搜档网
当前位置:搜档网 › 2011年北京大学数学分析试题解答

2011年北京大学数学分析试题解答

2011年北京大学数学分析试题解答
2011年北京大学数学分析试题解答

2011年北京大学研究生入学考试

数学分析试题解答

SCIbird

说明:印象中根据当初论坛上的讨论,北大2011年试题的回忆版与原题多少有些出入,这里根据自己的理解来确定试题。因为对试卷回忆版第5题搞不清楚,所以略去此题。其它试题解答,比较基础的试题就写得相对简略一些,难一些的试题就写得详细一些。试题后的评注是个人对试题的看法。

1. 用确界存在定理证明,如果函数()f x 是区间I 上的连续函数,则()f I 是一个区间。

证明:为证明()f I 是一个区间,实际上只需要证明连续函数具有价值性质即可。 不妨只考虑()()f a f b <情形,其它情况同理。

任取实数c ,满足()()f a c f b <<下面利用确定存在定理证明(,)a b ξ?∈,使得()f c ξ=. 所用方法非常经典,读者最好熟记此方法。

记集合[,]:{()}S t f a b t c ∈=<,因为()f a c <,所以a S ∈,因此如此定义的集合非空。由确界存在定理知,上确界sup S ξ=存在且。由()f x 连续函数,所以()f c ξ≤且a b ξ<<. 下证()f c ξ=:

采用反证法。假设()f c ξ<,因为ξ是内点,所以由连续函数的局部保号性可知存在ξ的一个邻域(,)[,]U a b ξδξδ=?+?,使得在U 上满足()f x c <,特

别地1

2

()f c ξδ+<,这与sup S ξ=是上确界的定义矛盾!所以()f c ξ=.

评注:上面的证明是标准的,读者应该熟练掌握“连续函数取上确界”这种技巧,2009年北大数学分析压轴题的证明方法也取上确界。印象中北大考研的数学分析试题必有一道试题涉及实数系那几个基本定理的等价性证明或者应用,属于送分题,但前提是你认真准备过。

实数系基本定理有好几个,但在解题或科研中,最常用的是确界存在原理和闭区间套定理。特别在处理涉及连续函数的1维问题时,确界存在原理往往起到奇兵作用。

2. 可导函数()f x 在区间(0,1)上有界,极限0lim ()x f x →+

不存在。证明:存在数列

(0,1)n x ∈,满足0,()0n n x f x ′→+=.

证明:我们断言:n ?,导函数()f x ′在(0,1/)n 内必有零点。否则,假设存在0n , 导函数()f x ′在0(0,1/)n 内无零点。由达布定理(导数介值定理)知,()f x ′在0(0,1/)n 内不变号,故有界函数()f x 在0(0,1/)n 内是单调的,此时极限

0lim ()x f x →+

存在,与题意矛盾。

故导函数()f x ′在(0,1/)n 内必有零点,记为n x ,不难验证其满足题意。

评注:本题的解法不唯一,上面的解法技巧性比较强。个人感觉导数介值定理还是很强大和实用的,但不知道为什么不少优秀教材没有收录进这个定理,比如张筑生老师的《数学分析新讲》。

3. 函数()f x 在区间I 上连续,证明:若|()|f x 可导,则()f x 也可导。

证明:我们的目标是证明

0|()||()|lim

h f x h f x h →+?存在0()()

lim h f x h f x h →+??存在 由此发现去掉分子|()||()|f x h f x +?中的绝对值符号是关键。

不妨设()0f x >,利用连续函数的局部保号性,可知对在以x 为中心的充分小的邻域(,)U x δ内,有()0,(,)f x h x h U x δ∈+>+. 此时

|()||()|()()f x h f x f x h f x +?=+?

当()0f x <时,讨论类似,此时

|()||()|[()()]f x h f x f x h f x +?=?+?

当()0f x =时,|()||()|()f x h f x f x h +?=±+.

以上三种情况不论哪一种,均有

0()()

lim

h f x h f x h

→+? 存在。

评注:本题不难,也没有什么巧法,直接分类讨论就行了。众所周知,上述命题的逆命题不成立,经典反例()f x x =,其绝对值函数|()|||f x x =在0x =点不可导。这个反例也用于构造一个可导函数序列,使得其极限函数在0x =处不可

导,如()n f x =

4. 构造两个以2π为周期的连续函数,使得其Fourier 级数在[0,]π上一致收敛于0.

证明:首先容易想到常函数()0f x ≡满足题意,这是平凡情形。对非平凡情形,因为涉及一致收敛性,所以考虑光滑函数是比较自然的想法。

这方面有一个重要定理(一致收敛的充分条件):

设()f x 是以2π为周期的连续函数,其导函数()f x ′是Riemann 可积的,则

()f x 对应的Fourier 级数在[,]ππ?上一致收敛。

根据上面的定理可知,为构造满足题意的连续函数()f x ,只需要在[0,]π上恒为0,在[,0]π?上是光滑函数且(0)()0f f π=?=即可.

类似的例子非常多,如()()f x x x π=+,2()()g x x x π=+等等。

评注:如果不知道上面那个一致收敛定理也无妨,不过要麻烦一些。根据经验,构造一致收敛的Fourier 级数例子,最简单自然的想法是在光滑函数范畴里寻找,干脆就是多项式。多项式是可以直接计算出Fourier 级数的系数n a 和n b ,再证明它们是优级数。

另外,根据费耶定理,连续函数()f x 的Fourier 级数如果收敛,则必收敛于()f x 自身。这也提示我们构造的函数()f x 在[0,]π上必须等于0. 当然,根据连续性条件,切莫漏掉条件(0)()0f f π=?=.

5. 本题回忆版试题似乎缺条件,这里略去。

6. 设函数(,)f x y 在定义域的某个点上存在非零方向导数,且在三个方向的方向导数均相等(不为零),证明:(,)f x y 在该点不可微。

证明:根据题意可排除(,)f x y 恒为常数的情况,我们用反证法证明本题。

假设(,)f x y 在该点可微分,则存在惟一的常数,A B 满足

(,)df x y Adx Bdy =+.

记单位方向向量为(cos ,sin )??=e ,则对应方向导数为cos sin A B ??+.

记满足题意的三个方向单位向量为

1(,),(,),(,)u v s t p q ===23e e e

因为这三个方向单位向量两两不共线,所以存在不为0的实数,λμ,使得

231λμ=+e e e

以上向量与自身做内积得到模的平方

223212λμλμ=++?e e

由上式可知1λμ+≠. 若不然,由上面等式关系

22232321()21λμλμλμ=+=++???=e e e e

这说明2e 与3e 共线,与题意矛盾!

由2e 与3e 不共线条件还得到0sq tp ?≠这一关系。

视,A B 为未知量,考虑下面二元一次线性方程组(这里0m ≠)

uA vB m sA tB m pA qB m

?+=???

+=???+=??? 这个线性方程组对应的系数矩阵秩为2 但是其增广矩阵对应的行列式(1)()0m sq tp λμ=???≠,这说明增广矩阵的秩为3,方程组无解,即满足题意的,A B 不存在。

所以(,)f x y 在该点不可微。

评注:数学中很多解答的写法和证明方法都是倒过来的,比如笔者是先求出增广矩阵的行列式(1)()0m sq tp λμ=???≠,然后发现还需要证明1λμ+≠以及

0sq tp ?≠这两个关系式。

求增广矩阵的行列式可利用下面的初等变换计算技巧

00(1)u v m s p t q m s t m s t m s t m p q m p q m p q m λμλμλμ??????++???????????????????????→→??????????????????????????????

本题不是难题,但却是一道综合性很强的好题,将数学分析与线性代数结合到一起。证明思路还是很自然的,需要细致的分析论证,分数全拿到也不是那么容易的。笔者这里的方法虽然直接,但略显笨拙,不知道有没有更巧妙的方法。

7. 设D 为2R 上的无界闭集,试构造一个函数(,)f x y ,使它在一个由光滑曲线所围成的无界闭区域D 上的二重广义积分

(,)D

f x y dxdy ∫∫

发散。

证明:题目中没有要求函数(,)f x y 连续,于是构造起来就相对容易了。容易看出,如果无界闭区域D 对应的面积()S D 是无穷大,此时取(,)1f x y =即可。因此不妨设0()S D <<+∞.

定义点集

22{(,)|}n x y x y n σ=+≤

因为闭区域D 是无界的,所以至多除有限个n ,点集?n n D σ=I 非空。 又0()S D <<+∞,所以对应点集?n n D σ=I 的面积也是有限的。

记11111?,??()n n n n n D D D σσ+++==?=?I ,则

n D D =U 以及{}n D 是互不相交的。

不妨设每个n D 均非空集,记面积

()n

n D S D dxdy =<+∞∫∫

定义函数

(,)2/(),n n n f x y S D x D ∈=

直接计算得到

11

(,)(,)2

n

n

D

n n D

f x y dxdy f x y dxdy ∞∞

===+==∞∫∫∑∑∫∫

于是证明了如此构造的函数(,)f x y 满足题中要求。

评注:构造无交分解n D D =U 的方法不唯一,这里主要从圆环1n n σσ+?入手,

再考虑与无界闭区域D 的交集,这是常用的构造方法。

至于函数(,)f x y 的构造则有些做做了,想法是将面积“消去”,剩下一个发散因子2n . 这里的函数(,)f x y 应理解为一个对应法则:给定点(,)x y ,存在惟一的正数A 与之对应。

北大还是很重视“广义重积分”这块相对有些偏的内容的,印象中2007年也考过一道类似的试题。

8. 给定映射R :n T D →,其中R n D ?是一个凸区域,当x D ∈时,()T x 在D 上有连续的二阶偏导数。已知()T x 对应的雅可比矩阵()JT x 是正定的,证明:

R :n T D →是单射。

证明:因为R n D ?是一个凸区域,所以,D x y ?∈,连接x 与y 的线段都包含在凸区域D 内。该线段的参数表达式为:()(1[],0,)1t t x ty t γ=?+∈. 注意,这里的R ()n t γ∈,是一个向量。

假设T 不是单射,则R ,n x y ?∈,满足x y ≠且()()T x T y =. 定义函数

(),[(1)]f t x y T t x ty =

其中,<>是R n 上的标准内积。

依题意,可知(0),(),()(1)f x y T x x y T y f ===. 又()T x 在D 上有连续的二阶偏导数,所以函数()f t 可导。由罗尔中值定理,得

()0,(1)0,f ξξ′=∈

另一方面,直接求导得到

(),(())()0f t x y JT t x y A τγαα′==>

这里利用了雅可比矩阵(())JT t γ的正定性。

这就产生了矛盾!因此R :n T D →是单射。

评注:上述证明关键地方利用了区域的凸性和雅可比矩阵()JT x 的正定性。函数(),[(1)]f t x y T t x ty =的构造主要是为了生成雅可比矩阵()JT x ,这种构造方法是比较常见的方法。

原来的证明是利用“逆映射定理”,但后来发现问题。之后给出了上面的证明,以附图形式贴到论坛上。不过网上广为流传的PDF 文档里还是“逆映射定理”那个错误证明(没法改了),时间一长一忙就把这事忘了。这次重新整理解答时想起了这个问题,借此机会进行订正。本题以上面的解答为准。

9. 设正项级数1

n n a ∞

=∑收敛,证明极限2

12lim

111n n

n a a a →∞

++???+存在。

证明1:下面的证明出自论坛上xjsh 网友之手,核心想法是利用Carlemann 不等式技巧,详细内容见谢惠民等编著的《数学分析习题课讲义》(这是本值得推荐的好书)下册。

由均值不等式,得

12111

n a a a n ++???+≥

于是得到不等式估计

2

12111

n

n a a a ≤++???+

下面利用Carlemann

进行放缩。

=

所以

2

12111

n

n a a a ≤++???+由正项级数1

n n a ∞

=∑收敛,由Abel 变换可知(不错的小题)

12(1)(2)()

0n a a na n

++???+→

接下来需要对!n 进行估计,可利用斯特林公式(也可用其它方法)

,知

lim

n e =

由夹逼定理,得

2

12lim

0111n n

n a a a →∞

=++???+

证明2:记2

12111n

n n b a a a =

++???+以及12n n S a a a =++???+,则0,0n n S b >>.

因为正项级数1

n n a ∞

=∑收敛,所以0ε?>,0N ?>,使得当m n N >>时,

m n S S ε?<. 取2m n =,则n N >时,

2122n n n n n S S a a a ε++?=++???+<

由柯西不等式,得到

1

222122

111

()(

)n n n

n n n a a a n a a a ++++++???++

+???+

≥ 所以

122

1222111n n n

n n n n a a a a a a ε++++≤++???+<++???+

于是当n N >时,有

212222

212(2)404111111n n

n n n

n n b a a a a a a ε++<=<<++???+++???+ 我们得到极限20n b →+.

只需要证明极限210n b +→+,此时结合上面结论可知0n b →+成立。注意到当1n >时,有下面的不等式估计:

222

212121122(21)802111111n n

n n n n b b a a a a a a +++<=<=++???+++???+

利用“夹逼定理”,对上式两边取极限,可知210n b +→+.

于是我们证明了2

12lim

0111

n n

n a a a →∞

=++???+.

评注:解法1的关键部分利用了Carlemann 不等式技巧,想法比较直接,证明方法大开大合,属于硬推导的典范,这种情况在分析研究中经常遇见。这也说明了考北大要见多识广。

解法2相对起来比较巧妙,避开了Carlemann 不等式技巧,直接利用柯西收敛原理来进行估计。并对2n b 和21n b +进行分别估计,证明它们有共同的极限0,从而n b 的极限也是0. 坦白说,这种技巧不太容易想到,需要敏锐的洞察力。解法2其实不如解法1自然。

所证明极限是0是容易想到的,可取特例21/n a n =. 但有人感觉像Stolz 定理,然后尝试证明lim 0n na =却没有成功。感觉“近在直尺”,却怎么也证明不出来。实际上可以构造数列

2

21,21,2m n m n m

a n n ???=??=?

??≠???? ,则正项级数1n n a ∞=∑收敛,但极限lim n n na →∞不存在。 一般地,需要补充单调递减条件1n n a a +≥,才能证明lim 0n na =.

之所以走偏,跑到Stolz 定理,然后尝试证明lim 0n na =,可能因为两个原因:1. 不加细想地试算几个特例n a (其实无形中都是单调递减的)

,支持判断;2. 对定理的条件记忆模糊,似是而非。实际上,Stolz 定理是说 若极限11lim

n n n n n y y x x →??∞??存在,则极限lim n n n

y

x →∞也存在且相等。但反过来不一定正确。

这也提示我们学习一个数学定理,一要准确记住定理适用条件。二要下意识地想到逆命题是否成立。

10. 函数序列()n f x 在[,]a b 上连续,其导函数()n f x ′是一致有界,若()n f x 逐点地收敛于极限函数()f x . 证明()f x 在[,]a b 上连续。

证明:依题意,存在0M >使得

|()|,,n f x M x n ′≤?

再由拉格朗日中值定理()()()()n n n f s f t f s t ξ′?=?,可知

|()()|||,,[,]n n f s f t M s t s t a b ?∈?≤?

上式左侧取极限,得到

|()()|||,,[,]f s f t M s t s t a b ?≤??∈

这说明极限函数()f x 在[,]a b 上一致连续,因此()f x 在[,]a b 上连续。

评注:证明没有什么新意,应该是送分题。意识到利用中值定理放缩证明和一致连续性即可。

后 记:

就个人感觉而言,1、3、10题是送分题。4、6、7题是中档题,但对数学分析基础要求扎实,也不是很容易就能全拿下的。2和9题应该是难题,需要一定技巧,不太容易拿下。有人说8题比较偏,风格大变。其实主要是思维定势,受数学系考研过于重视1元部分影响所至(北大也如此)。

对于报考北大的朋友,除北大自己的教材外(含课后题)

,最好看看裴礼文的《数学分析中的典型问题和方法》和谢惠民等编著的《数学分析习题课讲义》。这里面有很多老大难的定理,若不会证明则最好背下来。一方面,是应试需要;另一方面,以后科研过程中会有似曾相识之感。后者更重要。如果,感到精力和能力不足,则比较务实的建议是以前一本书为主。

最后,结一段善缘,祝福大家好运!

SCIbird

北大数学系本科课程

基础和专业基础必修课1301301数学分析(Ⅰ) 1301301 数学分析1301301 数学分析(Ⅲ) 1301302 高等代数(Ⅰ) 1301302 高等代数1301303 解析几何1301304 常微分方程1301305 近世代数1301306 复变函数1301307 微分几何1301308 拓扑学1301309 实变函数1301310 概率统计1301311 数学模型1301312 泛函分析1301313 偏微分方程 专业限定选修课1301401 整体微分几何1301402 计算方法1301403 运筹学1301404 组合学1301405 初等数学教学研究1301406 微分流形1301407 计算机应用(Ⅰ) 1301408 多复变变函数引论 专业任意选修课1301501图论1301502 模糊数学1301503 中学数学竞赛1301504 数学史1301505 数学软件1301506 计算代数1301507 初等数论1301508 交换代数1301509 偏微分方程数值计算1301510 数学方法论1301511 数学学习论1301512 模糊控制与模糊决策

1301513 矩阵论 1301514 微分方程定性及分岔理论基 础 1301515 代数几何 1301516 李群与李代数 1301517 控制论 另外一个版本: 北大数学科学学院本科生课程 课程号 00130011 课程名数学分析(一) 课程号 00130012 课程名数学分析(二) 课程号 00130013 课程名数学分析(三) 课程号 00130031 课程名高等代数(上) 课程号 00130032 课程名高等代数(下) 课程号 00130051 课程名解析几何 课程号 00130061 课程名解析几何习题课 课程号 00130072 课程名初等数论 课程号 00130081 课程名常微分方程 课程号 00130091 课程名计算机原理与算法语言 课程号 0013010. 课程名计算机实习 课程号 00130110 课程名复变函数 课程号 00130120 课程名微分几何学 课程号 00130130 课程名抽象代数(A) 课程号 00130140 课程名实变函数论 课程号 00130150 课程名偏微分方程 课程号 00130161 课程名拓朴学(一) 课程号 00130162 课程名拓朴学(二) 课程号 00130170 课程名泛函分析

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; , 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=,

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

北大数学分析实数理论参考资料

实数理论 §1.1 从自然数到有理数 实数是在有理数基础上定义的,有理数又是在整数的基础上定义的,而整数又是在自然数的基础上定义的,那么自然数如何定义呢? 有两个集合A 和B ,我们称它们为等价的,如果存在一个从A 到B 的映射,它是的,又是满的.这时我们说f 11?A 和B 具有相同的势.我们首先承认空集φ是存在的,考虑一个集合}{φ,它不是空集,凡与}{φ等价的集合都有相同的势,我们把}{φ简写为0.再考虑集合}}{,{φφ,它与}{0φ=是不等价的,我们把它简写为1.一般地如果有了之后,可以定义它的跟随n },{n φ,简写为1+n .这样我们就得到了自然数N .在N 上可以定义加法:},,,2,1,0{ n =111++++=+ n m n ,还可以证明加法满足结合律和交换律:p m n p m n ++=++)()(,n m m n +=+.这样我们就从空集出发,定义出自然数N .这是一个最抽象的定义,比如说1,它不指一个人,也不指一个物,而是指一个集合}}{,{φφ,这个集合有两个不同的元素{}φ和φ.凡是与它等价的集合,都与它有相同的势,于是一个人,一个物……,都具有相同的势,按我们的理论,用}}{,{φφ作为它们的代表. 在集合{}中,考虑一个关系N ∈n m n m ,:),(~:),(n m ~),(n m ′′当且仅当,容易证明n m n m +′=′+~是一个等价关系. 整数Z 现在定义为: Z =~ },:),{(N ∈n m n m . 在Z 上可以定义加法:),(),(),(n n m m n m n m ′+′+=′′+,还可以定义减法:.可以验证它们在Z 中封闭,而且互为逆运算.在Z 中我们用0表示N },即),(),(),(n m n m n m n m +′′+=′′?∈n n n :),({ =?=?=22110,这就是作为整数的0. 用表示 k ∈+k n n )k n ,:,({

数学系一年级《数学分析》期末考试题

(一)数学系一年级《数学分析》期末考试题 学号 姓名 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c ,则( ) A {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ? ???>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、' 'f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?) ()(lim 02020 ; B. ' 000)()(lim ???? ???-?+→?x x f x x f x ; C. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?) ()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则( ) A. ∈?ξ(b a ,),使0)(' =ξf ; B. ∈?ξ(b a ,),使0)(' ≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)(' x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ;

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

上海财经大学 数学分析 测试题 (大一)

《数学分析》考试题 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c , ( ) A. {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C. {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ????>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、''f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?)()(lim 02020 ; B. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; C. '000)()(lim ???? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则 ( ) A. ∈?ξ(b a ,),使0)('=ξf ; B. ∈?ξ(b a ,),使0)('≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)('x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有 ( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ; C. ?+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;

(汇总)数学分析3试卷及答案.doc

数学分析(3)期末试卷 2005年1月13日 班级_______ 学号_________ 姓名__________ 考试注意事项: 1.考试时间:120分钟。 2.试卷含三大题,共100分。 3.试卷空白页为草稿纸,请勿撕下!散卷作废! 4.遵守考试纪律。

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ? =),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 12 2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关 于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2 _______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1 sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

2015年数学考研数学分析各名校考研真题及答案

2015年考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学

2014年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},min{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? - =?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2)(lim )(lim )() (lim )('lim 20 0020 00A x dt t f x x f x dt t f x x f x x x x x x x =-=-=?? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ? ?--+--= 1 1 11 )(2)(2])1[(])1[(!!21 )()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2 ) (2 ])1[(])1[(] )1[(])1[(=

数学分析期末考试题

数学分析期末考试题 一、叙述题:(每小题5分,共10分) 1、 叙述反常积分 a dx x f b a ,)(? 为奇点收敛的cauchy 收敛原理 2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)21 2111( lim n n n n +++++∞ →Λ 2、求摆线]2,0[)cos 1() sin (π∈? ??-=-=t t a y t t a x 与x 轴围成的面积 3、求?∞+∞-++dx x x cpv 211) ( 4、求幂级数∑∞ =-12 )1(n n n x 的收敛半径和收敛域 5、),(y x xy f u =, 求y x u ???2 三、讨论与验证题:(每小题10分,共30分) 1、y x y x y x f +-=2 ),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为 什么? 2、讨论反常积分 ? ∞ +0 arctan dx x x p 的敛散性。 3、讨论∑∞ =-+1 33))1(2(n n n n n 的敛散性。 四、证明题:(每小题10分,共20分) 1、 设f (x )在[a ,b ]连续,0)(≥x f 但不恒为0,证明0)(>? b a dx x f 2、 设函数u 和v 可微,证明grad (uv )=ugradv +vgradu

参考答案 一、1、,0.0>?>?δε使得δδδ<<?>?δε使得 D x x x x ∈<-?2,121,δ,成立ε<-)()(21x f x f 二、1、由于 x +11 在[0,1]可积,由定积分的定义知(2分) )21 2111( lim n n n n +++++∞ →Λ=2ln 11)11211111( 1lim 10=+=+++++?∞→dx x n n n n n n Λ(6分) 2、 、所求的面积为:220 23)cos 1(a dx x a ππ =-? (8分) 3、 解:π=++=++??-+∞→∞ +∞-A A A dx x x dx x x cpv 2 211lim 11) ( (3分) 4、解:11 lim 2=∞ →n n x ,r=1(4分) 由于x =0,x =2时,级数均收敛,所以收敛域为[0,2](4分) 5、解: y u ??=221y x f x f -(3分)3 22112212y x f xy f y f f y x u -++=???(5分) 三、1、解、 0lim lim lim ,1lim lim lim 2 02000200==+-==+-→→→→→→y y y x y x x x y x y x y x y x y x (5分)由于沿kx y =趋于(0,0)极限为k +11 所以重极限不存在(5分) 2、解:???∞+∞++=1100arctan arctan arctan dx x x dx x x dx x x p p p (2分),对?10arctan dx x x p ,由于 )0(1arctan 1+→→-x x x x p p 故p <2时?10arctan dx x x p 收敛(4分);?∞+1arctan dx x x p ,由于)(2arctan +∞→→x x x x p p π (4分)故p >1?∞+1arctan dx x x p 收敛,综上所述1

北京大学数学分析考研试题及解答复习进程

北京大学数学分析考研试题及解答

判断无穷积分1sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意*m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞, (m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列 0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=,

2017年北大数学分析考研试题(Xiongge)

北京大学2017年硕士研究生招生考试试题 (启封并使用完毕前按国家机密级事项管理) 考试科目:数学基础考试1(数学分析)考试时间:2016年12月25日上午 专业:数学学院各专业(除金融学和应用统计专业) 方向:数学学院各方向(除金融学和应用统计方向) ————————————————————————————————————————说明:答题一律写在答题纸上(含填空题、选择题等客观题),写在此试卷上无效. 1.(10分)证明lim n !+1Z 2 sin n x p 2x dx =0.2.(10分)证明1X n =111+nx 2sin x n ?在任何有限区间上一致收敛的充要条件是?>12.3.(10分)设1X n =1a n 收敛.证明lim s !0+1X n =1a n n s =1X n =1a n . 4.(10分)称 (t )=(x (t );y (t )),(t 2属于某个区间I )是R 2上C 1向量场(P (x;y );Q (x;y ))的积分曲线,若x 0(t )=P ( (t )),y 0(t )=Q ( (t ));8t 2I ,设P x +Q y 在R 2上处处非0,证明向量场(P;Q )的积分曲线不可能封闭(单点情形除外). 5.(20分)假设x 0=1;x n =x n 1+cos x n 1(n =1;2; ),证明:当x !1时,x n 2=o ?1n n ?.6.(20分)假如f 2C [0;1];lim x !0+f (x ) f (0)x =?<ˇ=lim x !1 f (x ) f (1)x 1 .证明:8 2(?;ˇ);9x 1;x 22[0;1]使得 =f (x 2) f (x 1)x 2 x 1 .7.(20分)设f 是(0;+1)上的凹(或凸)函数且 lim x !+1xf 0(x )=0(仅在f 可导的点考虑 极限过程).8.(20分)设 2C 3(R 3), 及其各个偏导数@i (i =1;2;3)在点X 02R 3处取值都是0.X 0点的?邻域记为U ?(?>0).如果 @2ij (X 0) á3 3是严格正定的,则当?充分小时,证明如下极限存在并求之: lim t !+1t 32? U ?e t (x 1;x 2;x 3)dx 1dx 2dx 3: 9.(30分)将(0; )上常值函数f (x )=1进行周期2 奇延拓并展为正弦级数: f (x ) 4 1X n =112n 1 sin (2n 1)x:该Fourier 级数的前n 项和记为S n (x ),则8x 2(0; );S n (x )=2 Z x 0sin 2nt sin t dt ,且lim n !1S n (x )=1.证明S n (x )的最大值点是 2n 且lim n !1S n 2n á=2 Z 0sin t t dt .考试科目:数学分析整理:Xiongge ,zhangwei 和2px4第1页共??页

13数学分析期末复习题03

数学分析(三)复习题 一、计算题 1.求二重极限y x x a y x x +→∞→? ?? ?? +2 11lim ; 2.求椭球面3x 2+y 2+z 2=16上点(-1,-2,3)处的切平面与平面z=1的交角; 3.求函数z=xy 在条件x+y=1下的极值点。 4.求函数z=x 2+xy+y 2-4lnx-10lny 的极值。 5. 求函数z=4(x-y)-x 2-y 2的极值。 6.求函数z=x 4+y 4-x 2-2xy-y 2的极值。 7. 求函数z=x 3y 2(6-x-y),(x>0,y>0)的极值。 8.求函数z=x 2+(y-1)2的极值。 9. 设u(x,y)=e 3x-y ,x 2+y=t 2,x-y=t+2,求 =t dt du 。 10.求e z -z+xy=3在点(2,1,0)处的切平面与法线方程。 11. 设f(x,y,z)=x+y 2+xz ,求f 在(1,0,1)点沿方向C =(2,-2,1)的方向导数。 12.求函数u=xyz 在点(5,1,2)处沿从点(5,1,2)到点(9,4,14)的方向的方向导数。 13. 求函数u=x 2+y 2-z 2在点M(1,0,1)及P(0,1,0)的梯度之间的夹角。 14.在椭球面2x 2+2y 2+z 2=1上求一点,使得函数f(x,y,z)=x 2+y 2+z 2在该点沿着点A(1,1,1)到点B(2,0,1)方向的方向导数具有最大值(不要求判别)。 15.设函数f(x,y,z)=cos 2(xy)+2z y ,试问它在点(0,2,1)处的什么方向上的变化率最大?求出这个方向上的单 位向量及函数在点(0,2,1)的最大变化率。 16. 求函数z=arctg x y 在位于圆x 2+y 2-2x=0上一点(21 ,2 3)处沿这圆周切线方向的方向导数(设切线的倾角α 的范围为:0≤α<π)。 17. 设数量场u= 2 2 2 z y x z ++,试求:(1)gradu ;(2)在域1

相关主题