搜档网
当前位置:搜档网 › 复合材料成型工艺发展综述

复合材料成型工艺发展综述

复合材料成型工艺发展综述
复合材料成型工艺发展综述

上海海事大学

先进复合材料成型工艺课程论文

学院:海洋科学与工程学院

专业:

班级:材料132

姓名:

学号:

论文题目:复合材料成型工艺发展综述

指导老师:

二〇一六年一月

复合材料成型工艺发展综述

XXXXX

上海海事大学海洋科学与工程学院

【摘要】本文主要介绍了树脂基复合材料成型工艺及其发展趋势。其中提到了“手糊成型”、“拉挤成型”、“模压成型”等。也从复合材料生产各要素的方面,简要阐述其发展的趋势。本文章也表明了复合材料作为国家建设的战略材料,得到了越来越来多的重视,了解其成型工艺的发展有其重要的意义。

【关键词】复合材料成型工艺发展

The Summary of Development on Composites Molding Technology

Xxxx Onion

College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai Abstract:This thesis describes the resin composites molding process and its development trend. Some specific processes are mentioned, such as ‘Hand paste molding’ , ‘Pull extrusion forming’ ,‘Compression molding’ and so on. Also, a brief description of its development trend are made in terms of of manufacturing composites. This thesis also shows the composite material, as a nation-building strategy material, has been more popular and it’s important to understand the development of its molding process.

Key Words: composites molding process development

前言

人类在生产生活中需要利用到各种各样的材料,它是人们生产生活水平能够提升物质保障。在人类的发展历史中,材料工业的大的革新往往能够引起人类社会大的变革,推动人类社会的发展。复合材料就是指由两种以上的材料进行加工合成后产生的新型材料,它与陶瓷、金属、高聚物被人们称之为四大材料。[1-5]

先进的复合材料具有热性能优越、耐疲劳、可设计性、各向异性和比模量高等优良特性,凭借这些优良的特性,很快就获得了广泛的应用,复合材料在工业领域得到广泛应用,也是衡量一个国家科技和经济实力的重要标志。先进复合材料不仅强度高,而且耐热性能和抗疲劳性能优良,在航空航天、交通运输、机械化工等领域得到广泛应用。[6-15]

1 复合材料成型工艺

复合成型工艺生产过程中的关键是在保证制品的形状和尺寸以及制品表面质量的前提下,让增强材料能够按照预先设定好的方向均匀的进行配置,并尽量的防止制品的性能受到影响,使基体材料能够比较充分的完成固化反应。经过几十年发展与技术进步,树脂基复合材料成型工艺取得不断发展,种类进一步增多,并存在相同点和不同点,主要体现在以下方面。

手糊成型

手糊成型又称接触成型,是用纤维增强材料和树脂胶液在模具上铺敷成型,室温(或加热)、无压(或低压)条件下固化,脱模成制品的工艺方法。手糊成型按成型固化压力可分为两类:接触压和低压(接触压以上)。前者为手糊成型、喷手糊成型是复合材料最早的一种成型方法。虽然它在各国复合材料成型中所占比重呈下降趋势,但仍不失为主要的成型方法。[16-17]这是由于手糊成型具有下列优点:手糊成型不受产品尺寸和形状限制,适宜尺寸大、批量小、形状复杂产品的生产;设备简单,投资少,设备折旧费低;工艺简便;易于满足产品设计要求,可以在产品不同部位任意增补增强材料;制品树脂含量较高,耐腐烛性好。手糊成型的缺点为:生产效率低,劳动强度大,劳动卫生条件差;产品质量不易控制,性能稳定性不高;产品力学性能偏低。?

拉挤成型

将已浸润的连续纤维束在牵引结构拉力下,用成型模成型,在模中固化,连续生产出复合型材。成型过程需要成型模挤压和外牵引拉拨,整个生产过程是连续的。[18]该工艺控制方便,产品质量稳定,成本低,生产效率高,制品的拉伸强度和弯曲强度高。目前拉挤工艺主要用于生产玻璃钢棒、工字型、角型、槽型、方型等,技术取得不断发展,产品质量也进一步提升。[19]

模压成型

模压成型是将一定量的模压料放入金属对摸中,在一定的温度和压力作用下固化成型制品的?一种方法。[20-21]在模压成型过程中需加热和加压,使模压料塑化、流动充满模腔,并使树力旨固化。在模压料充满摸腔的流动过程中,不仅树脂流动,增强材料也要随之流动,所以模压成型工艺的成型压力较其他方法高,属于高压成型。因此,它既需要能对压力进行控制的液压机,又需要高强度、高精度、耐高温的金属模具。

缠绕成型

将连续纤维按一定规律缠绕至芯模,经固化和脱模形成产品,产品可靠性高,生产效率高,强度高,并且可以节约成本,技术经济效益明显。该工艺在航天、军工领域应用广泛,并朝着自动化、集成化方向发展。[22-26]

RTM 成型

该技术为适应飞机雷达罩成型发展而来,在纤维增强复合材料生产中得到广

泛应用。该技术可为构件提供双面光滑表面的能力,制造品质好、精度高的构件,成型效率高,挥发型物质少,不会影响人的身体健康。[27]近年来还开展大量颇有成效的技术,设备、树脂、模具不断改进和完善,在工业制造领域也发挥更大的作用。

铺放成型

包括自动铺丝束技术和自动窄带铺放技术,实现加工制造的全自动化,在航空航天、特殊结构构件的应用非常广泛。随着技术进步,控制系统升级到全数字控制,自动铺放新技术出现并得到愈加广泛的应用,在战斗机、商用飞机方面采用自动铺丝技术,带动航空制造技术变革。并且新技术将不断出现,促进复合材料的变革和进步。

2 复合材料成型工艺的发展

复合材料制造技术在现代社会正朝着自动化和智能化的方向发展。快速固化技术、复合材料构件的生产自动化、纤维自动缠绕技术等一个个新技术的研究开发推动者复合材料成型工艺的长久发展,也改变着人类的生活方式。[28-32]

预浸料制备

预浸料是半成品,推动复合材料工艺发展,其工艺改进也带来众多新技术的应用,如熔融浸渍、纤维混合法、粉末混合工艺等。预浸料制备发展到机械化和自动化形式,编制预浸料标准,促进工艺技术革新和进步。如自动控制技术的发展,纤维缠绕发展成为纤维铺放。在纤维铺放的过程中,我们需要把预先浸泡好的多团纱束集合起来形成一个直的带状纱布,把这个纱布铺放在模具或者是芯模的表面,这样做的制品形状并不一定是回转体,也可以是一些形状曲率变化很大的制品,甚至是一些有凹形表面的制品。自动纤维铺放就是计算机在纤维缠绕上的实际应用成果,使纤维的力学设计得到了更多的自由度。

优化固化过程

计算机技术、过程控制技术、人工智能技术的开发和应用,再加上超声和介电技术支持,实现在线固化的可能性,对固化压力、温度等实现连续监测,调整固化气孔率、厚度等,推动产品质量提升。

模具发展

模具结构形式多种多样,推动复合材料构件制造多样化。目前复合材料模具、软模、芯模技术取得较大进步,促进模具和产品膨胀系数基本一致,减轻结构自重,方便材料卸载,有利于控制构件尺寸和厚度,保证产品质量。[33]

原材料的发展

碳纤维、氧化铝纤维、芳纶纤维,新型高性能树脂、金属和陶瓷基体等出现并得到应用,其韧性、耐高温性更优,有利于提高产品质量和综合性能。[34-36]如近些年,把长短纤维作为增强材料,以热固性、热塑性树脂作为基础性材料的各种类别复合材料模压成型工艺发展十分迅速,产品的性价比也比较高,且生产效率高,污染环境少适合航空航天、汽车灯工业的需求。

3结语

随着技术发展和改进,复合材料呈现智能化和自动化趋势,将在工业领域得

到更加广泛的应用,其工艺方式也将得到不断改善,在民用方面,将更加其适用性。同时更为重要的是,将为国家战略发展提供一个新的起点。

参考文献

[1] 殷东平, 王亚锋, 李直. 某复合材料机载构件制造工艺研究[J]. 电子机械工程2010(05).

[2] Zhang F, Comas-Cardona S, Binetruy C. Statistical modeling of in-plane permeability of non-woven random fibrous reinforcement. Compos Sci Technol 2012;72:1368–79.

[3] Pandey G, Deffor H, Thostenson ET, Heider D. Smart tooling with integrated time domain reflectometry sensing line for non-invasive flow and cure monitoring during composites manufacturing. Compos Part A Appl Sci Manuf 2013;47:102–8.

[4] 赵娟. 基于ANSYS的碳纤维复合材料传动轴的铺层设计[D]. 武汉理工大学. 2011.

[5] 张胜佳. 环氧树脂增韧的研究进展[J]. 宁波化工,2015(1):1-6.

[6] Masoodi R, Pillai KM, Grahl N, Tan H. Numerical simulation of LCM mold-filling during the manufacture of natural fiber composites. J Reinf Plast Compos,2012;31(6):363–78.

[7] Francucci G, Rodríguez ES, Morán J. Novel approach for mold filling simulation of the processing of natural fiber reinforced composites by resin transfer molding. J Compos Mater 2014;48:191–200.

[8] Alix S, Lebrun L, Morvan C, Marais S. Study of water behaviour of chemically treated flax fibres-based composites: a way to approach the hydric interface. Compos Sci Technol 2011;71:893–9.

[9] Nguyen VH. Characterization of natural fiber and modeling resin transfer molding process in natural fiber preform, . thesis, Ecole des Mines de Douai, France; 2014.

[10] Khalil HA, Bhat A, Yusra AI. Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 2012;87(2):963-79.

[11] 何亚飞. 树脂基复合材料成型工艺的发展[J].纤维复合材料,2011(2):7-13.

[12] 蔡闻峰. 树脂基碳纤维复合材料成型工艺现状及发展方向[J]. 航空制造技术,2008(10):54-57.

[13] 陈婷. 浅谈树脂基复合材料的成型工艺[J]. 山东工业技术,2015(4):6.

[14] 杨川. 芳纶纤维柔性复合材料制备及其防刺性能研究[D]. 哈尔滨工业大. 2010.

[15] 郭丽敏, 白彦坤. 低碳、环保的植物纤维餐具[N]. 中国包装报,2010.

[16] 杨文志, 朱锡, 陈悦等. 复合材料螺旋桨RTM成型工艺研究[J]. 材料科学与工艺,2015,06:1-6.

[17] 谭小波. 试论酚醛树脂及其复合材料成型工艺的研究进展[J]. 山东工业技术,2015,24:7.

[18] 邵刚强, 李国萍. 竹纤维-聚丙烯复合材料板材的成型工艺研究及优化[J]. 合成纤维,2015,01:40-42.

[19] 王永红,郭敏骁,林星. 某型飞机隔音复合材料内装饰成型工艺研究[J]. 航空制造技术,2012,07:81-83+88.

[20] 魏俊伟,郭万涛,张用兵. 夹芯结构复合材料构件VARI工艺仿真计算与成型实验[J]. 材料开发与应用,2012,02:51-58.

[21] 刘刚, 罗楚养, 李雪芹等. 复合材料厚壁连杆RTM成型工艺模拟及制造验证[J]. 复合材料学报,2012,04:105-112.

[22] 谢超. 复合材料成型工艺方法的研讨[J]. 湖南农机,2014,09:62-63.

[23] 涂伟, 郑贤义, 赵鹏. 基于VARI工艺的复合材料成型技术探讨[J]. 广船科技,2014,03:37-40.

[24] 陈蔚, 成理, 张晨乾等. CCF300/5228A复合材料RFI成型工艺参数[J]. 航空材料学报,2014,06:54-61.

[25] 徐伟丽, 张玉生, 张璇等. 大尺寸多格栅复合材料框架共固化成型工艺[J]. 宇航材料工艺,2014,06:46-48.

[26] 王共冬, 王军, 王巍. 粗糙集在复合材料成型工艺事例推理中应用[J]. 武汉理工大学学报,2012,06:27-31.

[27] 陈跃鹏, 武永琴. 航空工业复合材料制件成型工艺进展[J]. 科技与企业,2012,13:346.

[28] 匡宁, 陈同海, 钱育胜等. 中空复合材料的成型工艺及应用进展[J]. 工程塑料应用,2015,01:120-123.

[29] Jonoobi M, Harun J, Mathew AP, Oksman K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 2010;70(12):1742-7.

[30] Bondeson D, Syre P, Niska KO. All cellulose nanocomposites produced by extrusion. J Biobased Mater Bioenergy 2007;1(3):367-71.

[31] 刘志杰, 闫超, 罗辑等. 复合材料多隔板框梁结构的RTM工艺成型[J]. 玻璃钢/复合材料,2015,01:82-87.

[32] 马俊龙. 复合材料LCM整体成型工艺发展及应用[J]. 科技创新与应用,2015,10:109.

[33] 杨文志, 朱锡, 陈悦等. 复合材料螺旋桨RTM成型工艺研究[J]. 材料科学与工艺,2015,06:1-6.

[34] 谭小波. 试论酚醛树脂及其复合材料成型工艺的研究进展[J]. 山东工业技术,2015,24:7.

[35] 张小溪. 复合材料成型工艺方法及优缺点分析[J]. 科技与企业,2014,18:165.

[36] 马俊龙. 复合材料LCM整体成型工艺发展及应用[J]. 科技创新与应用,2015,10:109.

复合材料加工工艺综述

复合材料加工工艺综述 前言: 复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。 复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。 复合材料是一种混合物。在很多领域都发挥了很大的作用,代替了很多传统的材料。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。 60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属

先进复合材料主要制造工艺和专用设备

先进复合材料主要制造工艺和专用设备 中国航空工业第一集团公司科技发展部 郝建伟 中国航空工业发展研究中心 陈亚莉 先进复合材料具有轻质、高强度、高模量、抗疲劳、耐腐蚀、可设计、成型工艺性好和成本低等特点,是理想的航空结构材料,在航空产品上得到了广泛应用,已成为新一代飞机机体的主体结构材料。复合材料先进技术的成熟使其性能最优和低成本成为可能,从而大大推动了复合材料在飞机上的应用。一些大的飞机制造商在飞机设计制造中,正逐步减少传统金属加工的比例,优先发展复合材料制造。本文旨在介绍在复合材料制造过程中所涉及到的主要工艺和先进专用设备。 复合材料在飞机上的应用 随着复合材料制造技术的发展,复合材料在飞机上的用量和应用部位已经成为衡量飞机结构先进性的重要标志之一。复合材料在飞机上的应用趋势有如下几点: (1)复合材料在飞机上的用量日益增多。 复合材料的用量通常用其所占飞机机体结构重量的百分比来表示,世界上各大航空制造公司在复合材料用量方面都呈现增长的趋势。最有代表性的是空客公司的A380客机和后续的A350飞机以及波音公司的B787飞机。A380上复合材料用量约30t。B787复合材料用量达到50%。而A350飞机复合材料用量更是达到了创纪录的52%。复合材料在军机和直升机上的用量也有同样的增长趋势,近几年得到迅速发展的无人机更是将复合材料用量推向更高水平。 (2)应用部位由次承力结构向主承力结构发展。 最初采用复合材料制造的是飞机的舱门、整流罩、安定面等次承力结构。目前,复合材料已经广泛应用于机身、机翼等主承力结构。主承载部位大量应用复合材料使飞机的性能得到大幅度提升,由此带来的经济效益非常显著,也推动了复合材料的发展。 (3)在复杂外形结构上的应用愈来愈广泛。 飞机上用复合材料制造的复杂曲面制件也越来越多,如A380和B787飞机上的机身段,球面后压力隔框等,均采用纤维铺放技术和树脂膜渗透(RFI)工艺制造。 (4)复合材料构件的复杂性大幅度增加,大型整体、共固化成型成为主流。 在飞机上大量采用复合材料的最直接的效果是减重,复合材料制件

复合材料整体成型关键技术现状分析研究

复合材料整体成型关键技术现状分析研究 摘要:复合材料具有减轻结构重量,适合整体成型,提升结构安全性,降低生产成本等诸多优势,目前复合材料已经成为航空工业的研究热点,未来航空市场的竞争,很大一部分也是先进复合材料应用的竞争,目前在这块市场上,我国的基础实力较为薄弱,而发达国家对于先进的复合材料技术对我国高度保密,因此充分利用专利信息,研究复合材料整体成型技术的发展现状具有非常重要的意义。本文从专利的角度对航空复合材料整体成型技术的应用进行了分析,并从几个关键技术点上进行重点专利分析,以期能给复合材料的研发应用提供指导。 关键词:复合材料自动铺放液态成型热压罐真空袋挤压成型 中图分类号:tb33 文献标识码:a 文章编号: 1674-098x(2011)12(a)-0000-00 复合材料整体成型技术正广泛的应用在航空航天及其他技术领域,由于复合材料的整体成型具有降低制造成本,减轻结构重量,提升航天器的经济环保性等诸多优点。飞机上的复合材料使用量已经成为衡量其先进性的重要标准[1]。 飞机设计领域向来有为减轻每1g重量而奋斗的原则,因此发展复合材料成型技术的符合民机技术发展的趋势,也反映了目前低碳节能,绿色环保的飞机设计理念的要求。

目前如空客公司的a350,波音公司的b787的复合材料的用量已经达到了50%。当前各国都将先进复合材料制造技术作为研发重点,而从“产品未动,专利先行”的角度出发,大量复合材料技术都可以在专利文献中找到,因此积极利用专利信息开展现状分析,挖掘具有借鉴价值的专利具有十分积极的意义。 1复材整体成型技术发展概况 现代先进复合材料起源于20世纪60年代,70年代复合材料开始应用在飞机结构上,复合材料的加入对飞机结构轻质化、模块化起着中重要的作用。近年来先进复合材料在现代飞机上的用量不断扩大,已经成为铝,钢、钛之外的第四大航空结构材料[2]。复合材料整体成型技术经过了几个阶段的发展,已经逐渐从次承力件过度到主承力件,波音空客两大民机巨头在民机市场竞争 日趋激烈,在复合材料方面也不断抢占技术制高点,推出的机型中无一不把提高复合材料用量作为经济性,先进性的象征性指标。从专利领域来看,近几年两大航空企业的复合材料相关专利的申请量也在不断剧增,波音公司凭借其一直以来在复合材料应用领域的雄厚基础,申请了大量极具技术价值的基础专利,同时针对这些基础专利不断进行改进形成新的专利申请。空客公司作为后起竞争者凭借欧洲航空工业在复材领域的雄厚基础,不断进行大胆创新,在该领域申请的大量的专利也大有后来居上的态势。可见现代民机企业都在不遗余力的提升复合材料的研发力度。 当前复合材料的成型技术主要包括真空袋-热压罐成型技术,自

复合材料工艺大全

复合材料工艺大全 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业生产。如: (1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺; (3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺; (11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术; (14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺; (17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术; (21)热塑性片状模塑料制造技术及冷模冲压成型工艺; (22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。 视所选用的树脂基体材料的不同,上述方法分别适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。

复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成 一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。 (2)制品成型比较简便 一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。 ◇成型工艺层压及卷管成型工艺 1、层压成型工艺 层压成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。 层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。 层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。 2、卷管成型工艺 卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。

复合材料成型工艺大全及说明

复合材料成型工艺大全及说明 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业 生产。 视所选用的树脂基体材料的不同,各方法适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。(2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅 需一套模具便能生产。 ◇ 层压及卷管成型工艺1、层压成型工艺层压 成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,

放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。2、卷管成型工艺卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品 成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。卷管成型按其上布方法的不同而可分为手工上布法和连续机械法两种。其基本过程是:首先清理各辊筒,然后将热辊加热到设定温度,调整好胶布张力。在压辊不施加压力的情况下,将引头布先在涂有脱模剂的管芯模上缠上约1圈,然后放下压辊,将引头布贴在热辊上,同时将胶布拉上,盖

复合材料加工工艺综述

复合材料加工工艺综述 、, 、- 前言: 复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。 复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20 世纪40 年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50 年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70 年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。 复合材料是一种混合物。在很多领域都发挥了很大的作用,代替了很多传统的材料。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通 单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。 60 年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4X106厘米 (cm ),比模量大于4X108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属 基和陶瓷基复合材料。其使用温度分别达250?350 C、350?1200 C和1200 C以上。先进复合材料

热塑性复合材料成型工艺

热塑性复合材料成型工艺 热塑性复合材料是以玻璃纤维、碳纤维、芳纶纤维等增强各种热塑性树脂的总称,国外称FRTP (Fiber Rinforced Thermo Plastics)。由于热塑性树脂和增强材料种类不同,其生产工艺和制成的复合材料性能差别很大。 从生产工艺角度分析,塑性复合材料分为短纤维增强复合材料和连续纤维增强复合材料两大类:(1)短纤维增强复合材料①注射成型工艺;②挤出成型工艺;③离心成型工艺。(2)连续纤维增强及长纤维增强复合材料①预浸料模压成型;②片状模塑料冲压成型;③片状模塑料真空成型;④预浸纱缠绕成型;⑤拉挤成型。 热塑性复合材料的特殊性能如下: (1)密度小、强度高热塑性复合材料的密度为1.1~1.6g/cm3,仅为钢材的1/5~1/7,比热固性玻璃钢轻1/3~1/4。它能够以较小的单位质量获得更高的机械强度。一般来讲,不论是通用塑料还是工程塑料,用玻璃纤维增强后,都会获得较高的增强效果,提高强度应用档次。 (2)性能可设计性的自由度大热塑性复合材料的物理性能、化学性能、力学性能,都是通过合理选择原材料种类、配比、加工方法、纤维含量和铺层方式进行设计。由于热塑性复合材料的基体材料种类比热固性复合材料多很多,因此,其选材设计的自由度也就大得多。 (3)热性能一般塑料的使用温度为50~100℃,用玻璃纤维增强后,可提高到100℃以上。尼龙6的热变形温度为65℃,用30%玻纤增强后,热形温度可提高到190℃。聚醚醚酮树脂的耐热性达220℃,用30%玻纤增强后,使用温度可提高到310℃,这样高的耐热性,热固性复合材料是达不到的。热塑性复合材料的线膨胀系数比未增强的塑料低1/4~1/2,能够降低制品成型过程中的收缩率,提高制品尺寸精度。其导热系数为0.3~0.36W(㎡·K),与热固性复合材料相似。 (4)耐化学腐蚀性复合材料的耐化学腐蚀性,主要由基体材料的性能决定,热塑性树脂的种类很多,每种树脂都有自己的防腐特点,因此,可以根据复合材料的使用环境和介质条件,对基体树脂进行优选,一般都能满足使用要求。热塑性复合材料的耐水性优于热固性复合材料。 (5)电性能一般热塑性复合材料都具有良好的介电性能,不反射无线电电波,透过微波性能良好等。由于热塑性复合材料的吸水率比热固性玻璃钢小,故其电性能优于后者。在热塑性复合材料中加入导电材料后,可改善其导电性能,防止产生静电。 (6)废料能回收利用热塑性复合材料可重复加工成型,废品和边角余料能回收利用,不会造成环境污染。 由于热塑性复合材料有很多优于热固性玻璃钢的特殊性能,应用领域十分广泛,从国外的应用情况分析,热塑性复合材料主要用于车辆制造工业、机电工业、化工防腐及建筑工程等方面。 1、注射成型工艺 注射成型是热塑性复合材料的主要生产方法,历史悠久,应用最广。其优点是:成型周期短,能耗最小,产品精度高,一次可成型开关复杂及带有嵌件的制品,一模能生产几个制品,生产效率高。缺点是不能生产纤维增强复合材料制品和对模具质量要求较高。根据目前的技术发展水平,注射成型的最大产品为5kg,最小到1g,这种方法主要用来生产各种机械零件,建筑制品,家电壳

铝基复合材料综述

铝基复合材料综述 XXXXXXXXXXX 摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。 关键词铝基复合材料种类性能制备应用 Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys. Key words Al-based alloys kind performance approach use

1.引言 自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类 按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 3.铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 4.铝基复合材料特点 在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

复合材料的预浸料模压成型工艺

复合材料的预浸料模压成型工艺 模压成型工艺基本过程是:将一定量经一定预处理的模压料放入预热的模具内,施加较高的压力使模压料填充模腔。在一定的压力和温度下使模压料逐渐固化,然后将制品从模具内取出,再进行必要的辅助加工即得产品。 1.压制前的准备 (1)装料量的计算 在模压成型工艺中,对于不同尺寸的模压制品要进行装料量的估算,以保证制品几何尺寸的精确,防止物料不足造成废品,或者物料损失过多而浪费材料。常用的估算方法有①形状、尺寸简单估算法,将复杂形状的制品简化成一系列简单的标准形状,进行装料量的估算:②密度比较法,对比模压制品及相应制品的密度,已知相应制品的重量,即可估算出模压制品的装料量:③注型比较法,在模压制品模具中,用树脂、石蜡等注型材料注成产品,再按注型材料的密度、重量及制品的密度求出制品的装料量。 (2)脱模剂的涂刷 在模压成型工艺中,除使用内脱模剂外,还在模具型腔表面上涂刷外脱模剂,常用的有油酸、石蜡、硬脂酸、硬脂酸锌、有机硅油、硅脂和硅橡胶等。所涂刷的脱模剂在满足脱模要求的前提下,用量尽量少些,涂刷要均匀。一般情况下,酚醛型模压料多用有机油、油酸、硬脂酸等脱模剂,环氧或环氧酚醛型模压料多用硅脂和有机硅油脱模剂,聚酯型模压料多用硬脂酸锌、硅脂等脱模剂。 (3)预压 将松散的粉状或纤维状的模压料预先用冷压法压成重量一定、形状规整的密实体。采用预压作业可提高生产效率、改善劳动条件,有利于产品质量的提高。 (4)预热 在压制前将模压料加热,去除水分和其它挥发份,可以提高固化速率,缩短压制周期;增进制品固化的均匀性,提高制品的物理机械性能,提高模压料的流动性。

(5)表压值的计算 在模压工艺中,首先要根据制品所要求的成型压力,计算出压机的表压值。成型压力是指制品水平投影面上单位面积所承受的压力。它和表压值之间存在的函数关系: 复合材料的预浸料模压成型工艺 在模压成型工艺中,成型压力的大小决定于模压料的品种和制品结构的复杂程度,成型压力是选择压机吨位的依据。 2、压制工艺 (1)装料和装模 往模具中加入制品所需用的模压料过程称为装料,装料量按估算结果,经试压后确定。装模应遵循下列原则:物料流动路程最短:物料铺设应均匀;对于狭小流道和死角,应预先进行料的铺设。 (2)模压温度制度 模压温度制度主要包括装模温度、升温速率、成型温度和保温时间的选择。 ①装模温度 装模温度是指将物料放入模腔时模具的温度,它主要取决于物料的品种和模压料的质量指标。一般地,模压料挥发份含量高,不溶性树脂含量低时,装模温度较低。反之,要适当提高装模温度。制品结构复杂及大型制品装模温度一般宜在室温-90℃范围内。 ②升温速率 指由装模温度到最高压制温度地升温速率。对快速模压工艺,装模温度即为压制温度,不存在升温速率问题。而慢速模压工艺,应依据模压料树脂的类型、制品的厚度选择适当的升温速率。 ③成型温度

复合材料综述

金属基陶瓷复合材料制备技术研究进展与应用* 付鹏,郝旭暖,高亚红,谷玉丹,陈焕铭 (宁夏大学物理电气信息工程学院,银川750021) 摘要综述了国内外在金属基陶瓷复合材料制备技术方面的最新研究进展与应用现状,展望了 国内金属基陶瓷复合材料的未来发展。 关键词金属基陶瓷复合材料制备技术应用 Development and Future Applications of Metal Matrix Composites Fabrication Technique FU Peng, HAO Xunuan, GAO Yahong, GU Yudan, CHEN Huanming (School of Physics & Electrical Information Engineering, Ningxia University, Yinchuan 750021) Abstract Recent development and future applications of metal matrix compositesfabrication technique are reviewed and some prospects of the development in metal matrix composites at home are put forward. Key words metal-based ceramic composites, fabrication technique, applications 前言:现代高技术的发展对材料的性能日益提高,单料已很难满足对性能的综合要求,材料的复合化是材料发展的必然趋势之一。陶瓷的高强度、高硬度、高弹性模量以及热化学性稳定等优异性能是其主要特点,但陶瓷所固有的脆性限制着其应用范围及使用可靠性[1—3]。因此,改善陶瓷的室温韧性与断裂韧性,提高其在实际应用中的可靠性一直是现代陶瓷研究的热点。与陶瓷基复合材料相比,通常金属基复合材料兼有陶瓷的高强度、耐高温、抗氧化特性,又具有金属的塑性和抗冲击性能,应用范围更广,诸如摩擦磨损类材料、航空航天结构件、耐高温结构件、汽车构件、抗弹防护材料等。 1 金属基陶瓷复合材料的制备 金属基陶瓷复合材料是20世纪60年代末发展起来的,目前金属基陶瓷复合材料按增强体的形式可分为非连续体增强(如颗粒增强、短纤维与晶须增强)、连续纤维增强(如石墨纤维、碳化硅纤维、氧化铝纤维等)[4—6]。实际制备过程中除了要考虑基体金属与增强体陶瓷之间的物性参数匹配之外,液态金属与陶瓷间的浸润性能则往往限制了金属基陶瓷复合材料的品种。目前,金属基陶瓷复合材料的制备方法主要有以下几种。 1.1 粉末冶金法 粉末冶金法制备金属基陶瓷复合材料即把陶瓷增强体粉末与金属粉末充分混合均匀后进行冷压烧结、热压烧结或者热等静压,对于一些易于氧化的金属,烧结时通入惰性保护气体进行气氛烧结。颗粒增强、短纤维及晶须增强的金属基陶瓷复合材料通常采用此种方法,其主要优点是可以通过控制粉末颗粒的尺寸来实现相应的力学性能,而且,粉末冶金法制造机械零件是一种终成型工艺,可以大量减少机加工量,节约原材料,但粉末冶金法的生产成本并不比熔炼法低[7]。 1.2 熔体搅拌法 熔体搅拌法是将制备好的陶瓷增强体颗粒或晶须逐步混合入机械或电磁搅拌的液态或半

复合材料的手糊成型工艺

毕业设计报告(论文) 报告(论文)题目:聚合物基复合材料手糊成型工艺 作者所在系部:材料工程系 作者所在专业:高分子材料应用技术 作者所在班级: 07841 作者姓名:赵向男 作者学号: 20073084128 指导教师姓名:彭燕 完成时间: 2010年5月25日 北华航天工业学院教务处制

随着社会科技与经济的飞速发展,复合材料在国内外有很大的应用与发展,并且在各个领域占据了越来越重要的地位。复合材料的成型工艺方法很多,本文着重介绍手糊成型工艺方法的特点、工艺流程以及成型过程中遇到的问题和解决方法等。 关键字:复合材料手糊成型工艺流程。

Along with the social economy and the rapid development of science and technology, composite materials at home and abroad, has great development and application in different fields and occupy a more and more important role. Composites forming process, this paper introduces many methods to hand lay-up molding method, process and molding process problems and solving methods. Key words: composite materials molding paste hand process.

复合材料论文

复合材料论文 陶瓷基复合材料的发展状况 12级无机非(1)班1203031002 秦宇 摘要:材料是科学技术发展的基础,材料的发展可以推动科学技术的发展,材料主要有金属材料、聚合物材料、无机非金属材料和复合材料四大类。其中复合材料是是最新发展地来的一大类,发展非常迅速。最早出现的是宏观复合材料,它复合的组元是肉眼可以看见的,比如混凝土。随后发展起来的是微观复合材料,它的组元肉眼看不见。由于复合材料各方面优异的性能,因此得到了广泛的应用。复合材料对航空、航天事业的影响尤为显著,可以说如果没有复合材料的诞生,就没有今天的飞机、火箭和宇宙飞船等高科技产品。 本文从纤维增强陶瓷基复合材料Cf/SiC入手,综述了陶瓷基复合材料(ceramic matrix composite,CMC)的特殊使用性能、界面增韧机理、制备工艺作了较全面的介绍,并对CMC 的的研究现状、未来发展进行了展望。 关键词:陶瓷基复合材料、增强纤维、基体 正文 陶瓷基复合材料的定义与特性 陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 陶瓷基复合材料(CMC)由于具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,是制造推重比10 以上航空发动机的理想耐高温结构材料。一方面,它克服了单一陶瓷材料脆性断裂的缺点,提高了材料的断裂韧性;另一方面,它保持了陶瓷基体耐高温、低膨胀、低密度、热稳定性好的优点。陶瓷基复合材料的最高使用温度可达1650℃,而密度只有高温合金的70%。因此,近几十年来,陶瓷基复合材料的研究有了较快发展。目前CMC 正在航空发动机的高温段的少数零件上作评定性试用。 陶瓷基复合材料的分类 按增强材料形态分类,陶瓷基复合材料可分为颗粒增强陶瓷复合材料、纤维增强陶瓷复合材料、片材增强陶瓷复合材料。 按基体材料分类,陶瓷基复合材料可分为氧化物基陶瓷复合材料、非氧化物基陶瓷复合材料、碳/碳复合材料、微晶玻璃基复合材料。 三、陶瓷基复合材料的界面对材料整体性能的影响 界面直接影响复合材料的整体力学性能。纤维与基体间界面的主要作用有: (1)传递作用:由于纤维是主要的载荷承担者,因此界面必须有足够的结合强度来传递载荷,使纤维承受大部分载荷,在基体与纤维之间起到桥梁作用; (2)阻断作用:当基体裂纹扩展到纤维与基体间界面时,结合适当的界面能够阻止裂纹扩展或使裂纹发生偏转,从而达到调整界面应力,阻止裂纹向纤维内部扩展的效果。 当一垂直于纤维方向的裂纹穿入包埋单根纤维的基体时,随后的破坏机制界面对陶瓷基复合材料力学性能的影响分析可能为:基体断裂、纤维—基体界面脱粘、脱粘后摩擦、纤维断裂、应力重新分布、纤维拔出等。 对陶瓷基复合材料来说,纤维与基体的界面是控制材料性能的关键因素。因此,研究界面对陶瓷基复合材料的力学性能的影响具有重要意义。在纤维与基体之间的界面反应将改变材料

复合材料结构及其成型原理

碳纤维复合材料 (西北工业大学机电学院, 陕西西安710072) 摘要:碳纤维复合材料与金属材料相比,其密度小、比强度、比模量高,具有优越的成型性和其他特性,具有极大的发展潜力。本文介绍了碳纤维复合材料的特点及其应用,总结了碳纤维复合材料的成型工艺及每种成型工艺的特点,并从材料和成型两个方面指出了它的发展方向。 关键词:复合材料;碳纤维;成型工艺;工艺流程 Carbon Fiber Reinforce Plastic (School of Mechatronics, Northwes tern Polytechnical University, Xi’an 710072, China) Abstract: Compared to metals, carbon fiber reinforce plastic has great potential for development with lower density, higher specific strength and modulus, and excellent moldability and other characteristics. This article describes the characteristics and applications of carbon fiber reinforce plastic and sum up the manufacturing process of carbon fiber reinforce plastic and their characteristics. Finally, this article points out the development of carbon fiber reinforce plastic from two aspects: material and manufacturing process. Key words: composites; carbon fiber; manufacturing process; process

复合材料成型工艺及设备

无机非金属复合材料的成型工艺—纤维增强水泥基复合材料 【摘要】纤维增强水泥基复合材料作为新型工程材料已在土木工程多领域中得到广泛地应用。目前在水泥复合材料中掺加一定量的纤维,可以改善并且提高水泥复合材料的物理、力学等性能指标。 【关键词】纤维增强复合材料水泥 1、发展及应用 自60年代开始,纤维增强水泥基复合材料的研究和开发有较大进展。1964年,丹麦科学家应用复合材料理论探讨纤维增强无机与有机凝胶材料的机理。1967年英国人试制成功抗碱玻璃纤维增强波特兰水泥砂浆。随后美、日等国也相继投产。我国进入80年代用抗碱玻璃纤维增强低碱铝硅酸盐水泥,现已取得一定成效。目前广泛用于各种建筑物中以及工程装备中。 2、特点 纤维增强水泥基复合材料与普通混土相比,其显著特点是轻质高强,具有良好的断裂韧性。其拉压比一般可达1/4~1/6(普通混凝土为1/10)。 3、复合材料的组成 1、纤维增强水泥原材料 3.1.增强材料 纤维加入脆性的水泥基体中,其作用是提高水泥集体的抗拉强度和韧性,改善其冲击强度和疲劳性能。增强水泥所用纤维按其化学组成可分为金属纤维,无机纤维和有机纤维三大类。 用于增强水泥的纤维可分为短切纤维、连续纤维或纤维织物等。目前国内外使用最多的为短切纤维。 2.水泥基体材料 硅酸盐水泥、氯氧镁水泥、高铝矿渣水泥等 4、成型工艺及设备 GRC的成型方法有喷射法、预拌法、注射法、铺网法、缠绕法等多种方法。其中玻璃纤维增强水泥复合材料使用最多的方法是喷射成型法。 1、成型工艺 A:直接喷射法 用人工手动或通过机械移动装置使切割喷射机在模型上方作往复移动,将纤维水泥砂浆喷在模型表面。

金属基复合材料综述

金属基复合材料综述 专业: 学号: 姓名: 时间:

金属基复合材料综述 摘要:新材料的研究、发展与应用一直是当代高新技术的重要内容之一。其中复合材料,特别是金属基复合材料在新材料技术领域中占有重要的地位。金属基复合材料对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用,因此倍受人们重视。本文概述了金属基复合材料的发展历史及研究现状,对金属基复合材料的分类、性能、应用、制备方法、等进行了综述,提出了金属基复合材料研究中存在的问题,探讨了金属基复合材料的发展趋势。 关键词:金属基复合材料;分类;性能;应用;制备;发展趋势 Abstract: The research development and application of new composites are one of the important matters in modern high science and technology. This paper summarizes the met al matrix composites and the development history of the present situation and the classific ation of the metal matrix composites, performance, application and preparation methods, w as reviewed, and put forward the metal matrix composites the problems existing in the res earch, discusses the metal matrix composites trend of development. Keywords: Metal matrix composites; Classification; Performance; Application; Preparation; Development trend. 1.引言 复合材料是继天然材料,加工材料和合成材料之后发展起来的新一代材料。按通常的说法,复合材料是指两种或两种以上不同性质的单一材料,通过不同的复合方法所得到的宏观多相材料。随着现代科学技术的迅猛发展,对材料性能的要求日益提高。常希望复合材料即具有良好的综合性能,又具有某些特殊性能。金属基复合材料是近年来迅速发展起来的高性能材料之一,对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用。相信随着科学技术的不断发展,新的制造方法的出现,高性能增强物价格的不断降低,金属基复合材料在各方面将有越来越广阔的应用前景。

国内外先进复合材料低成本制造技术的发展现状

国内外先进复合材料低成本制造技术的发展现状 从低成本成型的研发现状看,大致可分为以下5方面的内容:(1)对热固性复合材料一直沿用的方法进行改进和提高效率,如Filament Winding(FW,纤维缠绕)、Pultrusion(拉挤)、 Braiding(编织)、 Tow placement(丝束排布)、自动成套裁剪、预浸材料激光样板切割(Laser template)等自动化技术。(2)湿法工艺技术:RTM、RFI等在纤维增强体的预型件上再注入浸渍树脂。(3)热塑性复合材料的易成型新材料开发及IN-SITU(原位)成型方法:D irect consolidate(直接固结)、Commingled yarn(搀混纱线)、Powder co ated towpreg(粉末涂覆丝束预浸)等新成型方法。(4)不用热压罐的新固化技术,用微波、电子束、超声波、X线等高效率能量的新固化方法。(6)CAD/C AM模拟技术:铺层、浸渍、成型、固化等工序的模型化/模拟技术,有助于保证产品质量,提高生产效率。 低成本成型技术当前发展的主流是湿法成型技术,也称液体模塑成型技术(简称LCM),主要有树脂传递模塑、真空辅助树脂传递模塑(VARTM)、树脂渗透成型工艺(SCRIMP)和结构反应注射模塑等。其中最重要的是树脂传递模塑技术(RTM)以及由此而发展起来的VARTM。RTM免除了将纤维制成预浸料,再切割成层片然后再铺叠成预型件的过程,摆脱了大投资的热压罐,工艺易于实现自动化,具有生产周期短、劳动力成本低、环境污染少、制造尺寸精确、外形光滑、可制造复杂产品等优点。是目前国际上发展应用最快,并在航空工业应用最多的低成本技术之一。 从国际上看,美国在湿法成型技术上处于领先地位,特别是在航空航天领域内,在过去十年里,美国应用RTM技术的增长率为20-25%。据美国塑料工程学会预测,在今后五年里美国应用RTM技术的增长率将提高到30-32%。美国基本形成了RTM有关的材料体系、制造工艺、技术装备和验证系统,并在武器装备上得

复合材料成型工艺

树脂基复合材料成型工艺介绍(1):模压成型工艺 模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。模压成型工艺的主要优点:①生产效率高,便于实现专业化和自动化生产;②产品尺寸精度高,重复性好;③表面光洁,无需二次修饰;④能一次成型结构复杂的制品;⑤因为批量生产,价格相对低廉。 模压成型的不足之处在于模具制造复杂,投资较大,加上受压机限制,最适合于批量生产中小型复合材料制品。随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展,压机吨位和台面尺寸不断增大,模压料的成型温度和压力也相对降低,使得模压成型制品的尺寸逐步向大型化发展,目前已能生产大型汽车部件、浴盆、整体卫生间组件等。 模压成型工艺按增强材料物态和模压料品种可分为如下几种:①纤维料模压法是将经预混或预浸的纤维状模压料,投入到金属模具内,在一定的温度和压力下成型复合材料制品的方法。该方法简便易行,用途广泛。根据具体操作上的不同,有预混料模压和预浸料模压法。 ②碎布料模压法将浸过树脂胶液的玻璃纤维布或其它织物,如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块,然后在金属模具中加温加压成型复合材料制品。③织物模压法将预先织成所需形状的两维或三维织物浸渍树脂胶液,然后放入金属模具中加热加压成型为复合材料制品。④层压模压法将预浸过树脂胶液的玻璃纤维布或其它织物,裁剪成所需的形状,然后在金属模具中经加温或加压成型复合材料制品。⑤缠绕模压法将预浸过树脂胶液的连续纤维或布(带),通过专用缠绕机提供一定的张力和温度,缠在芯模上,再放入模具中进行加温加压成型复合材料制品。⑥片状塑料(SMC)模压法将SMC片材按制品尺寸、形状、厚度等要求裁剪下料,然后将多层片材叠合后放入金属模具中加热加压成型制品。⑦预成型坯料模压法先将短切纤维制成品形状和尺寸相似的预成型坯料,将其放入金属模具中,然后向模具中注入配制好的粘结剂(树脂混合物),在一定的温度和压力下成型。 模压料的品种有很多,可以是预浸物料、预混物料,也可以是坯料。当前所用的模压料品种主要有:预浸胶布、纤维预混料、BMC、DMC、HMC、SMC、XMC、TMC及ZMC等品种。 1、原材料 (1)合成树脂复合材料模压制品所用的模压料要求合成树脂具有:①对增强材料有良好的浸润性能,以便在合成树脂和增强材料界面上形成良好的粘结;②有适当的粘度和良好的流动性,在压制条件下能够和增强材料一道均匀地充满整个模腔;③在压制条件下具有适宜的固化速度,并且固化过程中不产生副产物或副产物少,体积收缩率小;④能够满足模压制品特定的性能要求。按以上的选材要求,常用的合成树脂有:不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基树脂、呋喃树脂、有机硅树脂、聚丁二烯树脂、烯丙基酯、三聚氰胺树脂、聚酰亚胺树脂等。为使模压制品达到特定的性能指标,在选定树脂品种和牌号后,还应选择相应的辅助材料、填料和颜料。 (2)增强材料模压料中常用的增强材料主要有玻璃纤维开刀丝、无捻粗纱、有捻粗纱、连续玻璃纤维束、玻璃纤维布、玻璃纤维毡等,也有少量特种制品选用石棉毡、石棉织物(布)和石棉纸以及高硅氧纤维、碳纤维、有机纤维(如芳纶纤维、尼龙纤维等)和天然纤维(如亚麻布、棉布、煮炼布、不煮炼布等)等品种。有时也采用两种或两种以上纤维混杂料作增

相关主题