搜档网
当前位置:搜档网 › 参数方程化成普通方程

参数方程化成普通方程

参数方程化成普通方程
参数方程化成普通方程

§3 参数方程化成普通方程

1.曲线?

???? x =2cos θ-1y =2sin θ+2(θ为参数)的一条对称轴的方程为( ) A .y =0 B .x +y =0

C .x -y =0

D .2x +y =0

解析:选D.曲线????? x =2cos θ-1y =2sin θ+2

(θ为参数)的普通方程为(x +1)2+(y -2)2=4,圆心C (-1,2),过圆心的直线都是圆的对称轴,故选D.

2.与普通方程x 2+y -1=0等价的参数方程为(t 为参数)( )

A.????? x =sin t y =cos 2t

B.?????

x =cos t y =sin 2t C.??? x =1-t y =t D.?????

x =tan t y =1-tan 2t 解析:选D.A 化为普通方程为

x 2+y -1=0,x ∈[-1,1],y ∈[0,1].

B 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1].

C 化为普通方程为x 2+y -1=0,x ∈[0,+∞),y ∈(-∞,1].

D 化为普通方程为x 2+y -1=0,x ∈R ,y ∈(-∞,1].

3.若曲线?

???? x =1+cos2θ,y =sin 2θ(θ为参数),则点(x ,y )的轨迹是( ) A .直线x +2y -2=0

B .以(2,0)为端点的射线

C .圆(x -1)2+y 2=1

D .以(2,0)和(0,1)为端点的线段

解析:选D.x =1+cos2θ=1+(1-2sin 2θ)

=2-2y ,∴x +2y -2=0.

又∵x =1+cos2θ∈[0,2],y =sin 2θ∈[0,1].

∴点(x ,y )的轨迹是以(2,0)和(0,1)为端点的线段.

4.参数方程?????

x =sin α2+cos α2y =2+sin α(α为参数)的普通方程为( ) A .y 2-x 2=1 B .x 2-y 2=1

C .y 2-x 2=1(|x |≤2)

D .x 2-y 2=1(|x |≤2)

解析:选C.x 2=????sin α2+cos α22=1+sin α, y 2=2+sin α,∴y 2-x 2=1.

又x =sin α2+cos α2

=2sin ????α2+π4∈[-2,2],即|x |≤ 2.故应选C. 5.椭圆?

????

x =5cos φy =3sin φ(φ为参数)的焦点坐标为( ) A .(-2,0),(2,0) B .(0,-2),(0,2)

C .(0,-4),(0,4)

D .(-4,0),(4,0)

解析:选D.利用平方关系化为普通方程x 225+y 2

9

=1,c 2=16,c =4,焦点在x 轴上,∴焦点为(-4,0),(4,0),故选D.

6.(2013·咸阳质检)已知过曲线?????

x =3cos θ,y =4sin θ(θ为参数,0≤θ≤π)上一点P ,原点为O ,直线PO 的倾斜角为π4

,则点P 坐标是( ) A .(3,4) B.???

?322,22 C .(-3,-4) D.????125,125

解析:选D.设|OP |=t ,则P 点坐标????22

t ,22t ,代入方程x 29+y 216=1,解得t =1225, 所以P 点坐标????125,125.

7.已知直线l :3x +4y -12=0与圆C :?

???? x =-1+2cos θ,y =2+2sin θ. (θ为参数),则它们的公共点个数为________.

解析:圆的方程可化为(x +1)2+(y -2)2=4,

其圆心为C (-1,2),半径为2.

由于圆心到直线l 的距离

d =|3×(-1)+4×2-12|32+42

=75<2, 故直线l 与圆C 的公共点个数为2.

答案:2

8.(2013陕西卷)

9.(2013重庆卷)

10.已知方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0,(0≤θ<2π).

(1)试证:不论θ如何变化,方程都表示顶点在同一椭圆上的抛物线;

(2)θ为何值时,该抛物线在直线x =14上截得的弦最长,并求出此弦长.

解:(1)证明:将方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0,

可配方为(y -3sin θ)2=2(x -4cos θ),

∴图象为抛物线,

设其顶点为(x ,y ),则有????? x =4cos θy =3sin θ

, 消去θ得顶点轨迹就是椭圆x 216+y 2

9

=1. (2)联立?

????

x =14y 2-16y sin θ-2x -9cos 2θ+8cos θ+9=0 消去x ,得y 2-6y sin θ+9sin 2θ+8cos θ-28=0.

弦长|AB |=|y 1-y 2|=47-2cos θ.

当cos θ=-1,即θ=π时,弦长最大为12.

11.(2013福建卷) 12.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为???

x =3cos α,y =sin α

(α为参数).

①已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半

轴为极轴)中,点P 的极坐标为???

?4,π2,判断点P 与直线l 的位置关系; ②设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.

解:①把极坐标系下的点P ???

?4,π2化为直角坐标,得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.

②因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为

d =|3cos α-sin α+4|2=2cos ????α+π6+42

=2cos ???

?α+π6+22, 由此得,当cos ???

?α+π6=-1时,d 取得最小值,且最小值为 2.

2.2常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程 一椭圆的参数方程 1、中心在坐标原点,焦点在x 轴上,标准方程是22 221(0)x y a b a b +=>>的椭圆的参数方程 为cos (sin x a y b ? ??=??=? 为参数) 同样,中心在坐标原点,焦点在y 轴上,标准方程是22 221(0)y x a b a b +=>>的椭圆的参 数方程为cos (sin x b y a ? ??=??=? 为参数) 2、椭圆参数方程的推导 如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,和小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。 设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有 cos cos ,sin sin x OA a y OB b ????==== 3 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ? ?? =??=?为 参数) 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ θθ =?? =?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆 的参数方程cos (sin x a y b ? ?? =?? =?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点 (,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋 转角,通常规定[)0,2?π∈ 4、椭圆参数方程和普通方程的互化

§2.2.3直线的参数方程及应用(第2课时)1

§2.2.3直线的参数方程及应用(第2课时) 【学习目标】 1. 掌握直线参数方程的标准形式和一般形式,理解参数的几何意义; 2. 利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 【学习重点】 1. 直线参数方程的标准形式和一般形式,理解参数的几何意义; 2. 利用直线的参数方程解决有关数学问题; 【学习难点】 1. 直线参数方程的标准形式和一般形式,理解参数的几何意义; 2. 利用直线的参数方程解决有关数学问题; 【学习过程】 一、学前准备: 1、若由a b →→ 与共线,则存在实数λ,使得 , 2、设e → 为a → 方向上的 ,则a → =︱a → ︱e → ; 3、经过点00(,)M x y ,倾斜角为()2 π αα≠ 的直线的普通方程为 。 二、新课导学 ◆探究新知(预习教材P 35~P 39,找出疑惑之处) 1、选择怎样的参数,才能使直线上任一点M 的坐标,x y 与点0M 的坐标00,x y 和倾斜角α 联系起来呢?由于倾斜角可以与方向联系,M 与0M 可以用距离或线段0M M 数量的大小联系,这种“方向”“有向线段数量大小”启发我们想到利用向量工具建立直线的参数方程。 如图,在直线上任取一点(,)M x y ,则0MM = , 而直线l 的单位方向向量e → =( , ),因为0MM e → ,所以存在实数t R ∈, 使得0MM = ,即有()()00,cos ,sin x x y y t αα--=,因此,经过点 00(,)M x y ,倾斜角为()2 π αα≠ 的直线的参数方程的标准式为: ???= = y x 2.方程中参数t 的几何意义是什么? 直线上任意动点到定点P 0的距离________||0=P P 3. 直线参数方程的一般式: (1)过点P 0(00,y x ),斜率为a b k = 的直线,记直线倾斜角α,则=αtan ,直线参数方程的一般式是 ? ? ?+=+ =t y y t x x ()()00 (t 为参数),直线上任意动点到定点P 0的距离||________||0t P P =, (2)直线参数方程的一般式是 ???+=+=bt y y at x x 00 (t 为参数), 直线上任意两点A,B 对应参数分别为21,t t ,则它们到P 0的 距离分别为: |t -t |________|B P -A P ||AB ||,|________|||,|________||21002010====弦长t B P t A P ||________||________||________||||212100t t t t B P A P =?=? (3)中点公式:)M(),,(),,(20201010则中点bt y at x B bt y at x A ++++ |2 |________||2 10t t M P += 二、直线参数方程的应用 题组一。.求直线的参数方程的标准式及t 的几何意义的应用 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意义,说明∣t ∣的几何意义.

曲线的参数方程(教案)

曲线的参数方程 教材 上海教育出版社高中二年级(理科)第十七章第一节 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。并以此高度跻身世界三大摩天轮之列,居亚洲第一。 已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。如图所示,某游客现在点(其中点和转轴的连线与水平面平行)。问:经过秒,该游客的位置在何处? 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 1、圆的参数方程的推导 (1)一般的,设⊙的圆心为原点,半径为,0OP 所在直线 为轴,如图,以0OP 为始边绕着点按逆时针方向绕原点以匀角 速度作圆周运动,则质点的坐标与时刻的关系该如何建立呢? (其中与为常数,为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈???==t t r y t r x ωω 为参数 ① (2)点的角速度为,运动所用的时间为,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈???==θθ θr y r x 为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)

高考数学参数方程和普通方程的互化练习

【参数方程和普通方程的互化】 例1求曲线(为参数)与曲线(为参数)的交点. 解:把代入 得:两式平方相加可得 ∴(舍去) 于是即所求二曲线的交点是(,-). 说明:在求由参数方程所确定的两曲线的交点时,最好由参数方程组求解,如果化为普通方 程求交点时要注意等价性.如该例若化为普通方程求解时要注意点(-,)是增解. 例2化直线的普通方程为参数方程(其中倾斜角满足且 ) 解法一:因,,故 ∴ 设。取为参数,则得所求参数方程 解法二:如图,()为直线上的定点,为直线上的动点.因动点M与 的数量一一对应(当M在的向上方向或正右方时,;当M在的下 方或正左方时,;当M与重合时,),故取为参数.

过点M作y轴的平行线,过点作轴的平行线,两直线相交于点Q(如图).则有 ∴ 即为所求的参数方程。 说明:①在解法二中,不必限定,,即不必限定,.由 此可知,无论中任意值时,所得方程都是经过(),倾斜角为的直线的参数方程.可称它是直线参数方程的“点角式”或“标准式”. ②要充分理解解法二所示的参数的几何意义,这对解决某些问题较为方便. ③如果取为参数,则得直线参数方程 一般地,直线的参数方程的一般形式是 (,为参数) 但只有当且仅当,且时,这个一般式才是标准式,参数才具有上述的几何意义. 例3求椭圆的参数方程. 分析一:把与对比,不难发现,可设,也可设

解法一:设(为参数),则 ∴ 故 因此,所得参数方程是 (Ⅰ)或(Ⅱ) 由于曲线(Ⅱ)上的点(,),就是曲线(Ⅰ)上的点(, ),所以曲线(Ⅱ)上的点都是曲线(Ⅰ)上的点. 显然.椭圆的参数方程是 分析二:借助于椭圆的辅助圆,可明确椭圆参数方程中的几何意义. 解法二:以原点O为圆心,为半径作圆,如图.设以轴正半轴为始边,以动半径OA为 终边的变角为,过点A作轴于N,交椭圆于M,取为参数,则点M()的横坐标(以下同解法一). 由解法二知,参数是点M所对应的圆半径OA的转角,而不是OM的转角,因而称为椭圆 的离角.(如果以O为圆心,为半径作圆,过M作,交圆于B,由可知 也是半径OB的转角). 例4用圆上任一点的半径与x轴正方向的夹角为参数,把圆化为参数方程。 分析:由圆的性质及三角函数的定义可把圆上任意一点化为的参数形式。 解:如图所示,圆方程化为,设圆与x轴正半轴交于A,为圆上 任一点,过P作轴于B,OP与x轴正半轴所成角为,,则:

直线的参数方程圆锥曲线的参数方程及其应用等高中数学

直线的参数方程,圆锥曲线的参数方程及其应用 一. 教学内容: 直线的参数方程,圆锥曲线的参数方程及其应用,极坐标系,曲线的极坐标方程及其应用。 [基本知识点] (1)直线的参数方程 <1>标准形式: :),y ,x (M 000准形式为的直线的参数方程的标且倾角为过点α )t (sin t y y cos t x x 00为参数???+=+=αα <2>一般形式 )1b a 't ('bt y y 'at x x 2200≠+???+=+=为参数且 (2)参数t 的几何意义及其应用 标准形式: )y ,x (M t ,)t (sin t y y cos t x x 00000的几何意义是表示定点中为参数???+=+=αα 的数量的有向线段到直线上动点M M y)(x,M 0 :t,M M 0故即= <1>直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长|AB|=|t 1-t 2| <2>定点M 0是弦M 1、M 2的中点?t 1+t 2=0

<3>设弦M 1,M 2中点为M ;则点M 相应的参数 2t t t 2 1M += (3)圆锥曲线的参数方程 <1>)(sin r y cos r x r y x 222为参数的参数方程为圆ααα???===+ 轴正方向的旋转角 的几何意义动半径对于其中x α <2> 其几何意义为离心为参数的参数方程为椭圆,(sin b y cos a x 1b y a x 2222 ααα???===+ 角)。 <3>)(btg y asec x 为参数双曲线的参数方程为ααα???== <4>抛物线y 2=2px 的参数方程为 )(t pt 2y pt 2x 2 为参数?????== (4)极坐标系的基本概念。 在平面内任取一个定点O ,叫做极点,引一条射线O x ,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向),对于平面内任一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角度,ρ叫做M 的极径,θ叫做点M 的极角,有序数对(ρ,θ)就叫做点M 的极坐标系,这样建立的坐标叫做极坐标系。 (5)极坐标与直角坐标的互化 <1>互化条件: 极点与直角坐标系原点重合; 极轴与直角坐标系O x 轴重合; 两坐标系中的长度单位统一。 <2>互化公式

参数方程题型大全

参数方程 1.直线、圆、椭圆的参数方程 (1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为????? x =x 0+t cos α, y =y 0+t sin α(t 为参数). (2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为????? x =x 0+r cos θ, y =y 0+r sin θ(θ为参数). (3)椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程为? ???? x =a cos φ,y =b sin φ (φ为参数). (4)双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的参数方程为????? x =a 1cos θ,y =b tan θ (θ为参数). (5)抛物线px y 22 =的参数方程可表示为)(. 2, 22为参数t pt y pt x ?? ?==. 基础练习 1.在平面直角坐标系中,若曲线C 的参数方程为?? ? x =2+22t , y =1+2 2 t (t 为参数),则其普通方程为 ____________. 2.椭圆C 的参数方程为? ???? x =5cos φ, y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点, 则|AB |min =________. 3.曲线C 的参数方程为? ???? x =sin θ, y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________. 4.在平面直角坐标系xOy 中,已知直线l 的参数方程为??? x =1+1 2t , y =3 2t (t 为参数),椭圆C 的方程 为x 2 +y 2 4 =1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________

参数方程化普通方程

参数方程化普通方程 [重点难点]掌握参数方程化普通方程的方法,理解参数方程和消去参数后所得的普通方程的等价性;应明确新旧知识之间的联系,提高综合运用所学知识解决数学问题能力。 [例题分析] 1.把参数方程化为普通方程(1)(θ∈R,θ为参数) 解:∵y=2+1-2sin2θ, 把sinθ=x代入,∴y=3-2x2, 又∵|sinθ|≤1, |cos2θ|≤1, ∴|x|≤1, 1≤y≤3∴所求方程为y=-2x2+3 (-1≤x≤1, 1≤y≤3) (2)(θ∈R,θ为参数) 解:∵x2=(sinθ+cosθ)2=1+2sinθcosθ,把y=sinθcosθ代入,∴x2=1+2y。 又∵x=sinθ+cosθ=sin(θ+)y=sinθcosθ=sin2θ ∴|x|≤,|y|≤。∴所求方程为x2=1+2y (|x|≤, |y|≤) 小结:上述两个例子可以发现,都是利用三角恒等式进行消参。消参过程中都应注意等价性,即应考虑变量的取值范围,一般来说应分别给出x, y的范围。在这过程中实际上是求函数值域的过程,因而可以综合运用求值域的各种方法。 (3)(t≠1, t为参数) 法一:注意到两式中分子分母的结构特点,因而可以采取加减消参的办法。 x+y==1,又x=-1≠-1,y=≠2, ∴所求方程为x+y=1 (x≠-1, y≠2)。 法二:其实只要把t用x或y表示,再代入另一表达式即可。由x=, ∴x+xt=1-t, ∴(x+1)t=1-x,即t=代入y==1-x,∴x+y=1,(其余略)这种方法称为代入消参,这是非常重要的消参方法,其它不少方法都可以看到代入消参的思想。

参数方程化为普通方程教案

课题:参数方程和普通方程的互化(一) 教学目标: 知识目标:掌握如何将参数方程化为普通方程; 能力目标:掌握参数方程化为普通方程几种基本方法; 情感目标: 培养严密的逻辑思维习惯。 教学重点:参数方程化为普通方程 教学难点:普通方程与参数方程的等价性 教学过程: 一:复习引入: 课本第24页的例题2中求出点M 的轨迹的参数方程为:cos 3,()sin x y θθθ=+??=? 为参数。 问题1:你能根据该参数方程直接判断点M 的轨迹图形吗?如果要判断点M 的轨迹图形,你有什么方法吗? 二:新课探究 1:问题2:结合前面的例子,从参数方程到普通方程有什么变化?你能从中得到什么启发? 2:试一试:把下列参数方程化为普通方程,并说明它们各表示什么曲线? (1)???--=-=t y t x 4123(t 为参数); (2)???==? ?sin 3cos 5y x (?为参数). 3:例题讲解: 例3、把下列参数方程化为普通方程,并说明它们各表示什么曲线? 4:问题3:将参数方程化为普通方程需要注意哪些要点? 5:变式练习: (1)??? ????-=+=t t y t t x 1 1(t 为参数); (2)???+==12cos cos θθy x (θ为参数); 6:问题4:从以上例3和练习中你逐一能总结出消去参数的一些常用方法吗? 1)1t y ???=-??(1)为参数sin cos ().1sin 2y θθθθ+??=+?x=(2)为参数

7:补充例题: 若直线1223x t y t =-??=+?(t 为参数)与直线41x ky +=垂直,则常数k =________. 8:变式练习: (1)曲线的参数方程为)50(1 2322≤≤?????-=+=t t y t x ,则曲线为( ). A .线段 B .双曲线的一支 C .圆弧 D .射线 (2)在平面直角坐标系xoy 中,直线l 的参数方程为33x t y t =+??=-?(参数t R ∈),圆C 的参数 方程为2cos 2sin 2x y θθ=??=+? (参数[]0,2θπ∈),则圆C 的圆心坐标为 ,圆心到直线l 的距离为 。 三:课堂小结 ( ) 1: 2: 参数方程化为普通方程要注意哪些要点? 3:消去参数的一些常用方法: 四:作业 1:把下列参数方程化为普通方程,并说明它们各表示什么曲线。 (1)?????-=+=2211t y t x (2)???==θθsin 3cos 2y x (3) ???==θθ2cos sin y x 2:若直线340x y m ++=与圆1cos 2sin x y θθ=+?? =-+?(θ为参数)没有公共点,则实数m 的取值范围 是 。

直线的参数方程及其应用举例

直线的参数方程及应用 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α αsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系? 我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系. 问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣ x x

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人教B版选修44

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人 教B 版选修44 学习目标:1.了解圆的渐开线和摆线的参数方程.(重点)2.了解渐开线与摆线的参数方程的推导过程.(难点) 1.摆线 (1)定义 一圆周沿一直线作无滑动滚动时,圆周上的一定点M 的轨迹称为摆线. (2)参数方程 ????? x =a (t -sin t )y =a (1-cos t ) (t 是参数). 2.圆的渐开线 (1)定义 把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆. (2)参数方程 ? ?? ?? x =a (cos t +t sin t )y =a (sin t -t cos t )(t 是参数). 思考:圆的渐开线和摆线的参数方程中,参数t 的几何意义是什么? [提示] 根据渐开线的定义和求解参数方程的过程,可知其中的字母a 是指基圆的半径,而参数t 是指绳子外端运动时绳子与基圆的切点B 转过的角度,如图,其中的∠AOB 即是角 t .显然点M 由参数t 惟一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐 标转化为与三角函数有关的问题,使求解过程更加简单. 同样,根据圆的摆线的定义和建立参数方程的过程,可知其中的字母a 是指定圆的半径,参数t 是指圆上定点相对于定直线与圆的切点所张开的角度.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.

1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线 B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 C .正方形也可以有渐开线 D .对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状就不同 [解析] 不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同. [答案] C 2.半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( ) A .π B .2π C .12π D .14π [解析] 根据条件可知圆的摆线的参数方程为? ?? ?? x =3t -3sin t y =3-3cos t (t 为参数),把y =0代 入可得cos t =1,所以t =2k π(k ∈Z ).而x =3t -3sin t =6k π(k ∈Z ).根据选项可知应选C. [答案] C 3.半径为4的圆的渐开线的参数方程是________. [解析] 将a =4代入圆的渐开线方程即可. [答案] ? ?? ?? x =4(cos t +t sin t ) y =4(sin t -t cos t ) 4.给出某渐开线的参数方程? ?? ?? x =3cos t +3t sin t y =3sin t -3t cos t (t 为参数),根据参数方程可以看 出该渐开线的基圆半径是______,当参数t 取π 2 时,对应的曲线上的点的坐标是________. [解析] 与渐开线的参数方程进行对照可知,a =3,即基圆半径是3,然后把t =π 2代入, 可得????? x =3π2,y =3. [答案] (3π 2 ,3)

【原创教案】二、《曲线的参数方程》教案

二、《曲线的参数方程》教案 时间:2 授课班级:高二(8)班 一、教学目标: 理解参数方程的概念;掌握参数方程化为普通方程的几种常见 的方法;会选取适当的参数化普通方程为参数方程。 二、重点、难点:能选择适当的参数写出曲线的参数方程,参数方程与普通方程 的互化和互化的等价性。 三、课时安排:1课时 四、教学过程 (一)创设情境 一架救援飞机在离灾区地面500m 高处以100m/s 的速度作水平直线飞行.为使投放的救援物资准确落于灾区指定的地面(不计空气阻 力),飞行员应如何确定投放时机呢? 即求飞行员在离救援点的水平距离多远时,开始投放物 资? (二)探索研究导出新概念 1、参数方程的定义: 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的 函数② ???==) ()(t g y t f x , 并且对于t 的每一个允许值,由方程组②所确定的点),(y x M 都在这条曲线上,那么方程②就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 例1 已知曲线C 的参数方程是???+==1 232t y t x (t 为参数). (1)判断点)1,0(1M ,)4,5(2M 与曲线C 的位置关系; (2)已知点),6(3a M 在曲线C 上,求a 的值; (3)将参数方程化为普通方程,并判断曲线C 表示什么图形。 2、参数方程和普通方程的互化: (1)参数方程通过消元法消去参数化为普通方程 例2 把下列参数方程化为普通方程,并说明它们各表示什么曲线:

直线的参数方程及其应用(不错哦,放心用)

直线的参数方程及应用 目标点击: 1.掌握直线参数方程的标准形式和一般形式,理解参数的几何意义; 2.熟悉直线的参数方程与普通方程之间的互化; 3.利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 基础知识点击: 1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α x

参数方程和普通方程的互化

参数方程和普通方程的 互化 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

参数方程和普通方程的互化 教学目标 1.理解参数方程和消去参数后所得的普通方程是等价的. 2.基本掌握消去参数的方法. 3.培养学生观察、猜想和灵活地进行公式的恒等变形的能力.即在“互化”训练中,提高学生解决数学问题的转化能力. 教学重点与难点 使学生掌握参数方程与普通方程之间的互化法则,明确新旧知识之间的联系,掌握消去参数的基本方法. 教学过程 师:前面的课程里,我们学习了参数方程,下面请看这样一个问题:(放投影片) 由圆外一点Q(a,b)向圆x2+y2=r2作割线,交圆周于A、B两点,求AB中点P的轨迹的参数方程(如图3-5). 分析割线过点Q(a,b),故割线PQ方程为: 此斜率k可作为参数.(投影) 解设过点Q的直线方程是y-b=k(x-a),则圆心O与AB中点P的 即为所求点P的轨迹的参数方程. 师:你能根据点P的参数方程说出点P的轨迹吗 生:(无言以对)看不出来. (启发学生猜想,培养参与意识.) 师:你通过题目中点P符合的条件,多画几个点,猜想一下它的形状. (学生在纸上画,讨论.) 生:点P的轨迹(1)过坐标原点,也就是已知圆的圆心.(2)轨迹不是直线.

师:参数方法是研究曲线和方程的又一种方法,是一种利用参数建立两个变量之间的间接联系的方法.也就是说,参数方程里的参数可以协调x、y的变化.基于这点理论,有时为了判定曲线的类型、研究曲线的几何性质,需要把参数方程化为普通方程.即想办法消去参数k,把参数方程转化为我们熟知的普通方程,再去研究它的几何性质就容易了. 把(3)代入(2)得:x2-ax+y2-by=0.(4) 方程(4)证实了我们的猜想是正确的,具体地说:点P的轨迹是一个过圆心的圆弧(在圆x2+y2=r2的内部). 师:以上事例说明,有时为了判定曲线的类型,研究曲线的几何性质,确实需要把参数方程化为我们认知的普通方程.这节课我们就来学习把参数方程化为普通方程的法则. 例1 炮弹从点(0,0)以初速度v0向倾斜角为α的方向发射,问:(1)在时刻t的高度和水平距离如何(2)炮弹描绘的(弹道)是一条什么样的曲线 (学生通过物理知识,很容易解决这个问题.) 解(1)设炮弹发射后的位置在点M(x,y)(如图3-6),因为炮弹在Ox方向是以v0cosα为速度的匀速直线运动,在Oy方向是以v0sinα为初速度的竖直上抛运动,所以按匀速直线运动的公式知:炮弹在时刻t的水平距离是x=v0cos α·t,按竖直上抛运动的位移公式知:炮弹在时 即弹道曲线的参数方程上看不出来,那么怎么办呢 生:消去参数t,转化成为普通方程后,就可看出曲线的形状了. 故炮弹描绘的曲线是一条抛物线.(含顶点在内的一部分.因为二次项系数是负值,所以这是开口向下的抛物线,与实际问题相吻合.) 例2 把参数方程 即3x+5y-11=0是所求的普通方程,它的轨迹是一条直线. 师:这个同学理解了消参的基本方法——代入消参法.这正与解方程组中代入消元法相类似.他用学过的知识解决了新问题.你认为他的解题过程有问题吗 生:挺好的.我与他解的一样,没问题. 师:同学们在解题时注意参数t的取值范围了吗 生:t为不等于-1的实数,即t≠-1.

参数方程化普通方程练习题有答案

参数方程化普通方程 1.参数方程? ????x =cos 2 θ y =sin 2 θ,(θ为参数)表示的曲线是( ) A .直线 B .圆 C .线段 D .射线 解析:选=cos 2 θ∈[0,1],y =sin 2 θ∈[0,1],∴x +y =1,(x ,y ∈[0,1])为线段. 2.(1)参数方程? ????x =2t y =t (t 为参数)化为普通方程为____________. (2)参数方程? ????x =1+cos θ y =1-sin θ,(θ为参数)化为普通方程为____________. 解析:(1)把t =12x 代入y =t 得y =1 2x . (2)参数方程变形为??? ? ?x -1=cos θ,y -1=-sin θ, 两式平方相加,得(x -1)2+(y -1)2 =1. 答案:(1)y =12 x (2)(x -1)2+(y -1)2 =1 3.曲线C :?????x =12t y =t 2 ,(t 为参数)的形状为____________. 解析:因为t =2x ,代入y =t 2 ,得y =4x 2 ,即x 2 =1 4 y ,所以曲线C 为抛物线. 答案:抛物线 4.将下列参数方程化为普通方程: (1)???x =t +1 y =1-2t ,(t 为参数); (2)? ????x =5cos θy =4sin θ-1,(θ为参数); (3)?????x =1+3 2t y =2-1 2t ,(t 为参数); (4)?????x =2t 1+t 2y =1-t 21+t 2 ,(t 为参数). [解] (1)由x =t +1≥1,有t =x -1, 代入y =1-2t , 得y =-2x +3(x ≥1). (2)由?????x =5cos θ y =4sin θ-1得?????cos θ=x 5sin θ=y +14 , ① ② ①2 +②2 得x 2 25+(y +1) 2 16 =1. (3)由?????x =1+32t y =2-12t 得?????x -1=3 2t y -2=-12t , ① ② ②÷①得 y -2x -1=-33,∴y -2=-3 3 (x -1)(x ≠1) ∴3x +3y -6-3=0, 又当t =0时x =1,y =2也适合,故普通方程为3x +3y -6-3=0. (4)由???? ?x =2t 1+t 2y =1-t 21+t 2得? ??? ?x 2=4t 2 (1+t 2)2 y 2=1+t 4-2t 2(1+t 2) 2 , ① ② ①+②得x 2+y 2 =1.

参数方程与普通方程的互化(教学设计)

2.1.3 参数方程与普通方程互化(教学设计) 教学目标: 知识与技能:掌握参数方程化为普通方程几种基本方法 过程与方法:选取适当的参数化普通方程为参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:参数方程与普通方程的互化 教学难点:参数方程与普通方程的等价性 教学过程: 一、复习引入: 1、圆的参数方程; (1)圆222r y x =+参数方程? ??==θθsin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:???+=+=θθsin cos 00r y y r x x (θ为参数) 2、参数方程的定义 二、师生互动,新课讲解: 小结: 1、参数方程化为普通方程的过程就是消参过程常见方法有三种: (1) 代入法:利用解方程的技巧求出参数t ,然后代入消去参数 (2) 三角法:利用三角恒等式消去参数 (3) 整体消元法:根据参数方程本身的结构特征,从整体上消去。 化参数方程为普通方程为0),(=y x F :在消参过程中注意变量x 、y 取值范围的一致性,必须根据

参数的取值范围,确定)(t f 和)(t g 值域得x 、y 的取值范围。 2、探析常见曲线的参数方程化为普通方程的方法,体会互化过程,归纳方法。 3、理解参数方程与普通方程的区别于联系及互化要求。 答:B 变式训练2:曲线y=x 2的一种参数方程是( D ) 例3:指出下列参数方程表示什么曲线: (1)? ????x =3cos θ,y =3sin θ????θ为参数,0<θ<π2; (2)?????x =2cos t ,y =2sin t (t 为参数,π≤t ≤2π); (3)? ????x =3+15cos θ,y =2+15sin θ(θ为参数,0≤θ<2π). 解析:(1)由? ????x =3cos θ,y =3sin θ(θ为参数)得x 2+y 2=9. 2224sin A B C sin x t x t x t x y t y t y t y t ==??=??=??????====??????、、、、

参数方程化成普通方程

参数方程化成普通方程,这类高考数学题,难不难? 极坐标和参数方程是高中数学当中重要的知识点,也是高考数学考查的一个重要对象。在平时的数学学习过程中,我们要学会对极坐标和参数方程内容在高考中的考查和应用,进行了一个全面总结,让自己对相关考点和题型做到心里有数。 如在解析几何试题中,与圆锥曲线的同一焦点弦的两焦半径的长的有关问题是极为常见的,此类问题的多种解法中,用圆锥曲线的统一定义(极坐标)求焦半径长入手最简单椭圆、双曲线、抛物线可以统一定义为:平面上与一定点F(焦点)的距离和一条定直线l的距离比为定值e的点的轨迹。 用极坐标方程去解决数学问题具有独特的优势,在极坐标(P,θ)中,P表示线段长度,灵活方便,并且能从极坐标方程中求出;θ表示角度,可使有关运算转化为三角函数式,计算有公式可循,因此它与直角坐标相比,有独特的功能,特别在处理圆锥曲线的弦、半径等问题中,极坐标具有一定的优越性。 典型例题分析1:

考点分析: 参数方程化成普通方程. 题干分析: (I)直线C1(t为参数),消去参数t化为普通方程:y=(x﹣1)tanα+2,把点(2,3)代入,解得tanα,即可得出直线C1的普通方程.由圆C2(α为参数),利用cos2α+sin2α=1消去参数α化为普通方程,把点(2,2)代入解得t2,即可得出圆C2的普通方程. (II)由题意可得:|OP|max=|OC2|+|t|,代入解得t即可得出. 典型例题分析2:

考点分析:

摆线在刻画行星运动轨道中的作用;参数方程化成普通方程. 题干分析: (1)求出曲线C的普通方程,直线的普通方程,利用圆的到直线的距离距离与半径比较,即可得到结果. (2)利用圆心到直线的距离与已知条件列出关系式,即可得到结果

直线的参数方程及应用

直线的参数方程及应用 基础知识点击: 1、 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、 直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l ? ??+=+=αα s i n c o s 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:0y )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=00y t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是一一对应关系. 问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1 则P 1P 2=?,∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1, ∣P 1P 2∣=∣ t 2-t 1∣ 问题4: 一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3, P 3为P 1、P 2的中点 则t 3=2 21t t + 基础知识点拨: 1、参数方程与普通方程的互化 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义. 点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义. 例2:化直线2l 的参数方程? ??+=+-= t 313y t x (t 为参数)为普通方程,并求倾斜角, 说明∣t ∣的几何意义. 点拨:注意在例1、例2中,参数t 的几何意义是不同的,直线1l 的参数方程 你会区分直线参数方程的标准形式? 例3:已知直线l 过点M 0(1,3),倾斜角为 3 π ,判断方程??? ? ???+=+=t y t x 2332 1 1(t 为参数)和方 程? ??+=+= t 331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出 方程中的参数t 是否具有标准形式中参数t 的几何意义. 点拨:直线的参数方程不唯一,对于给定的参数方程能辨别其标准形式,会利用参数t 的几何意义解决有关问题. x y ,) x x

极坐标与参数方程知识点总结

第一部分:坐标系与参数方程 【考纲知识梳理】 1平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换? :严"一?x,(匸〉0 )的作用下,点p(x, y)对应到点 y=U?y,(A;>0) ' Px,y■,称「为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. M於①] 2?极坐标系的概念 (1)极坐标系如图(1)所示,在平面内取一个定点0 ,叫做极点,自极点0引一条射线Ox, 叫做极轴;再选定一个长度单位,一 个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系? 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可?但极坐标系和平面直角坐标系都是平面坐 标系? (2)极坐标 设M是平面内一点,极点0与点M的距离|0M|叫做点M的极径,记为;以极轴0灿始边,射线0M为终边的角? x0M叫做点M的极角,记为—有序数对几二叫做点M的极坐标记作M匸门?一般地,不作特殊说明时,我们认为「_ 0门可取任意实数?特别地,当点M在极点时,它的极坐标为0,匚< 三R 。和直角坐标不同,平面内一个点的极坐标有无数种表示?如果规定T -0,0"::^ ::: 2-,那么除极点外,平面内的点可用 唯一的极坐标几二表示;同时,极坐标订二表示的点也是唯一确定的 3?极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同 的长度单位,如图(2)所示: (2)互化公式:设M是坐标平面内任意一点,它的直角坐标是x, y,极坐标是:::0,于 是极坐标与直角坐标的互化公式如表: 点M 直角坐标(X, y )极坐标(巴日) 互化公式P cos日= Psi n 日P2 =x2+ y2 tan? - y (x 式0 ) x 在一般情况下,由tan二确定角时,可根据点M所在的象限最小正角4?常见曲线的极坐标方程

相关主题