{}n a a 成等比数列;若{}n a 是

等比数列,且0n a >,则{lg }n a 是等差数列.

如 等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 。(答:225)

(5)在等差数列{}n a 中,当项数为偶数2n 时, )(1a a n n n n s ++=;nd s s =-奇偶;a a n

n s s 1+=奇偶. 项数为奇数21n -时, a n n n s )12(12-=-;a s s 1-=-奇偶 ;n n s s 1-=奇

偶。 如1、在等差数列中,S 11=22,则6a =______(答:2);

2、项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).

(6)单调性:设d 为等差数列{}a n 的公差,则

d>0?{}a n 是递增数列;d<0?{}a n 是递减数列;d=0?{}a n 是常数数列

(7)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且()n n

A f n

B =,则2121

(21)(21)(21)n n n n n n a n a A f n b n b B ---===--. 如设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若

3

413-+=n n T S n n ,那么=n n b a ___________(答:6287n n --) (8)设a l ,a m ,a n 为等差数列中的三项,且a l 与a m ,a m 与a n 的项距差之比n m m l --=λ(λ≠-1),则a m =λ

λ++1n l a a . (9)在等差数列{ a n }中,S n = a ,S m = b (n >m),则S n m +=

m n m n -+(a -b). 8、已知{}a n 成等差数列,求s n 的最值问题:

① 若01>a ,d<0且满足?????≤≥+0,

01a a n n ,则s n 最大;

②若010且满足?????≥≤+0

,01a a n n ,则s n 最小. “首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增等

差数列中,前n 项和的最小值是所有非正项之和。法一:由不等式组???

? ?????≥≤???≤≥++000011n n n n a a a a 或确定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*

n N ∈。上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?

如1、等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。(答:前13项和最大,最大值为169);

2、若{}n a 是等差数列,首项10,a >200320040a a +>, 200320040a a ?<,则使前n 项和0n S >成立的最大正整数n 是 (答:4006)

(10)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究n m a b =.

三、等比数列

1、等比数列的有关概念:如果数列{}

a n 从第二项起每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫等比数列的公比。即)2,(*1≥∈=-n n q N a a n n (或)(*1

N a a n q n n ∈=+

2、等比数列的判断方法:定义法1(n n a q q a +=为常数),其中0,0n q a ≠≠或11n n n n a a a a +-= (2)n ≥。

如1、一个等比数列{n a }共有21n +项,奇数项之积为100,偶数项之积为120,则1n a +为____(答:56

); 2、数列{}n a 中,n S =41n a -+1 (2n ≥)且1a =1,若n n n a a b 21-=+ ,求证:数列{n b }是等比数列。

3、等比数列的通项:11n n a a q -=或n m n m a a q -=。

如 设等比数列{}n a 中,166n a a +=,21128n a a -=,前n 项和n S =126,求n 和公比q . (答:6n =,12

q =或2) 4、等比数列的前n 和:当1q =时,1n S na =;当1q ≠时,1(1)1n n a q S q

-=-11n a a q q -=-。如 等比数列中,q =2,S 99=77,求9963a a a +++ (答:44)

提醒:等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择求和公式的形式,当不能判断公比q 是否为1时,要对q 分1q =和1q ≠两种情形讨论求解。

5、等比中项:如果a 、G 、b 三个数成等比数列,那么G 叫做a 与b 的等比中项,即G=ab ±.

提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个如已知两个正数,()a b a b ≠的等差中项为A ,等比中项为B ,则A 与B 的大小关系为______(答:A >B )

提醒:(1)等比数列的通项公式及前n 项和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为…,22,,,,a a a aq aq q q …(公比为q );但偶数个数成等比时,不能设为…33,,,aq aq q

a q a ,…,因公比不一定为正数,只有公比为正时才可如此设,且公比为2q 。如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求此四个数。(答:15,,9,3,1或0,4,8,16)

6、等比数列的性质:

(1)对称性:若{}a n 是有穷数列,则与首末两项等距离的两项之积都等于首末两项之积.

即当m n p q +=+时,则有q p n m a a a a ..=,特别地,当2m n p +=时,则有2.p n m a a a =.

如 1、在 等比数列{}n a 中,3847124,512a a a a +==-, 公比q 是整数,则10a =___(答:512);

2、各项均为正数的等比数列{}n a 中,若569a a ?=,则3132310log log log a a a ++

+=

(答:10)。

(2) 若{ a n }是公比为q 的等比数列,则{| a n |}、{a 2

n }、{ka n }、{n

a 1}也是等比数列,其公比分别为| q |}、{q 2}、{q}、{q

1}。若{}{}n n a b 、成等比数列,则{}n n a b 、{}n n a b 成等比数列; 若{}n a 是等比数列,且公比1q ≠-,则数列232,,n n n n n S S S S S -- ,…也是等比数列。当1q =-,且n 为偶数时,数列232,,n n n n n S S S S S -- ,…是常数数列0,它不是等比数列. 若{}a n 是等比数列,且各项均为正数,则{}

a n a log 成等差数列。若项数为3n 的等比数列(q ≠-1)前n 项和与前n 项积分别为S 1与T 1,次n 项和与次n 项积分别为S 2与T 2,最后n 项和与n 项积分别为S 3与T 3,则S 1,S 2,S 3成等比数列,T 1,T 2,T 3亦成等比数列 如1、已知0a >且1a ≠,设数列{}n x 满足1l o g 1l o g a n a n x x +=+

(*)n N ∈,且12100100x x x +++=,则101102200x x x +++= . (答:100100a );

2、在等比数列}{n a 中,n S 为其前n 项和,若140,1330101030=+=S S S S ,则20S 的值为______(答:40)

(3) 单调性:若10,1a q >>,或10,01a q <<<则{}n a 为递增数列;若10,1a q <>,或10,01a q ><< 则{}n a 为递减数列;若0q <,则{}n a 为摆动数列;若1q =,则{}n a 为常数列.

(4) 当1q ≠时,b aq q

a q q a S n n n +=-+--=1111,这里0a

b +=,但0,0a b ≠≠,这是等比数列前n 项和公式的一个特征,据此很容易根据n S ,判断数列{}n a 是否为等比数列。如若{}n a 是等比数列,且3n n S r =+,则r = (答:-1)

(5) m n m n m n n m S S q S S q S +=+=+.如设等比数列}{n a 的公比为q ,前n 项和为n S ,若12,,n n n S S S ++成等差数列,则q 的值为_____(答:-2)

(6) 在等比数列{}n a 中,当项数为偶数2n 时,S qS =偶奇;项数为奇数21n -时,1S a qS =+奇偶.

(7)如果数列{}n a 既成等差数列又成等比数列,那么数列{}n a 是非零常数数列,故常数数列{}n a 仅是此数列既成等差数列又成等比数列的必要非充分条件。

如设数列{}n a 的前n 项和为n S (N ∈n ), 关于数列{}n a 有下列三个命题:①若)(1N ∈=+n a a n n ,则{}n a 既是等差数列又是等比数列;②若()R ∈+=b a n b n a S n 、2,

则{}n a 是等差数列;③若()n n S 11--=,则{}n a 是等比数列。这些命题中,真命题的序号

是 (答:②③)

⑧等差数列中,S m+n =S m +S n +mnd ;等比数列中,S m+n =S n +q n S m =S m +q m S n ;

四、难点突破

1.并不是所有的数列都有通项公式,一个数列有通项公式在形式上也不一定唯一.已知一个数列的前几项,这个数列的通项公式更不是唯一的.

2.等差(比)数列的定义中有两个要点:一是“从第2项起”,二是“每一项与它前一项的差(比)等于同一个常数”.这里的“从第2项起”是为了使每一项与它前面一项都确实存在,而“同一个常数”则是保证至少含有3项.所以,一个数列是等差(比)数列的必要非充分条件是这个数列至少含有3项.

3.数列的表示方法应注意的两个问题:⑴{ a n }与a n 是不同的,前者表示数列a 1,a 2,…,a n ,…,而后者仅表示这个数列的第n 项;⑵数列a 1,a 2,…,a n ,…,与集合{ a 1,a 2,…,a n ,…,}不同,差别有两点:数列是一列有序排布的数,而集合是一个有确定范围的整体;数列的项有明确的顺序性,而集合的元素间没有顺序性.

4.注意设元的技巧时,等比数列的奇数个项与偶数个项有区别,即:

⑴对连续奇数个项的等比数列,若已知其积为S ,则通常设…,aq

2-, aq 1-, a ,aq ,aq 2,…;

⑵对连续偶数个项同号..的等比数列,若已知其积为S ,则通常设…,aq 3-, aq 1-, aq ,aq 3

,…. 5.一个数列为等比数列的必要条件是该数列各项均不为0,因此,在研究等比数列时,要注意a n ≠0,因为当a n = 0时,虽有a 2n =

a 1-n · a 1+n 成立,但{a n }不是等比数列,即“

b 2= a ·

c ”是a 、b 、 c 成等比数列的必要非充分条件;对比等差数列{a n },“2b = a + c ”是a 、b 、 c 成等差数列的充要条件,这一点同学们要分清.

6.由等比数列定义知,等比数列各项均不为0,因此,判断一数列是否成等比数列,首先要注意特殊情况“0”.等比数列的前n 项和公式蕴含着分类讨论思想,需分分q = 1和q ≠1进行分类讨论,在具体运用公式时,常常因考虑不周而出错.

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-) 2(,) 1(,11n S S n a a n n n 注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化(求通 项) 例2:已知数列}{n a 的前n 项和???≥+==2,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:定义法;函数单调性法 (2)最大(小)项问题: 单调性法;图像法 (3)数列的周期性:(注意与函数周期性的联系)

例3:已知数列}{n a 满足????? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处)

例题: 例4(等差数列的判定或证明):已知数列{a n }中,a 1=35,a n =2-1 a n -1 (n ≥2,n ∈N * ),数列{b n }满足b n =1a n -1 (n ∈N *). (1)求证:数列{b n }是等差数列; (2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 ∵a n =2-1 a n -1 (n ≥2,n ∈N * ),b n =1 a n -1 . ∴n ≥2时,b n -b n -1=1a n -1-1 a n -1-1 = 1? ?? ??2-1a n -1-1 -1 a n -1-1 =a n -1 a n -1-1-1a n -1-1 =1. ∴数列{b n }是以-5 2 为首项,1为公差的等差数列.

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1 .数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或 其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第项. 2.数列的通项公式 一个数列{a n }的与之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 与通项a n 的关系为: =n a ?????≥==21n n a n 4.求数列的通项公式的其它方法 ⑴公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1.根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴-3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解:⑴ a n =(-1) n )12)(12(12+--n n n ⑵ a n =)673(21 2+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得

高中数学数列知识点总结精华版

一、数列 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列. ⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念. ⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列 2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =. 3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式 ①n n a a a S +++= 21; ②???≥-==-)2()1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法. 6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列. ①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,. ⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 1、已知*2()156 n n a n N n =∈+,则在数列{}n a 的最大项为(答:125); 2、数列}{n a 的通项为1 +=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为(答:n a <1+n a ); 3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-); 4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ()(答:A )

高中数列知识点总结

数列知识点总结 第一部分 等差数列 一 定义式: 1n n a a d --= 二 通项公式:n a 1()(1)m a n m d a n d =+-??=+-? 一个数列是等差数列的等价条件:b an a n +=(a ,b 为常数),即n a 是关于n 的一次函数,因为n Z ∈,所以n a 关于n 的图像是一次函数图像的分点表示形式。 三 前n 项和公式: 1()2n n n a a S +=na =中间项 1(1)2 n n na d -=+ 一个数列是等差数列的另一个充要条件:bn an S n +=2(a ,b 为常数,a ≠0),即n S 是关于n 的二次函数,因为n Z ∈,所以n S 关于n 的图像是二次函数图像的分点表示形式。 四 性质结论 1.3或4个数成等差数列求数值时应按对称性原则设置, 如:3个数a-d,a,a+d ; 4个数a-3d,a-d,a+d,a+3d 2.a 与b 的等差中项2 a b A +=; 在等差数列{}n a 中,若m n p q +=+,则 m n p q a a a a +=+;若2m n p +=,则2m n p a a a +=; 3.若等差数列的项数为2() +∈N n n ,则,奇偶nd S S =- 1 +=n n a a S S 偶奇 ; 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1 -=n n S S 偶奇 4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。设12,n A a a a =++?+,122n n n B a a a ++=++?+, 21223n n n C a a a ++=++?+,则有C A B +=2; 5.10a >,m n S S =,则前2m n S +(m+n 为偶数)或12 m n S +±(m+n 为奇 数)最大 第二部分 等比数列 一 定义:1 (2,0,0){}n n n n a q n a q a a -=≥≠≠?成等比数列。 二 通项公式:11-=n n q a a ,n m n m a a q -= 数列{a n }是等比数列的一个等价条件是: (1),(0,01n n S a b a b =-≠≠,) 当0q >且0q ≠时,n a 关于n 的图像是指数函数图像的分点表示形式。

高中数学数列知识点总结(经典)

数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界 项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由10 0n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. (7)项数为奇数12-n 的等差数列{} n a ,有

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2.{}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=? 例.{}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________

高中数列知识点总结

高中数列知识点总结 Written by Peter at 2021 in January

数列知识点总结 第一部分 等差数列 一 定义式: 1n n a a d --= 二 通项公式:n a 1 ()(1)m a n m d a n d =+-??=+-? 一个数列是等差数列的等价条件:b an a n +=(a ,b 为常数),即n a 是关于n 的一次函数,因为n Z ∈,所以n a 关于n 的图像是一次函数图像的分点表示形式。 三 前n 项和公式: 一个数列是等差数列的另一个充要条件:bn an S n +=2(a ,b 为常数,a ≠0),即n S 是关于n 的二次函数,因为n Z ∈,所以n S 关于n 的图像是二次 函数图像的分点表示形式。 四 性质结论 或4个数成等差数列求数值时应按对称性原则设置, 如:3个数a-d,a,a+d ; 4个数a-3d,a-d,a+d,a+3d 2.a 与b 的等差中项2 a b A +=; 在等差数列{}n a 中,若m n p q +=+,则 m n p q a a a a +=+;若2m n p +=,则2m n p a a a +=; 3.若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =- 1+=n n a a S S 偶 奇 ; 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1 -=n n S S 偶奇 4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。设 12,n A a a a =++?+,122n n n B a a a ++=++?+, 21223n n n C a a a ++=++?+,则有C A B +=2; 5.10a >,m n S S =,则前2m n S +(m+n 为偶数)或12 m n S +±(m+n 为奇 数)最大 第二部分 等比数列 一 定义:1 (2,0,0){}n n n n a q n a q a a -=≥≠≠?成等比数列。 二 通项公式:11-=n n q a a ,n m n m a a q -=

人教版高中数列知识点总结(知识点+例题)

人教版高中数列知识点总结(知识点+例题) Lesson6 数列 知识点1:等差数列及其前n 项 1.等差数列的定义 2.等差数列的通项公式 如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式a n =a 1+(n -1) d . 3.等差中项 a +b 如果 A =2 ,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:a n =a m +(n-m )d ,(n ,m ∈N *) . (2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *) ,则 (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为. (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *) 是公差为的等差数列. 5.等差数列的前n 项和公式 n (a 1+a n )n (n -1) 设等差数列{a n }的公差d ,其前n 项和S n 或S n =na 1+22. 6.等差数列的前n 项和公式与函数的关系 d d 2? S n 2+ a 1-2n . 数列{a n }是等差数列?S n =An 2+Bn ,(A 、B 为常数) . ?? 7.等差数列的最值 在等差数列{a n }中,a 1>0,d 0,则S n 存在最小值. [难点正本疑点清源] 1.等差数列的判定 (1)定义法:a n -a n -1=d (n ≥2) ; (2)等差中项法:2a n +1=a n +a n +2.

重点高中数学数列知识点总结

重点高中数学数列知识点总结

————————————————————————————————作者:————————————————————————————————日期:

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100 n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由1 00n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1 +=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, 1-=n n S S 偶奇.

高中数列知识大总结(绝对全)

第六章 数列 重难点击 本章重点:数列的概念,等差数列,等比数列的定义,通项公式和前n 项和公式及运用,等差数列、等比数列的有关性质。注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、函数与方程思想、分类与讨论思想、化归与转化思想等。 知识网络 第一课时 数列 四、数列通项n a 与前n 项和n S 的关系 1.∑== ++++=n i i n n a a a a a S 1 321 2.?? ? ≥-==-2 11 1n S S n S a n n n 课前热身 3.数列{}n a 的通项公式为 n n a n 2832 -=,则数列各项中最小项是( B ) A .第4项 B .第5项 C .第6项 D .第7项 4.已知数列{}n a 是递增数列,其通项公式为n n a n λ+=2 ,则实数λ的取值范围是),3(+∞- 5.数列{}n a 的前n 项和142 +-=n n S n ,,则?? ?≥-=-=2 5 212n n n a n 数列与正整数集关系 等差数列 等比数列 特殊数列求和方法 公式法 倒序相加法 错位相减法 裂项相消法 n 定义 通项公式中项 前项的和 递推公式 通项公式 数列

题型一 归纳、猜想法求数列通项 【例1】根据下列数列的前几项,分别写出它们的一个通项公式 ⑴7,77,777,7777,… ⑶1,3,3,5,5,7,7,9,9… 解析:⑴将数列变形为 ), 110(9 7-?), 110 (9 72 -)110 (9 73 -,, )110 (9 7-n ⑶将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,…。可得数列的通项公式为 2 ) 1(1n n n a -++ = 点拨:本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项数的一般规律,从而求得通项。 题型二 应用?? ? ≥-==-) 2()1(1 1n S S n S a n n n 求数列通项 例2.已知数列{}n a 的前n 项和n S ,分别求其通项公式. ⑴23-=n n S 解析:⑴当123,11 11=-===S a n 时, 当)23 ()23(,21 1---=-=≥--n n n n n S S a n 时 1 3 2-?=n 又11=a 不适合上式,故???≥?==-) 2(32)1(11 n n a n n 三、利用递推关系求数列的通项 【例3】根据下列各个数列{}n a 的首项和递推关系,求其通项公式 ⑴141 , 2 12 11-+ == +n a a a n n 解析:⑴因为1 41 2 1 -+=+n a a n n ,所以 )1 21121 ( 21 1 41 2 1+- -= -= -+n n n a a n n 所以)31 11(2112-=-a a )51 31(2123-=-a a 43111()257 a a -= -

2019年高一数列知识点总结

2019年高一数列知识点总结 数列是高一数学的重点,以下是整理的高一数列知识点总结,欢迎参考阅读! 求数列通项公式常用以下几种方法: 一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。 例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。 解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n—1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。 二、已知数列的前n项和,用公式 S1(n=1) Sn—Sn—1(n2)

例:已知数列{an}的前n项和Sn=n2—9n,第k项满足5 (A)9(B)8(C)7(D)6 解:∵an=Sn—Sn—1=2n—10,∴5<2k—10 此类题在解时要注意考虑n=1的情况。 三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。 例:已知数列{an}的前n项和Sn满足an=SnSn—1(n2),且a1=—,求数列{an}的通项公式。 解:∵an=SnSn—1(n2),而an=Sn—Sn—1,SnSn—1=Sn—Sn —1,两边同除以SnSn—1,得———=—1(n2),而—=—=—,∴{—}是以—为首项,—1为公差的等差数列,∴—=—,Sn=—, 再用(二)的方法:当n2时,an=Sn—Sn—1=—,当n=1时不适合此式,所以, —(n=1)

—(n2) 四、用累加、累积的方法求通项公式 对于题中给出an与an+1、an—1的递推式子,常用累加、累积的方法求通项公式。 例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12—nan2+an+1an=0,求数列{an}的通项公式 解:∵(n+1)an+12—nan2+an+1an=0,可分解为[(n+1)an+1—nan](an+1+an)=0 又∵{an}是首项为1的正项数列,∴an+1+an≠0,∴—=—,由此得出:—=—,—=—,—=—,…,—=—,这n—1个式子,将其相乘得:∴—=—, 又∵a1=1,∴an=—(n2),∵n=1也成立,∴an=—(n∈N*) 五、用构造数列方法求通项公式

高三复习数列知识点总结

数列专题解析方法 一、数列通项公式的求解 类型一:观察法 例 1: 写出下列数列的一个通项公式 (1)3,5,9,17,33 ,; (2)11,22,33,44, ; 2345 (3)7,77.777.7777. (4)2, 1,10, 17,26, ; 3 7 9 11 (5)3,9,25,65, ; 2 4 8 16 类型二:公式法 (1) a n a1 (n 1)d a m (n m)d 例 2:已知等差数列a n 中,a1 1,a3 3,求a n 的通项公式 n 1 n m (2)a n a1q n1 a m q n m 例 3:已知等比数列a n 中,a2 6,6a1 a3 30, 求a n 的通项公式类型三:利用“ S n ”求解 S1,(n 1) (1) (1) a n n S n S n 1(n 2)

例 4:已知数列a n 的前n项和S n n2 24n(n N* ),求a n 的通项公例 5:已知数列a n 的前n项和为S n,且有a1 3,4S n 6a n a n 1 4S n 1,求a n 的通项公式 例 6:已知数列a n 的前n 项和为S n,且有a1 1,a n 1 2S n 1(n 1), 求a n 的通项公式 例 7:已知正数数列a n 的前n项和为S n ,且对任意的正整数n满足 2 S n a n 1, 求a n 的通项公式 (2)S n S n 1的推广 例 8:设数列a n满足a13a232a33n 1a n n,n N*求a n的通项公 3 式 类型四:累加法 形如a n 1 a n f (n)或a n a n 1 f (n)型的递推数列(其中f(n)是关于n 的函数) (1)若 f (n)是关于n的一次函数,累加后可转化为等差数列求和例 9:a n 1 a n 2n 1,a1 2, 求a n 的通项公式 (2)若 f (n)是关于n的指数函数,累加后可转化为等比数列求和例 10:a n 1 a n 2n,a1 2, 求a n 的通项公式 (3)若 f (n) 是关于n 的二次函数,累加后可分组求和 例11:a n 1 a n n n 1,a1 1, 求a n 的通项公式 (4)若 f (n)是关于n的分式函数,累加后可裂项求和 例 12:a n 1 a n 21,a1 1, 求a n的通项公式 n 2 2n n 类型五:累乘法 形如an1f(n)或an f (n)型的递推数列(其中f(n)是关于n的函数) a n a n 1

高中数列知识大总结(绝对全)

第六章 数列 二、重难点击 本章重点:数列的概念,等差数列,等比数列的定义,通项公式和前n 项和公式及运用,等差数列、等比数列的有关性质。注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、函数与方程思想、分类与讨论思想、化归与转化思想等。 知识网络 四、数列通项n a 与前n 项和n S 的关系 1.∑== ++++=n i i n n a a a a a S 1 321 2.?? ?≥-==-2 1 1 1 n S S n S a n n n 课前热身 3.数列{}n a 的通项公式为 n n a n 2832 -=,则数列各项中最小项是( B ) A .第4项 B .第5项 C .第6项 D .第7项 4.已知数列{}n a 是递增数列,其通项公式为n n a n λ+=2 ,则实数λ的取值范围是),3(+∞- 5.数列{}n a 的前n 项和142 +-=n n S n ,,则?? ?≥-=-=2 5 21 2 n n n a n

题型一 归纳、猜想法求数列通项 【例1】根据下列数列的前几项,分别写出它们的一个通项公式 ⑴7,77,777,7777,… ⑶1,3,3,5,5,7,7,9,9… 解析:⑴将数列变形为 ),110(9 7-?),110(972-)110(973-,, )110(97 -n ⑶将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,…。可得数列的通项公式为 2 )1(1n n n a -++= 解析:⑴当123,11 11=-===S a n 时, 当)23 ()23(,21 1---=-=≥--n n n n n S S a n 时 132-?=n 又11=a 不适合上式,故???≥?==-) 2(3 2)1(1 1 n n a n n 解析:⑴因为141 2 1 -+ =+n a a n n ,所以 )1 21 121(2114121+--=-=-+n n n a a n n 所以)31 11(2112-=-a a )51 31(2123-=-a a 43111 ()257 a a -=- …,…, 1111 ()22321 n n a a n n --=--- 以上)1(-n 个式相加得 )1 211(211--= -n a a n 即:243 42411--=--=n n n a n 课外练习 解:因为

高中数学必修等差数列知识点总结和题型归纳

等差数列 一.等差数列知识点: 知识点1、等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 知识点3、等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数 知识点4、等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2) 1(1-+ = 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2 b a A += 或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点6、等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是:ΛΛ=+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示: 4444444444484444444444476443 4421Λ4434421Λ444344421Λk k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为() *2n n ∈N ,则 ()21n n n S n a a +=+,且 S S nd -=偶奇, 1 n n S a S a +=奇偶.②若项数为() *21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶, 1 S n S n = -奇偶(其中n S na =奇,()1n S n a =-偶). 二、题型选析: 题型一、计算求值(等差数列基本概念的应用) 1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 2 2.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( ) A .49 B .50 C .51 D .52 3.等差数列1,-1,-3,…,-89的项数是( )

(推荐)高中数学数列知识点精华总结

数 列 专 题 ◆ 考点一:求数列的通项公式 1. 由a n 与S n 的关系求通项公式 由S n 与a n 的递推关系求a n 的常用思路有: ①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式; 数列的通项a n 与前n 项和S n 的关系是a n =? ?? ?? S 1,n =1, S n -S n -1,n≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可 并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . 2.由递推关系式求数列的通项公式 由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. ◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1 a n =f(n),常用累乘法求通项; ◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通 项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列; 2)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n +1 转为用迭加法求解. 3) ◆ 倒数变形

3.数列函数性质的应用 数列与函数的关系 数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性. 函数思想在数列中的应用 (1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法. (3)数列{a n }的最大(小)项的求法 可以利用不等式组? ?? ?? a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组? ?? ?? a n -1≥a n , a n ≤a n +1,找到 数列的最小项. [例3] 已知数列{a n }.(1)若a n =n 2 -5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值. (2)若a n =n 2 +kn +4且对于n ∈N * ,都有a n +1>a n 成立.求实数k 的取值范围. 考点二:等差数列和等比数列 等差数列 等比数列 定义 a n -a n -1=常数(n≥2) a n a n -1=常数(n≥2) 通项公式 a n =a 1+(n -1)d a n =a 1q n -1 (q≠0)

高中数学必修等差数列知识点总结和题型归纳

二、题型选析: 题型一、计算求值(等差数列基本概念的应用) 1、.等差数列{a n }的前三项依次为 a-6 ,2a -5 , -3a +2 ,则 a A . -1 B . 1 C .-2 D. 2 2.在数列 {a n } 中, a 1=2,2a n+1=2a n +1,则 a 101的值为 ( ) A .49 B .50 C . 51 D .52 3.等差数列 1,- 1,- 3,?,- 89的项数是( ) 等差数列 一.等差数列知识点: 知识点 1、等差数列的定义 : ①如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示 知识点 2、等差数列的判定方法 : ②定义法:对于数列 a n ,若a n 1 a n d (常数) ,则数列 a n 是等差数列 ③等差中项:对于数列 a n ,若2a n 1 a n a n 2,则数列 a n 是等差数列 知识点 3、等差数列的通项公式 : 的首项是 a 1 ,公差是 d ,则等差数列的通项为 该公式整理后是关于 n 的一次函数 n 项和 : n (n 1) ⑥ S n na 1 d 2 ④如果等差数列 a n a n a 1 (n 1)d 知识点 4、等差数列的前 ⑤ Sn n (a 1 a n ) 2 对于公式 2整理后是关于 n 的没有常数项的二次函数 知识点 5、等差中项 : ⑥如果 a , A , b 成等差数列,那么 A 叫做 a 与b 的等差中项即: A a b 或2A a b 在一个等差数列中,从第 2 项起,每一项(有穷等差数列的末项除外)都是它的前一项 与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点 6、等差数列的性质 : ⑦等差数列任意两项间的关系:如果 且 m n ,公差为 d ,则有 a n a m (n ⑧ 对于等差数列 a n ,若 n m p a n 是等差数列的第 n 项, a m 是等差数列的第 m 项, m )d q ,则 a n a m a p a q 也就是: a 1 a n a 2 a n 1 a 3 a n 2 ⑨若数列 a n 是等差数列, 等差数列如下图所示: S n 是其前 n 项的和, k N ,那么 S k , S 2k S k , S 3k S 2k 成 S 3k a 1 a 2 a 3 S k a k a k 1 S 2k a 2k S k a 2k 1 S 3k S 2k a 3k ①若项数为 2n n * , 则 S 2n n a n a n 1 , 且 S 偶 S 奇 S 奇 nd , 奇 an . ②若项数为 2n 1 n S 偶 a n 1 S 奇 n (其中 S 奇 na n , S 偶 n 1 a n ). S 偶 n 1 奇 等差数列的前 n 项和的性质: 10、 ,则 S 2n 1 2n 1 a n ,且 S 奇 S 偶 a n , 等于( )

(完整版)高中数列知识大总结(绝对全)

. 第一课时 数列 知识要点 一、 数列的概念 1.数列是按一定顺序排列的一列数,记作,,,,321 n a a a a 简记 n a . 2.数列 n a 的第n 项n a 与项数n 的关系若用一个公式)(n f a n 给出,则这个公式叫做这个数列的通项公式。 3.数列可以看做定义域为 N (或其子集)的函数,当自变量由小到大依次取值时对应的一列函数值,它的图像是一群孤立的点。 二、数列的表示方法 数列的表示方法有:列举法、图示法、解析法(用通项公式表示)和递推法(用递推关系表示)。 三、 数列的分类 1. 按照数列的项数分:有穷数列、无穷数列。 2. 按照任何一项的绝对值是否不超过某一正数分:有界数列、无界数列。 3. 从函数角度考虑分:递增数列、递减数列、常数列、摆动数列。 四、数列通项n a 与前n 项和n S 的关系 1. n i i n n a a a a a S 1 321 2. 2 1 1 1 n S S n S a n n n 课前热身 1.数列1,3,6,10,…的一个通项公式为 ( ) A.)1(2 n n a n B .12 n a n C .2)1( n n a n D .2 ) 1( n n a n 2.在数列 ,55,34,21,,8,5,3,2,1,1x 中,x 的值为( ) A .10 B .11 C .12 D .13 3.数列 n a 的通项公式为 n n a n 2832 ,则数列各项中最小项是( ) A .第4项 B .第5项 C .第6项 D .第7项 4.已知数列 n a 是递增数列,其通项公式为n n a n 2 ,则实数 的取值范围是 5.数列 n a 的前n 项和142 n n S n ,,则 典例精析 题型一 归纳、猜想法求数列通项 【例1】根据下列数列的前几项,分别写出它们的一个通项公式 ⑴7,77,777,7777,…

最全数列知识点归纳

最全数列知识点归纳 注意:(1)数列与集合的差异;(2)数列中只有很少一部分是等差或者等比数列,只是我们高中阶段仅仅研究与等差、等比相关联的特殊数列而已。 等差(等比)数列定义:从第2项起,每一项与它前一项的差(比)等于同一个常数。 注:常数,即与n 无关的数 等差数列判断方法: (1)1n n n a a d +-=≥(2) (2)112n n n a a a +-+= (3)An+B n a =(4)2n S An Bn =+ 等比数列判断方法: (1) 1(0)n n n a q q a +=≠≥(2) (2)2 11n n n a a a +-?=(3)n-1n 1q kq (0)n n a a a q ==≠或 (4)n k+kq q n S =-(不为0或1) 数列的通项公式研究的是数列的通项n a (代表项)与序号n 之间的函数关系()f n n a =。 类型一:. eg8:若给出一般数列的某几项或无穷项111 11234 --(),,,...; 类型二:.若已知数列就为特殊的等差、等比数列,或者能够转换成等差、等比数列的情况,公式法 类型三:已知数列n S 与n 一个函数关系。递推法 (注意n a 的表示形式,思考是否需要分类表示) 11 , 1, 2n n n a n a s s n -=?=?-≥? 类型四:已知此数列的递推关系(1n n a a +与的关系)()1n n a a f n +=+的形式,求n a 。 累加法 类型五:已知此数列的递推关系(1n n a a +与的关系)为()1n n a a f n +=?的形式,求n a 。 累乘法 类型六:已知此数列的递推关系为1()n n a pa f n p q +=+(、为常数) 等的形式,求n a 。 构造法 1(1) 32;n n a a +=+1(2) 321;n n a a n +=+-1(3) 33;n n n a a +=+1(4) 3321;n n n a a n +=++- 类型七:已知此数列的递推关系为11n n n n ka a pa qa p q ++=+(、为常数) 等的形式,求n a 。 构造法 11111111n n n n n n n n n n n n n n n n ka a pa qa p q ka a pa qa k a a a a a a a a ++++++++=+?=+?=+ 类型八:已知此数列的递推关系为111n n n n n n n pa m ka a pa qa m a ka t ++++=++?=+等的形式,求n a 。 特征方程 {}112200(); (1),,1(2), (3),n n n n a x px m x x kx t px m x x kx t a x x a a x ??-+=?+=+??+-??????-?? 令方程有两根 则是等比数列 方程有两相等根 则是等差数列方程无实数根则是周期数列 类型九:已知此数列的递推关系为1n n n pa a ka m +=+等的形式,求n a 。取倒数法 11111n n n n n n n pa ka m m k a ka m a pa a a p ++++=?=?=++ ()123f n n n a a a a =+++ +=。 若已知数列就为特殊的等差、等比数列,或者能够转换成等差、等比数列的情况,公式法 类型二:. 若出现“等差、等比加减组合型”的通项,分组求和法 类型三:若出现“等差、等比乘除组合型”的通项,错位相减法 类型四:n a =分式可以使用裂项相消:如:111n(n+1)n (n+1)=-= 裂项相消法 类型五:12-1n n a a a a +=+= 可以使用倒序相加: 类型六:既非等差也非等比但正负相间求和可以使用并项法求和。如:1123456(1)n n +-+-+-+ +- 如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。即:2 b a A +=或 b a A +=2

相关主题