搜档网
当前位置:搜档网 › 一元函数微分学测试内容和重点

一元函数微分学测试内容和重点

一元函数微分学测试内容和重点
一元函数微分学测试内容和重点

一元函数微分学测试内容和重点

第二章:一元函数微分学

考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的

切线和法线导数和微分的四则运算基本初等函数的导

数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值

定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的值和最小值弧微分曲率的概念曲率圆

与曲率半径

考试要求:

1、理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分

3、了解高阶导数的概念,会求简单函数的高阶导数

4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数

5、理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理

6、掌握用洛必达法刚求未定式极限的方法。

7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数值和最小值的求法及其应用。

8、会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当f``(x)>0时,f(x)的图形是凹的;当f``(x)<0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

9、了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径。

新大纲变化:一元函数微分学部分新加了两个知识点(1) 曲率圆(2) 函数图形凸凹性的判断

解析及应对策略:在原来对曲率以及曲率半径的概念以及计算掌握上,新添加了曲率圆,实际上有曲率半径就肯定对应有一个相应的曲率圆,所以曲率圆可以当作是曲率半径的延伸,这个知识点地增加从考试要求上难度并没有增

加。大家可以注意到,虽然在考试内容中提到了曲率圆的概念,但在考试要求中却并未强调对该知识点的应用,只是对概念要求了解。大纲做这样的调整,只是为了完善我们的知识体系。大家在复习曲率有关内容的时候,心中一定要有曲率圆这样一个概念,把曲率圆也要加入到相关的题目当中,从整体上去把握。

新大纲在原有凸凹性要求的基础上进一步强调了凸凹性的判断方法,首先明确大纲做这样的修订与往年相比没有也不会增加难度,但是由于突出强调这个判断方法,除了使叙述更加规范外,更强调了用函数导数判断凹凸性的重要性,有可能会在此问题上用选择填空形式来考核同学们对该知识点的理解。函数的凸凹性本来就是非常重要的一项内容也是经常考到的内容,所以,需要我们在复习这部分内容的时候特要多理解,多练习,多总结。

第三章:一元函数积分学

考试内容

原函数和不定积分的概念不定积分的基本性质

基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨

(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用

考试要求

1、理解原函数的概念,理解不定积分和定积分的概念

2、掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法

3、会求有理函数、三角函数有理式和简单无理函数的积分

4、理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式

5、了解反常积分的概念,会计算反常积分

6、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值

新大纲变化:一元函数积分学部分新加了一个知识点:用定积分表达和计算几何量“形心”

解析与应对策略: 08年大纲在原有要求掌握用定积分表达和计算一些几何量与物理量的基础上,加入了用定积分计算几何量“形心”。客观地说这个新知识点,是一元函数积分学在实际中应用中的拓广。在复习相关内容上要注意相似概念的区别。比如:形心的定义及与重心的区别。形心:物体的几何中心(只与物体的几何形状和尺寸有关,与组成

该物体的物质无关)。重心:物体的重力的合力作用点称为物体的重心(与组成该物体的物质有关)。大家在掌握形心定义的基础上要记忆各种坐标系以及各种情况下的计算公式,平时练习的过程中多运算,提高自己在这方面的熟练程度。

一元函数微分学典型例题

一元函数微分学典型例题 1. 有关左右极限题 求极限??? ?????+++→x x sin e e lim x x x 41 012 ● 根据左右极限求极限, ● 极限x x e lim 1 →, x x sin lim x 0 →,x tan lim x 2 π→,x cot lim x 0→,x cot arc lim x 0→,x arctan lim x 1 0→都不存在, ● A )x (f lim A )x (f lim )x (f lim x x x =?==∞ →-∞ →+∞ → ● 【 1 】 2. 利用两个重要极限公式求1∞ 型极限 x sin x ) x (lim 20 31+→ ● 0→)x (?,e )) x (lim() x (=+??1 1 ● A )x (f lim =0→)x (?,A )x (f ) x (e ])) x (lim[(=+??11 ● 【 6e 】 3. 等价无穷小量及利用等价代换求极限 当0x + → (A) 1- (B) ln (C) 1. (D) 1-. ● 等价无穷小定义:如果1=α β lim ,则称β与α失等价无穷小,记为α∽β, ● 0→x 时,(1)n x x a x a x x x x x x x x x e x x x x x n x x ≈ -+≈-≈-+≈-≈---+≈-≈+≈≈≈≈111112 1 16111112 3 ln )(cos sin )ln(arctan tan sin αα

● 当0→)x (?时,)x (sin ?∽)x (?,11-+n )x (?∽ n ) x (?∽∽ ● 【 B 】 4. 利用单调有界准则求极限 设数列{}n x 满足n n x sin x ,x =<<+110π。证明:极限n n x lim ∞→存在,计算1 1n x n n n x x lim ??? ? ??+∞→ ● 利用单调有界准则球数列或者函数极限的步骤:1。证明数列或函数单调;2。证明 数列或函数是有界;3。等式取极限求出极限。 ● 定理单调有界数列必有极限还可以叙述为单调递减有下界数列必有极限,或单调递 增有上界数列必有极限。 ● 61 1 2 -→=?? ? ??e x x sin lim x x ● 【 0;6 1- e 】 5. 判断函数连续与否以及利用函数的连续性解题 设函数f (x )在x =0处连续,下列命题错误的是: (A) 若0()lim x f x x →存在,则f (0)=0. (B) 若0()() lim x f x f x x →+-存在,则f (0)=0. (C) 若0()lim x f x x →存在,则(0)f '存在. (D) 若0()() lim x f x f x x →-- 存在,则(0)f '存 在 【 】 ● 若()()00 x f x f lim x x =→,则称函数()x f 在点0x 处连续。 ● 左连续右连续则连续。 ● 分段函数的分段点不一定是函数的间断点。 ● 判断函数在某点是否连续的步骤:求函数在该点的极限;求函数在该点的函数值;判断 二者是否相等,相等则连续,否则间断。 6.导数的定义式相关题目 设函数 ()x f 在 x=0某领域内有一阶连续导数,且 ()()0 000≠'≠f ,f 。若 ()()()02f h bf h af -+在0→h 时是比h 高阶的无穷小,试确定a, b. ● 函数在某一点导数的定义: ()()()x x f x x f lim x y lim x f x x ??????000 00-+=='→→ ()()()()()0 0000 00 x x x f x f lim h x f h x f lim x f x x h --=-+='→→

2020年考研数学大纲考点:一元函数微分学

2020年考研数学大纲考点:一元函数微分学 在研究生入学考试中,高等数学是数一、数二、数三考试的公共 内容。数一、数三均占56%(总分150分),考察4个选择题(每题4分,共16分)、4个填空题(每题4分,共16分)、5个解答题(总分50分)。数二不考概率论,高数占78%,考察6个选择题(每题4分,共24分)、4个填空题(每题5分,共20分)、7个解答题(总分72分)。由高数所 占比例易知,高数是考研数学的重头戏,所以一直流传着“得高数者 得数学。”高等数学包含函数、极限与连续、一元函数微分学、一元 函数积分学、多元函数微分学、多元函数积分学、常微分方程和无穷 级数等七个模块,在梳理分析函数、极限与连续的基础上,继续梳理 对一元函数微分学,希望对学员有所协助。 一元函数微分学包含导数与微分、微分中值定理、导数应用三方 面内容。 1、考试内容 (1)导数和微分的概念;(2)导数的几何意义和物理意义;(3)函数 的可导性与连续性之间的关系;(4)平面曲线的切线和法线;(5)导数 和微分的四则运算(6)基本初等函数的导数;(7)复合函数、反函数、 隐函数以及参数方程所确定的函数的微分法;(8)高阶导数;(9)一阶 微分形式的不变性;(10)微分中值定理;(11)洛必达(L’Hospital)法则;(12)函数单调性的判别;(12)函数的极值;(13)函数图形的凹凸性、拐点及渐近线;(14)函数图形的描绘;(15)函数的值和最小值;(16)弧微分、曲率的概念;(17)曲率圆与曲率半径(其中16、17只要 求数一、数二考试掌握,数三考试不要求)。 2、考试要求 (1)理解导数和微分的概念,理解导数与微分的关系,理解导数的 几何意义,会求平面曲线的切线方程和法线方程,理解函数的可导性 与连续性之间的关系;(2)了解导数的物理意义,会用导数描述一些物

一元函数微分学教案

第二章 一元函数微分学 一、 导数 (一)、导数概念 1、导数的定义: 设函数)(x f y =在点0x 的某个邻域内有定义,当自变量在点0x 处取得改变量x ?时,函数)(x f 取得相应的改变量,)()(00x f x x f y -?+=?,如果当0→?x 时,x y ??的极限存在,即x y x ??→?0lim x x f x x f x ?-?+=→?)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0 )(x x dx x df = 2、根据定义求导数的步骤(即三步曲) ①求改变量)()(x f x x f y -?+=? ②算比值 x y ??x x f x x f ?-?+=)()( ③取极限x y x f y x ??='='→?0lim )(x x f x x f x ?-?+=→?)()(lim 0 例1:根据定义求2 x y =在点3=x 处的导数。 解:223)3(-?+=?x y 2)(6x x ?+?= x x y ?+=??6 6)6(lim lim 0 0=?+=??→?→?x x y x x 3、导数定义的几种不同表达形式 ①x x x x x f x x f x f x ?+=??-?+='→?00000) ()(lim )(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时 =当0)()(lim )(0000x x x f x f x f x ??-='→? ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的定义: 如果当)0(0-+→?→?x x 时,x y ??的极限存在,则称此极限为)(x f 在点0x 为右导数(左

一元函数微分学综合练习题

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

一元函数积分学的应用

一元函数积分学的应用 一元函数积分学研究的是研究函数的整体性态,一元函数积分的本质是计算函数中分划的参数趋于零时的极限。 一元积分主要分为不定积分 ?dx x f )(和定积分? b a dx x f )(。化为函数 图像具体来说,不定积分是已知导数求原函数,也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C 的导数也是f(x)(C 是任意常数)。所以f(x)积分的结果有无数个,是不确定的。而定积分就是求函数f(X)在区间[a,b]中图线下包围的面积,可以说是不定积分在给定区间的具体数值化。因为积分在其它方面应用时一般都有明确的区间,所以本文主要研究定积分的各种应用。 积分的应用十分巧妙便捷,能解决许多不直观、不规则的或是变化类型的问题。故其主要应用在数学上的几何问题和物理上的各种变量问题和公式的证明以及解决一些实际生活问题。 微元法建立积分表达式 在应用微积分于实际问题时,首先要建立积分表达式,一般情况下,只要具备都是给定区间上的非均匀连续分布的量和都具有对区间的可加性这两个条件就都可以用定积分来描述(以下的讨论都是建立在这两个条件下,因此不再提示此条件)。 而建立积分表达式的方法我们一般用微元法。其分为两个步骤:(1)任意分割区间[]b a ,为若干子区间,任取一个子区间[]dx x x +,,求Q

在该区间上局部量的Q ?的近似值dx x f dQ )(=;(2)以dx x f )(为被积式,在],[b a 上作积分即得总量Q 的精确值 ??==b a b a dx x f dQ Q )(。(分割,近似,求和,取极限) 在实际应用中,通过在子区间],[dx x x +上以“匀”代“非匀”或者把子区间],[dx x x +近似看成一点,用乘法所求得的近似值就可以作为Q ?所需要的近似值,即为所寻求的积分微元dx x f dQ )(= 。 定积分在几何中的应用 在几何中,定积分主要应用于平面图形的面积、平面曲线的弧长、已知平行截面面积函数的立体体积、旋转体的侧面积。下面我们来分类讨论: 一、 平面图形的面积 求图形面积是定积分最基本的应用,因为定积分的几何意义就是在给定区间内函数曲线与x 轴所围成图形的面积。而求面积时会出现两种情况:直角坐标情形和极坐标情形。 1、直角坐标情形 在求简单曲边图形(能让函数图像与之重合)的面时只要建立合适的直角坐标系,再使用微元法建立积分表达式,运用微积分基本公式计算定积分,便可求出平面图形的面积。如设曲 y O

数学考研:一元函数微分学的知识点和常考题型

数学考研:一元函数微分学的知识点和常考题型 【大纲内容】 导数和微分的概念 导数的几何意义和物理意义(数三经济意义) 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数(数三不要求)的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分、曲率的概念、曲率圆与曲率半径(数三不要求) 【大纲要求】 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义(数三经济意义),会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3.了解高阶导数的概念,会求简单函数的高阶导数。 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数(数三不要求)以及反函数的导数。

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理(数三了解),了解并会用柯西(Cauchy)中值定理。 6.掌握用洛必达法则求未定式极限的方法。 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。(数三不要求) 【常考题型】 1.导数概念; 2.求给定函数的导数或微分(包括高阶导数)隐函数和由参数方程确定的函数求导; 3.函数的单调性和极值; 4.曲线的凹凸性与拐点; 5.利用微分中值定理证明有关命题和不等式或讨论方程在给定区间内的根的个数; 6.利用洛必达法则求极限; 7.几何、物理、经济等方面的最大值、最小值应用题。解这类问题,主要是确定目标函数和约束条件,判定所讨论区间。

电子科技大学 一元函数积分学检测题(三)

1 2006级 微积分《一元函数积分学》检测题(三) 班级__________________ 学号______ 姓名_____________ 成绩________ (3,15) 1.()()arcsin _________________________________. 一、填空题每小题分共分设则f x f x xdx '==? 2._____________________________.= 4 1 3.____________________.-=? 740 4.sin 2__________________.xdx π =? ()2 05. sin ____________________.x d x t dt dx -=? ()()()()()()()()()()( )()()()()15sin 000 (3,15) sin 1.,1,0,. ;; ; 2.(),(),. ; ;; 二、选择题每小题分共分设则当时是的高阶无穷小低阶无穷小同阶但不等价的无穷小等价无穷小. 设连续则下列结论中正确的是是和的函数是的函数是的函数是常数. x x t s t t x dt x t dt x x x t A B C D f x I t f tx dx A I s t B I s C I t D I αβαβ==+→=??? ( )( )()()()5 226 0023.. cos ;0;11111 (2)();()22下列运算正确的是. x A xdx B dx x C f x dx f x C D d C x x x π π +∞ -∞ ==+'=+=+????? 884 4444 444 tan 4.(),sin ln(,1(tan cos cos ),,,( ).() () () ()设则的大小关系是x x x M x dx N x x dx x P x e x e x dx M N P A M N P B N M P C P M N D M P N π π πππ π----??=+=++??+=+->>>>>>>>??? 2sin 5.()sin ,() ( ). () () () ()设则为正常数;为负常数;恒为零;不为常数. x t x F x e tdt F x A B C D π +=?

[考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编1 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 (2011年试题,一)设则I,J,K的大小关系是( ). (A)I0,f'(x)''>0.令 ,则( ). (A)S123 (B)S213 (C)S312 (D)S231 3 (2012年试题,一)设,则有( )? (A)I123 (B)I321 (C)I231

(D)I213 4 (2008年试题,1)设函数则f'(x)的零点个数是( ).(A)0 (B)1 (C)2 (D)3 5 (1998年试题,二)设f(x)连续,则tf(x2一t2)dt=( ). (A)xf(x2) (B)一xf(x2) (C)2xf(x2) (D)一2xf(x2) 6 (1997年试题,二)设则F(x)( ). (A)为正常数 (B)为负常数 (C)恒为零 (D)不为常数

7 (2010年试题,一)设m,n为正整数,则反常积分的收敛性( ). (A)仅与m有关 (B)仅于n有关 (C)与m,n都有关 (D)与m,n都无关 8 (2009年试题,3)设函数y=f(x)在区间[一1,3]上的图形如图1一3—3所示,则函数435的图形为( ).436 (A)

(B) (C) (D) 9 (2007年试题,一)如图1一3—4,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直 径为2的上、下半圆周,设则下列结沦正确的是( )。 (A)

[考研类试卷]考研数学一(一元函数微分学)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(一元函数微分学)历年真题试卷汇编1 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 (1998年)函数f(x)=(x2一x一2)|x3一x|不可导点的个数是( ) (A)3 (B)2 (C)1 (D)0 2 (1999年)设其中g(x)是有界函数,则f(x)在x=0处( ) (A)极限不存在 (B)极限存在,但不连续 (C)连续,但不可导 (D)可导 3 (2001年)设f(0)=0,则f(x)在点x=0可导的充要条件为( ) 4 (2004年)设函数f(x)连续,且f′(0)>0,则存在δ>0使得( ) (A)f(x)在(0,δ)内单调增加

(B)f(x)在(一δ,0)内单调减少 (C)对任意的x∈(0,δ)有f(x)>f(0) (D)对任意的x∈(一δ,0)有f(x)>f(0) 5 (2005年)设函数则f(x)在(一∞,+∞)内( ) (A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点 (D)至少有三个不可导点 6 (2006年)设函数y=f(x)具有二阶导数,且f′(x)>0,f"(x)>0,△x为自变量x在X0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则( ) (A)0<dy<△y (B)0<△y<dy (C)△y<dy<0 (D)dy<△y<0 7 (2007年)设函数f(x)在x=0连续,则下列命题错误的是( )

8 (1998年)设f(x)连续,则 (A)xf(x2) (B)一xf(x2) (C)2xf(x2) (D)一2xf(x2) 9 (2008年)设函数则f′(x)的零点个数为( ) (A)0 (B)1 (C)2 (D)3 10 (2000年)设f(x),g(x)是恒大于零的可导函数,且f′(x)g(x)一f(x)g′(x)<0,则当a <x<b时,有( ) (A)f(x)g(b)>f(b)g(x) (B)f(x)g(a)>f(a)g(x) (C)f(x)g(x)>f(b)g(b) (D)f(x)g(x)>f(a)g(a)

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

一元函数微积分基本练习题及答案

一、极限题 1、求.)(cos lim 2 1 0x x x → 2、6 sin )1(lim 2 2 x dt e x t x ?-→求极限。 3、、)(arctan sin arctan lim 20x x x x x -→ 4、2 1 0sin lim x x x x ?? ? ??→ 5、? ?+∞ →x t x t x dt e dt e 0 20 2 2 2)(lim 6、 ) 1ln(1 lim -→+x e x x 7、x x x e x cos 11 20 ) 1(lim -→+ 8、 x x x x x x ln 1lim 1+--→ 9、) 1ln()2(sin ) 1)((tan lim 2 30 2 x x e x x x +-→ 10、1 0lim( )3 x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞ →x x e x 12、 )cot 1(lim 2 20x x x -→ 13、[] )1(3sin 1 lim 11x e x x ---→ 14、() ?? ???=≠+=0 021)(3 x A x x x f x 在0=x 点连续,则A =___________ 二、导数题 1、.sin 2 y x x y ''=,求设 2、.),(0y x y y e e xy y x '==+-求确定了隐函数已知方程 3、.)5()(2 3 的单调区间与极值求函数-=x x x f 4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小, 这时底直径与高的比是多少?

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞∞或00型,) ()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107-135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量。 (D ) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A)0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件. (C)充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B ) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点. (C )可导的点,且0)0(='f . (D )可导的点,但0)0(≠'f . 答C 6.设函数f(x )定义在[a ,b]上,判断何者正确?( ) (A )f(x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C)f (x )连续,则f (x)可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x )定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A)0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f (x)定义在[a ,b ]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A)0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f =)(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

成人高考一元函数积分学整理.

一元函数积分学 【知识要点】 1、理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2、熟练掌握不定积分的基本公式。 3、熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换。 4、熟练掌握不定积分的分部积分法。 5、掌握简单有理函数不定积分的计算。 6、理解定积分的概念及其几何意义,了解函数可积的条件 7、掌握定积分的基本性质 8、理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 9、熟练掌握牛顿—莱布尼茨公式。 10、掌握定积分的换元积分法与分部积分法。 11、 . 理解无穷区间的广义积分的概念,掌握其计算方法。 12、掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 1不定积分 定义函数 (x f 的全体原函数称为函数 (x f 的不定积分 , 记作?dx x f (, 并称?微积分号, 函数 (x f 为被积函数, dx x f (为被积表达式, x 为积分变量。因此 ? +=C x F dx x f ( (, 其中 (x F 是 (x f 的一个原函数, C 为任意常数(积分常数。基本积分公式(要求熟练记忆 (1 ?=C dx 0 (2 1(1

11 -≠++=+?a C x a dx x a a . (3 C x dx x +=? ln 1. (4 C a a dx a x x += ?ln 1 1, 0(≠>a a (5 C e dx e x x +=? (6 ?+-=C x xdx cos sin (7 ?+=C x xdx sin cos (8 C x x +=?tan cos 1 2 . (9 C x x +-=?cot sin 1

《高等数学》(上)一元函数微分学复习题

《高等数学》(上)“一元函数微分学”复习题 1.设x x f +=1)(ln ,求)(x f '. 2.设函数)(x f 二阶可导,且0)0(=f ,1)0(='f ,2)0(=''f ,求20)(lim x x x f x -→. 3.设)(x f 在2=x 处连续,且22)(lim 2=-→x x f x ,求)2(f '. 4.若)(sin x f y =,求dy . 5.若函数)(x f 可导,)(sin 2x f y =则 dx dy 为多少? 6.设函数)1ln()(2x x f -=,求)(x f ''. 7.求等边曲线x y 1=在点2) ,2 1(的切线方程. 8.设函数???≥+<=0 ),1ln(0,sin )(x x x x x f ,求)0(-'f 、)0(+'f ,并判断)0(f '是否存在. 9.确定常数a ,b 使函数? ??>-≤+=0,0,13sin )(x b ae x x x f x 在0=x 处可导. 10.求曲线???==t y t x sin 2cos 在3π=t 处的切线方程和法线方程. 11.求由方程0=-+e xy e y 所确定的隐函数的微分dy . 12.设函数x x x y ?? ? ??+=1,求其导数y '. 13.设曲线的参数方程为?????==-t t e y e x 23,求22dx y d . 14.求由方程12 2=-y x 所确立的隐函数)(x y y =的二阶导数22dx y d . 15.设函数)(x f y =由方程4ln 2y x xy =+确定,求() 1,1dx dy . 16.求椭圆442 2=+y x 在点()2,0处的二阶导数22dx y d . 17.设()3,1是曲线2 3bx ax y +=的拐点,求b a ,.

高数一元函数积分学习题及答案

第四章 不定积分 一、是非题: 1.已知()211 arcsin x x -='π+,则?π+=-x dx x arcsin 112. 错 2. 连续函数的原函数一定存在. 对 3. ()()?? =dx x f d dx x f dx d . 错 4. ax y ln =和x y ln =是同一函数的原函数. 对 ()2x x e e y -+=和()2x x e e y --=是同一函数的原函数. 对 5. ()()??=dx x f k dx x kf (k 是常数) 错 二、填空题: 1.()()? ='dx x f x f (C x f +)(ln ). 2.()?=''dx x f x (()C x f x f x x f xd +-'='? )()( ). 3.知()()?+=C x F dx x f ,则()?=+dx b ax f (C b ax F a ++)(1),b a ,为常数. 4.已知 ()?+=C e dx x f x ,则()=??dx x x f sin cos ( C e x +-cos ). 5.已知()[]x dx x f sin ='?,则()=x f (x sin ). 6. 设()x f 、()x f '连续,则() ()[]=+'?dx x f x f 21([]C x f +)(arctan ). 7. 设()x f 的一个原函数为x e -,则()ln f x dx x =?( 1C x + ). 8. 函数(21ln(1)2x C ++)是2 1x x +的原函数. 9. 设()x f x e =,则()ln f x dx x '=?(x C +). 三、选择填空: 1.已知()x F 是()x f 的一个原函数,C 为任意常数,下列等式能成立的是( a ) a .()()?+=C x F x dF b .()()? ='x F dx x F

高等数学讲义-- 一元函数微分学

24 第二章 一元函数微分学 §2.1 导数与微分 (甲)内容要点 一、导数与微分概念 1、导数的定义 设函数)(x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量)()(00x f x x f y -?+=?。如果极限 x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000 存在,则称此极限值为函数)(x f 在0x 处的导数(也称微商),记作0()f x ',或0 x x y =' , x x dx dy =, )(x x dx x df =等,并称函数)(x f y =在点0x 处可导。如果上面的极限不存在,则 称函数)(x f y =在点0x 处不可导。 导数定义的另一等价形式,令x x x ?+=0,0x x x -=?,则 0000 ()() ()l i m x x f x f x f x x x →-'= - 我们也引进单侧导数概念。 右导数:0 000000()()()() ()lim lim x x x f x f x f x x f x f x x x x + + +→?→-+?-'==-? 左导数:0 000000()()()() ()lim lim x x x f x f x f x x f x f x x x x - - -→?→-+?-'==-? 则有 )(x f 在点0x 处可导)(x f ?在点0x 处左、右导数皆存在且相等。 2.导数的几何意义与物理意义 如果函数)(x f y =在点0x 处导数0()f x '存在,则在几何上0()f x '表示曲线)(x f y =在点()(,00x f x )处的切线的斜率。 切线方程:000()()()y f x f x x x '-=-

一元函数微分学

第二章 一元函数微分学 §2.1 导数与微分 一、主要内容 ㈠导数的概念 1.导数: )(x f y =在0x 的某个邻域内有定义, x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000 0)()(lim 0x x x f x f x x --=→ 0 0)(0x x x x dx dy x f y === '=' 2.左导数: 00) ()(lim )(0x x x f x f x f x x --='- →- 右导数:0 00)()(lim )(0x x x f x f x f x x --='+ →+ 定理: )(x f 在0x 的左(或右)邻域上连续在 其内可导,且极限存在; 则: ) (lim )(0 0x f x f x x '='-→-

(或: )(lim )(0 0x f x f x x '='+→+) 3.函数可导的必要条件: 定理: )(x f 在0x 处可导?)(x f 在0x 处连续 4. 函数可导的充要条件: 定 理 : ) (00 x f y x x '=' =存在 )()(00x f x f +-'='?, 且存在。 5.导函数: ),(x f y '=' ),(b a x ∈ )(x f 在),(b a 内处处可导。 y )(0x f ' 6.导数的几何性质: y ? )(0x f ' 是曲线 )(x f y =上点 x ? ()00,y x M 处切线的斜率。 o x 0 ㈡求导法则 1.基本求导公式: 2.导数的四则运算: 1o v u v u '±'='±)( 2o v u v u v u '?+?'='?)( 3o 2v v u v u v u '?-?'=' ?? ? ?? )0(≠v 3.复合函数的导数:

一元函数微分学及其应用练习题与自测题

一元函数微分学及其应用练习题与自测题 习题2-1 导数 1.假定0()f x '存在,则000()()lim h f x ah f x bh h →+--= . 2.求曲线ln y x =在点(,1)e 处的切线方程和法线方程. 3.过点(2,0)-作曲线x y e =的切线,求此切线方程. 4.若函数22,1,1x x y ax b x ?+≤=?+>? 在1x =处可导,求,a b 的值. 5.已知21,0(),0 x e x f x x x ?->?=?≤??,求()f x '. 6.讨论函数21sin , 0()0 , 0 x x f x x x ?≠?=??=?在0x =处的连续性与可导性. 习题2-2 求导法则与求导公式 1.求下列函数的导数: (1)24(1)y x x =++. (2 )y = (3)21sin y x x =. (4 )y = (5 )y e =. (6 )ln(0)y x a =+>. 2.讨论分段函数21cos sin ,0(),0x x x f x x x x ?+>?=??≤? 在分段点0x =处的连续性和可导性. 3.设()f x 可导,求(sin )y f x =的二阶导数22d y dx . 4.求函数2 x y xe =的二阶导数. 5.求函数x y xe =的n 阶导数.

习题2-3 隐函数的导数 由参数方程所确定的函数的导数 相关变化率 1 .求由方程arctan y x =()y y x =的导数; 2.过点(4,2)-作椭圆223x xy y ++=的切线,求此切线方程. 3.求下列函数的导数: (1)1x x y x ??= ?+?? (0x >). (2 )y = 4.求由方程x e xy e +=所确定的函数()y y x =的二阶导数22d y dx . 5.求由参数方程(sin )(1cos ) x a t t y a t =-??=-?(0a >)所确定的函数的二阶导数22d y dx : 6.某人以2/m s 的速度通过一座桥,桥面高出水面20m ,在此人的正下方有一条小船以4/3 m s 的速度在与桥垂直的方向航行,求经5s 后,人与桥相分离的速度. 习题2-4 函数的微分 1.将适当的函数填入下列括号内,使等式成立: (1)d ( )45 x dx -=. (2)d ( )3x e dx -=. 2.求下列函数的微分: (1 )y =. (2)22(1)n n x y x =+. 习题2-5 中值定理 1.函数32()452f x x x x =-+-在区间[0,1]上满足Lagrange 中值定理的ξ= . 2.试用中值定理证明不等式:arctan arctan a b a b -≤-. 3.设()f x 在[0,]a 上连续,在(0,)a 内可导,且()0f a =,证明:至少存在一点(0,)a ξ∈,使()()0f f ξξξ'+=.

相关主题