搜档网
当前位置:搜档网 › 如何通过视频画面裁剪得到特定分辨率的视频文件(修改稿)

如何通过视频画面裁剪得到特定分辨率的视频文件(修改稿)

如何通过视频画面裁剪得到特定分辨率的视频文件(修改稿)
如何通过视频画面裁剪得到特定分辨率的视频文件(修改稿)

这里使用“音视频格式转换专家”(Xilisoft Video Converter Ultimate)软件来解决所提出的问题。

打开软件如图1所示。

图1

首先预置输出方案,现选取WMV – Windows媒体视频,并添加一个要裁剪的视频文件如图2所示。

图2

按图2上的“特效”按钮,并在出现的画面上去掉“保持宽高比”前面的勾“”,如图3所示。

图3

现在可按图3上的播放按钮“”,一边播放,一边用鼠标拉动图3上的红色边框,制

定裁剪方案,如图4所示。

图4

由图4可见:裁剪区域位置,左边距为20个像素,顶边距为0个像素;特定视频分辨率为600x340。

按图4上的停止播放按钮“”,出现图5

按图5上的应用按钮,就应用这个裁剪方案了,再按图5上最小化按钮。此时出现图6。

图6

接下来就要在图6上制定特定的视频输出方案了。

首先把视频分辨率“Auto”改写成600x340,这很关键!再对输出视频质量、音频质量

作选择,现选择高质量视频和普通质量音频,并加大音量至125%,如图7所示。

图7

最后按图7上的“转换”按钮,开始转换,如图8所示。

图8

等待转换完成后,出现图9,就在输出文件夹中得到想要的视频文件了。

图9

按在图9上“移除”按钮,移去完成的任务,返回到图1。

在这里顺便谈一下视频的剪切问题。想把上面所得视频的前面一段很长的解说去掉,这也很容易。

在图1上添加上面所得出视频文件,如图10所示。

按图10上的“剪辑”按钮,出现图11。

图11

按图11上的最前面的播放按钮,一边播放,一边寻找视频“起点”时间点,把在这时间点

以前的一段视频剪去,如图12所示。

图12

按图12上的“应用”按钮,出现图13

图13

去掉前面一个任务的前面的勾,只转换所需的剪切后的视频,如图14

图14

再按图14上的“转换”按钮,开始转换,直到转换结束,就在输出文件夹中得到剪切后的视频文件了。把该输出文件改名为“宋祖英与阎维文对唱《缅桂花开十里香》.wmv”,该视频宽高比为1.765,适合放进手机媒体库里播放。

最后移除所有文件,返回到图1。

舒恒煜于2014.5.19

超分辨率算法综述

超分辨率复原技术的发展 The Development of Super2Re solution Re storation from Image Sequence s 1、引言 在图像处理技术中,有一项重要的研究内容称为图像融合。通常的成像系统由于受到成像条件和成像方式的限制,只能从场景中获取部分信息,如何有效地弥 补观测图像上的有限信息量是一个需要解决的问题。图像融合技术的含义就是把相关性和互补性很强的多幅图像上的有用信息综合在一起,产生一幅(或多幅) 携带更多信息的图像,以便能够弥补原始观测图像承载信息的局限性。 (图象融合就是根据需要把相关性和互补性很强的多幅图象上的有用信息综合在一起,以供观察或进一步处理,以弥补原始单源观测图象承载信息的局限性,它是一门综合了传感器、图象处理、信号处理、计算机和人工智能等技术的现代高新技术,于20 世纪70 年代后期形成并发展起来的。由于图象融合具有突出的探测优越性,在国际上已经受到高度重视并取得了相当进展,在医学、遥感、计算机视觉、气象预报、军事等方面都取得了明显效益。从图象融合的目标来看,主要可将其归结为增强光谱信息的融合和增强几何信息的融合。增强光谱信息的融合是综合提取多种通道输入图象的信息,形成统一的图象或数据产品供后续处理或指导决策,目前在遥感、医学领域都得到了比较广泛的应用。增强几何信息的融合就是从一序列低分辨率图象重建出更高分辨率的图象(或图象序列) ,以提 高图象的空间分辨率。对图象空间分辨率进行增强的技术也叫超分辨率 (super2resolution) 技术,或亚像元分析技术。本文主要关注超分辨率(SR) 重建技术,对SR 技术中涉及到的相关问题进行描述。) (我们知道,在获取图像的过程中有许多因素会导致图像质量的下降即退化,如 光学系统的像差、大气扰动、运动、离焦和系统噪音,它们会造成图像的模糊和变形。图像复原的目的就是对退化图像进行处理,使其复原成没有退化前的理想图像。按照傅里叶光学的观点,光学成像系统是一个低通滤波器,由于受到光学衍射的影响,其传递函数在由衍射极限分辨率所决定的某个截止频率以上值均为零。显然,普通的图像复原技术如去卷积技术等只能将物体的频率复原到衍射极

视频的码率、帧率、分辨率

为了了解视频的码率、帧率、分辨率。我们先来看看视频编码的基本原理:视频图像数据有极强的相关性,也就是说有大量的冗余信息。其中冗余信息可分为空域冗余信息和时域冗余信息。压缩技术就是将数据中的冗余信息去掉(去除数据之间的相关性),压缩技术包含帧内图像数据压缩技术、帧间图像数据压缩技术和熵编码压缩技术。视频文件一般涉及到三个参数:帧率、分辨率和码率。 帧率:每秒显示的图片数。影响画面流畅度,与画面流畅度成正比:帧率越大,画面越流畅;帧率越小,画面越有跳动感。由于人类眼睛的特殊生理结构,如果所看画面之帧率高于16的时候,就会认为是连贯的,此现象称之为视觉暂留。并且当帧速达到一定数值后,再增长的话,人眼也不容易察觉到有明显的流畅度提升了。 分辨率:(矩形)图片的长度和宽度,即图片的尺寸 码率:把每秒显示的图片进行压缩后的数据量。影响体积,与体积成正比:码率越大,体积越大;码率越小,体积越小。(体积=码率×时间) 帧率X分辨率=压缩前的每秒数据量(单位应该是若干个字节) 压缩比=压缩前的每秒数据量/码率(对于同一个视频源并采用同一种视频编码算法,则:压缩比越高,画面质量越差。) 所谓“清晰”,是指画面十分细腻,没有马赛克。并不是分辨率越高图像就越清晰。 简单说: 在码率一定的情况下,分辨率与清晰度成反比关系:分辨率越高,图像越不清晰,分辨率越低,图像越清晰。 在分辨率一定的情况下,码率与清晰度成正比关系,码率越高,图像越清晰;码率越低,图像越不清晰。 但是,事实情况却不是这么简单。可以这么说: 在码率一定的情况下,分辨率在一定范围内取值都将是清晰的;同样地,在分辨率一定的情况下,码率在一定范围内取值都将是清晰的。 在视频压缩的过程中,I帧是帧内图像数据压缩,是独立帧。而P帧则是参考I帧进行帧间图像数据压缩,不是独立帧。在压缩后的视频中绝大多数都是P帧,故视频质量主要由P帧表现出来。由于P帧不是独立帧,而只是保存了与邻近的I帧的差值,故实际上并不存在分辨率的概念,应该看成一个二进制差值序列。而该二进制序列在使用熵编码压缩技术时会使用量化参数进行有损压缩,视频的质量直接由量化参数决定,而量化参数会直接影响到压缩比和码率。 视频质量可以通过主观和客观方式来表现,主观方式就是通常人们提到的视频清晰度,而客观参数则是量化参数或者压缩比或者码率。在视频源一样,压缩算法也一样的前提下比较,量化参数,压缩比和码率之间是有直接的比例关系的。 分辨率的变化又称为重新采样。由高分辨率变成低分辨率称为下采样,由于采样前数据充足,只需要尽量保留更多的信息量,一般可以获得相对较好的结果。而由低分辨率变成高分辨率称为上采样,由于需要插值等方法来补充(猜测)缺少的像素点,故必然会带有失真,

超分辨率图像重建方法综述_苏衡

第39卷第8期自动化学报Vol.39,No.8 2013年8月ACTA AUTOMATICA SINICA August,2013 超分辨率图像重建方法综述 苏衡1,2周杰1张志浩1 摘要由于广泛的实用价值与理论价值,超分辨率图像重建(Super-resolution image reconstruction,SRIR或SR)技术成为计算机视觉与图像处理领域的一个研究热点,引起了研究者的广泛关注.本文将超分辨率图像重建问题按照不同的输入输出情况进行系统分类,将超分辨率问题分为基于重建的超分辨率、视频超分辨率、单帧图像超分辨率三大类.对于其中每一大类问题,分别全面综述了该问题的发展历史、常用算法的分类及当前的最新研究成果等各种相关问题,并对不同算法的特点进行了比较分析.本文随后讨论了各不同类别超分辨率算法的互相融合和图像视频质量评价的方法,最后给出了对这一领域未来发展的思考与展望. 关键词超分辨率图像重建,计算机视觉,图像处理,方法综述 引用格式苏衡,周杰,张志浩.超分辨率图像重建方法综述.自动化学报,2013,39(8):1202?1213 DOI10.3724/SP.J.1004.2013.01202 Survey of Super-resolution Image Reconstruction Methods SU Heng1,2ZHOU Jie1ZHANG Zhi-Hao1 Abstract Because of its extensive practical and theoretical values,the super-resolution image reconstruction(SRIR or SR)technique has become a hot topic in the areas of computer vision and image processing,attracting many researchers attentions.This paper categorizes the SR problems according to their input and output conditions into three main cat-egories:reconstruction-based SR,video SR and single image SR.For each category,the development history,common algorithm classes and state-of-the-art research achievements are reviewed comprehensively.We also analyze the charac-teristics of di?erent algorithms.Afterwards,we discuss the combination of di?erent super-resolution categories and the evaluation of image and video qualities.Thoughts and foresights of this?eld are given at the end of this paper. Key words Super-resolution image reconstruction,computer vision,image processing,survey Citation Su Heng,Zhou Jie,Zhang Zhi-Hao.Survey of super-resolution image reconstruction methods.Acta Auto-matica Sinica,2013,39(8):1202?1213 超分辨率图像重建(Super resolution image re-construction,SRIR或SR)是指用信号处理和图像处理的方法,通过软件算法的方式将已有的低分辨率(Low-resolution,LR)图像转换成高分辨率(High-resolution,HR)图像的技术.它在视频监控(Video surveillance)、图像打印(Image printing)、刑侦分析(Criminal investigation analysis)、医学图像处理(Medical image processing)、卫星成像(Satellite imaging)等领域有较广泛的应用. 收稿日期2011-08-31录用日期2013-01-29 Manuscript received August31,2011;accepted January29, 2013 国家自然科学基金重大国际(地区)合作研究项目(61020106004),国家自然科学基金(61005023,61021063),国家杰出青年科学基金项目(61225008),教育部博士点基金(20120002110033)资助 Supported by Key International(Regional)Joint Research Pro-gram of National Natural Science Foundation of China(6102010 6004),National Natural Science Foundation of China(61005023, 61021063),National Science Fund for Distinguished Young Scholars(61225008),and Ph.D.Programs Foundation of Min-istry of Education of China(20120002110033) 1.清华大学自动化系北京100084 2.北京葫芦软件技术开发有限公司北京100084 1.Department of Automation,Tsinghua University,Beijing 100084 2.Beijing Hulu Inc.,Beijing100084 超分辨率问题的解决涉及到许多图像处理(Im-age processing)、计算机视觉(Computer vision)、优化理论(Optimization problem)等领域中的基本问题[1],例如图像配准(Image registration)、图像分割(Image segmentation)、图像压缩(Image com-pression)、图像特征提取(Image feature extrac-tion)、图像质量评价(Image quality estimation)、机器学习(Machine learning)、最优化算法(Opti-mization algorithm)等,超分辨率是这些基本问题的一个具体应用领域,同时也对它们的研究进展起到了推动的作用.因此超分辨率问题本身的研究具有重要的理论意义.目前超分辨率问题已经成为相关研究领域的热点之一. 在上世纪80~90年代,就有人开始研究超分辨率图像重建的方法,1984年Tsai的论文[2]是最早提出这个问题的文献之一.在这之后有很多相关的研究对超分辨率的问题进行更加深入的讨论.有关超分辨率问题的研究成果,在计算机视觉、图像处理与信号处理领域的顶级会议和期刊都有大量收录. 1998年,Borman等[3]发表了一篇超分辨率图像重建的综述文章.2001年,Kluwer出版了一本详细介

视频制作剪辑的个经验技巧

视频制作剪辑的30个经验技巧 (上海动影文化传播有限公司技术文章) 一、闪白:在视频制作剪辑合成节目时,如果不直接使用白帧叠化,而是在原素材上调高gamma和亮度做一个简单的动画,然后再叠化,这样画面的亮部先泛出白色,然后整个画面才显白。感觉就像光学变化,不单调,而且最好保持即使在最白的时候也隐约有东西可见,也就是说不采用纯白的单色。 二、切:合成的时候以1-2帧的叠化来代替用简单的切,过渡将会平滑一些。 三、画面色彩:画面中尽量避免纯黑,纯白色,即使是黑色,采用压到非常暗的红色,蓝色等来代替,将会使整体的色彩更协调,由整体色调来决定具体的色调。如果感觉片子不够亮或不够暗,尽量尽量避免整体加亮或减暗的绝对方法处理,代之以增大亮部面积和比例之类的相对方法解决。使用曲线工具更易控制画面局部的调整。对于金属光泽的质感,主要原则是“金不怕黑”,也就是说金属质感的产生必须要有暗部,尽量使用移动的灯光营造流动的高光效果来代替反射贴图,可以使用负值的灯光来制造暗部。 四、构图:除了严肃、权威、力量等表现场景以外,尽量采用不对称构图;尽量从视频制作剪辑、衔接的角度考虑构图,不要太执着于单画面构图。以电视的长宽比、单个镜头的构图非常困难,构图的时候我们通常考虑的不仅仅是电视上展现出来的那一部分,应该全面考虑动态的、时间与空间都有变化的立体构图。 五、声音与画面:对于是环境声,不必和视频画面的制作剪辑严格对应,一般来说环境声先入后出。根据波形图和画面的剪切点错开1-2帧感觉比较好,用眼睛和耳朵去感觉,不要太执着与波型图和剪切点的一致。有的时候要考虑声音传到您的机器里面所对应的环境声比“环境场景”可能要稍有延迟,对于一些大的场景的现场收音与后期制作,我们要注意这点,毕竟光速与声音的传递速度相差很多。 六、正常的画面色彩:电视上正常的画面色彩在电脑上的表现往往是过于饱和的,电视的特性之一就是,亮度会增加,饱和度会下降,但是过于饱和的色彩容易看腻,解决这个问题的方法之一就是注意颜色层次过渡,不要仅仅把注意力放在色块上。 七、颜色的调整:首先去掉颜色,只看灰度图,调整出正确的过渡和明暗层次,避免过度调整。然后先调好色块部分颜色,也就是最有色彩对比倾向的部分。比如说远处是冷色调,近处是暖色调,也就是颜色的设计过程。控制颜色过渡,使得过渡不单调,颜色曲线工具与线性过渡相比具有更多的调节控制。颜色的调整不应明显导致画质下降,否则宁可不调或微调;画质第一是视频制作剪辑中的首要前提。 八、光效:通常过度模糊的、僵硬的光效不是很好;僵硬的、快速变化或者说始终保持变化的光效更出色。尽量自己制作最合理的光效,比如说使用PS画个几层,然后再在合成中去调整,直接使用软件插件的光效虽然简单实用,但是很多时候不适合具体的问题。不要滥用光效以及避免长时间使用光效,同时要控制光效的层次,即使是最简单的glow发光特效;建立2-3层亮度和颜色都有偏差的层上去分别调整,效果会更出色。 九、三维动画:三维动画制作要避免过度的规律和协调,安排好三维动画节奏关系,适当打破节奏,四平八稳的画面将缺少冲击力。 十、学会做假来破坏点规律性:对于变化不大的镜头,可以用mask功能来控制调整范围,这点上类似在画面上画画。有时候可能会有些小破绽,但是运动起来,或者在整片中却感觉很好,这点上需要取舍,不必只着眼于一个镜头。 十一、结合前后镜头来预览:这点在flint或者cyborg之类的软件里没问题,在有些软件里还真是挺麻烦的。总之不能单独只通过一个镜头来调节,要把握整体的感觉。

超分辨率算法综述

图像超分辨率算法综述 摘要:介绍了图像超分辨率算法的概念和来源,通过回顾插值、重建和学习这3个层面的超分辨率算法,对图像超分辨率的方法进行了分类对比,着重讨论了各算法在还原质量、通用能力等方面所存在的问题,并对未来超分辨率技术的发展作了一些展望。 关键词:图像超分辨率;插值;重建;学习; Abstract:This paper introduced the conception and origin of image super resolu- tion technology. By reviewing these three kinds of methods(interpolation,reconstruct, study), it contrasted and classified the methods of image super-resolution,and at last, some perspectives of super-resolution are given. Key words: image super-resolution;interpolation;reconstruct;study;

1 引言 1.1 超分辨率的概念 图像超分辨率率(super resolution,SR)是指由一幅低分辨率图像(low resolution,LR)或图像序列恢复出高分辨率图像(high resolution, HR)。HR意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。要获得高分辨率图像,最直接的办法是采用高分辨率图像传感器,但由于传感器和光学器件制造工艺和成本的限制[1],在很多场合和大规模部署中很难实现。因此,利用现有的设备,通过超分辨率技术获取HR图像(参见图1)具有重要的现实意义。 图1 图像超分辨率示意图 图像超分辨率技术分为超分辨率复原和超分辨率重建,许多文献中没有严格地区分这两个概念,甚至有许多文献中把超分辨率图像重建和超分辨率图像复原的概念等同起来,严格意义上讲二者是有本质区别的,超分辨率图像重建和超分辨率图像复原有一个共同点,就是把在获取图像时丢失或降低的高频信息恢复出来。然而它们丢失高频信息的原因不同,超分辨率复原在光学中是恢复出超过衍射级截止频率以外的信息,而超分辨率重建方法是在工程应用中试图恢复由混叠产生的高频成分。几何处理、图像增强、图像复原都是从图像到图像的处理,即输入的原始数据是图像,处理后输出的也是图像,而重建处理则是从数据到图像的处理。也就是说输入的是某种数据,而处理结果得到的是图像。但两者的目的是一致的,都是由低分辨率图像经过处理得到高分辨率图像。另外有些文献中对超分辨率的概念下定义的范围比较窄,只是指基于同一场景的图像序列和视频序列的超分辨处理,实际上,多幅图像的超分辨率大多数都是以单幅图像的超分辨率为基础的。在图像获取过程中有很多因素会导致图像质量下降,如传感器的形

视频图像超分辨率重构算法的研究以及应用

目录 第一章绪论 (1) 1.1引言 (1) 1.2 研究背景与意义 (3) 1.2.1研究背景 (3) 1.2.2研究目的与意义 (3) 1.3 国内外研究现状 (4) 1.3.1国外研究现状 (4) 1.3.2国内研究现状 (5) 1.3.3论文创新点 (6) 第二章耦合特征空间中的快速图像超分辨率重构 (8) 2.1稀疏表示重构图像的主要思想 (8) 2.2图像超分辨率重构稀疏表示模型 (9) 2.3耦合特征空间字典学习 (10) 2.3.1耦合特征空间 (10) 2.3.2耦合空间字典学习 (11) 2.4算法流程 (12) 2.5实验结果分析 (16) 2.5.1参数设置 (16) 2.5.2 块大小和重叠像素大小的影响 (17) 2.5.3字典大小的影响 (19) 2.5.4 值的影响 (20) 2.6算法性能评估 (21) 2.7算法复杂度 (23) 2.8本章小结 (23) 第三章基于稀疏表示和近邻嵌入的图像超分辨率重构 (25) 3.1基于稀疏表示和近邻嵌入的图像超分辨率重构的主要思想 (25) 3.2图像块近邻嵌入模型 (26) 3.3基于稀疏表示和图像块近邻的图像超分辨率重构 (27) 3.4算法流程 (28) 3.5实验结果分析 (29) 3.5.1参数设置 (29) IV

3.5.2实验参数的影响 (30) 3.6实验结果对比 (33) 3.7本章小结 (35) 第四章基于动态纹理合成的视频图像超分辨率重构 (36) 4.1基于动态纹理合成的视频图像超分辨率重构基本思想 (36) 4.2图像分割以及归类重构 (37) 4.3基于动态纹理合成的视频图像超分辨率重构 (40) 4.4算法流程图 (41) 4.5实验结果分析 (44) 4.5.1参数设置 (44) 4.5.2实验设置的影响 (45) 4.6算法性能评估 (45) 4.7本章小结 (47) 第五章结论与展望 (48) 5.1主要结论 (48) 5.2展望 (48) 参考文献 (49) 攻读学位期间取得的研究成果 (54) 致谢 (55) V

视频剪辑基本原则

剪辑基本原则 镜头的组接规律 (1)镜头的组接必须符合观众的思想方式和影视表现规律 镜头的组接要符合生活的逻辑、思维的逻辑。不符合逻辑观众就看不懂。做影视节目要表达的主题与中心思想一定要明确,在这个基础上我们才能确定根据观众的心理要求,即思维逻辑选用哪些镜头,怎么样将它们组合在一起。 (2)景别的变化要采用“循序渐进”的方法 一般来说,拍摄一个场面的时候,“景”的发展不宜过分剧烈,否则就不容易连接起来。相反,“景”的变化不大,同时拍摄角度变换亦不大,拍出的镜头也不容易组接。由于以上的原因我们在拍摄的时候“景”的发展变化需要采取循序渐进的方法。循序渐进地变换不同视觉距离的镜头,可以造成顺畅的连接,形成了各种蒙太奇句型。 ●前进式句型:这种叙述句型是指景物由远景、全景向近景、特写过渡。用来表现由低沉到 高昂向上的情绪和剧情的发展。 ●后退式句型:这种叙述句型是由近到远,表示有高昂到低沉、压抑的情绪,在影片中表现 由细节到扩展到全部。 ●环行句型:是把前进式和后退式的句子结合在一起使用。由全景——中景——近景——特 写,再由特写——近景——中景——远景,或者我们也可反过来运用。表现情绪由低沉到 高昂,再由高昂转向低沉。这类的句型一般在影视故事片中较为常用。 在镜头组接的时候,如果遇到同一机位,同景别又是同一主体的画面是不能组接的。因为这样拍摄出来的镜头景物变化小,一副副画面看起来雷同,接在一起好像同一镜头不停地重复。在另一方面这种机位、景物变化不大的两个镜头接在一起,只要画面中的景物稍有一变化,就会在人的视觉中产生跳动或者好像一个长镜头断了好多次,有“拉洋片”、“走马灯”的感觉,破坏了画面的连续性。 如果我们遇到这样的情况,除了把这些镜头从头开始重拍以外(这对于镜头量少的节目片可以解决问题),对于其他同机位、同景物的时间持续长的影视片来说,采用重拍的方法就显得浪费时间和财力了。最好的办法是采用过渡镜头。如从不同角度拍摄再组接,穿插字幕过渡,让表演者的位置,动作变化后再组接。这样组接后的画面就不会产生跳动、断续和错位的感觉。 (3)镜头组接中的拍摄方向,轴线规律 主体物在进出画面时,我们拍摄需要注意拍摄的总方向,从轴线一侧拍,否则两个画面接在一起主体物就要“撞车”。 所谓的“轴线规律”是指拍摄的画面是否有“跳轴”现象。在拍摄的时候,如果拍摄机的位置始终在主体运动轴线的同一侧,那么构成画面的运动方向、放置方向都是一致的,否则应是“跳轴”了,跳轴的画面除了特殊的需要以外是无法组接的。 (4)镜头组接要遵循“动从动”、“静接静”的规律 如果画面中同一主体或不同主体的动作是连贯的,可以动作接动作,达到顺畅,简洁过渡的目的,我们简称为“动接动”。如果两个画面中的主体运动是不连贯的,或者它们中间有停顿时,那么这两个镜头的组接,必须在前一个画面主体做完一个完整动作停下来后,接上一个从静止到开始的运动镜头,这就是“静接静”。“静接静”组接时,前一个镜头结尾停止的片刻叫“落幅”,后一镜头运动前静止的片刻叫做“起幅”,起幅与落幅时间间隔大约为一二秒钟。运动镜头和固定镜头组接,同样需要遵循这个规律。如果一个固定镜头要接一个摇镜头,则摇镜头开始要有起幅;相反一个摇镜头接一个固定镜头,那么摇镜头要有“落幅”,否则画面就会给人一种跳动的视觉感。为了特殊效果,也有静接动或动接静的镜头。 (5)镜头组接的时间长度 我们在拍摄影视节目的时候,每个镜头的停滞时间长短,首先是根据要表达的内容难易程度,观众的接受能力来决定的,其次还要考虑到画面构图等因素。如由于画面选择景物不同,包含在画

任意比例视频图像放大算法的研究与实现

任意比例视频图像放大算法的研究与实现 摘要:随着多媒体信息技术的发展,针对视频信号的处理技术应运而生。其中实时缩放正是视频信号处理技术的关键。对于图像缩放,所用数学模型的优劣会直接影响用户观看图像的质量。在视频处理中,图像的缩放算法不仅影响视频质量,而且算法的处理速度也会影响视频流的显示,从而影响用户观看的连续性。本文针对视频信号对处理速度和精度的要求,采用只对亮度信号进行复杂处理的方法。分析图像边缘区域的特性,并通过数学推导,在边缘区域的插值中设计四个模板,从而设计改进的视频缩放算法。实验结果表明,本设计的视频信号缩放算法在主观视觉上保持了图像纹理细节和边缘信息。客观评价中,本算法处理得到的图像高频分量丢失少,且保证较好的低频分量处理效果;平均峰值信噪比较双线性插值提高0.24dB。 关键词:视频信号;图像处理;缩放;边缘 ABRSTRACT:With the rapid development of multimedia information technology,video signal's processing technology emerges at that time. Video’s real-time scaling is the key issue in video signal's processing technology. For image scaling,the mathematical model affects the picture’s visual quality. In video processing,not only the scaling algorithm influences the video’s quality,but also the alg orithm’s performance affects the display of the video so that influences the video playing smoothly.Due to the speed and precision demanded in video signal’s processing,only employ the proposed algorithm in Y channel signal. Under the analysis on the characteristic of the edge in image,four scaling masks are deduced mathematically. This paper issues a lot of experiments on the infrastructure of the theoretical study,which show that the video signal's scaling algorithm designed in this paper has obtained the better effectiveness than traditional algorithms. Our design keeps texture details in subjective vision,raises the PSNR 0.24dB on average,and it has well performance in both high and low frequency component in spectrum at the same. This is satisfied with the designated target of the project. Key words: video signals; image processing; scaling; edge 1 绪论 1.1 研究背景及意义 信息技术和互联网发展到今天,多媒体信息技术的应用范围日趋广泛,多媒体信息包括音频数据、图像和视频数据及文字数据。而人类获取的各种信息中,图像信息占有绝大部分,图像带给人们直观并具体的事物形象,这是声音、语言和文字不能比拟的。 人眼看到的是连续变化的景物,是模拟图像,而在数字设备中存储和显示的图像是经过采样和量化的数字图像。为满足人类视觉和实现信息传输的需求,针对图像和视频信息的实时缩放技术在生活中起着不可忽略的作用[1]。 视频图像的后期缩放处理势必将会作为显示呈现在终端之前的一个重要环节。无论其输入视频信源的分辨率大小尺寸多少,最终都应该以用户的实际物理显示设备的最佳观看分辨率作为显示输出结果,通常由于带宽有限的关系,该显示过程通常以放大为主,即输入视频图像分辨率小于输出分辨率。为了满足不同终端用户对图像尺寸的需求,改变图像尺寸的缩放技术应运而生。 图像缩放是数字图像处理中非常重要的技术之一。对于网络传输的图像,由于客观条件的种种限制,想要快速地传输高分辨率的图像一般难以达到,同时由于硬件性能的限制,图片往往也无法满足所需要的分辨率,而硬件的改进却需要复杂的技术并付出昂贵的代价,所以如果能够从软件技术方面进行改进,采用图像插值技术提高图像质量来达到所期望的分辨率和清晰度,其具有的实用意义将是十分重大的。因此,利用插值的方法将低分辨率图像插值放大成高分辨率图像就成为人们追求的目标。 用图像缩放算法进行处理时,存在一对相悖的要素:图像处理速度和图像精度。一般情况下,要想获得比较高的速度甚至达到实时的图像输出速率,只能采用相对来说运算量比较简单的缩放算法;而如果要想获得处理效果比较好的图像,就只能考虑牺牲处理速度,采用计算量大、比较复杂的缩放算法。图像缩

几种视频压缩算法对比

视频压缩算法对比 视频2008-05-23 10:10:09 阅读557 评论0 字号:大中小订阅 视频压缩标准及比较原始的数字视频信号的数据量是相当惊人的,例如,NTSC 图像以大约640X480的分辨率,24bist/象素,每秒30帧的质量传输时,则视频数据有640X480x24X30=221Mb/S或28MB/s秒,显然这样庞大的数据流对大多数传输线路来说是无法承受的,而且也是无法存储的。为此人们开始专门研究将这些视频、音频数据流进行压缩。很多压缩编码标准相继推出,主要有JPEG月吐一JPEG‘,幻,_H.261旧.263和MPEG等标准。其中JPEG标准主要是用在静止图像的压缩。M一PJEG是将PJEG改进后用到运动图像上,在压缩比不高时,有较好的复现图像质量,但占用存储空间大;在压缩比高的情况下,复现图像质量差。.H261爪.263标准是专门为用于图像质量要求不高的视频会议和可视电话设计。MpEG(MovnigPictureExPertGorPu即活动图像专家组)。它是由150(国际标准化组织)和正(c国际电工委员会)于1988年联合成立的。专门致力于运动图像及伴音编码标准化工作。它们推出了MPEG编码标准【1卜,1l。到现在为止,专家组己制定了MPEG一1,MPEG一2和MPEG一4三种标准,由于其标准化、较大的压缩比及较高的画面质量,成为视频压缩系统首选算法。 MPEGI是一种压缩比高但图像质量稍差的技术;而MPEGZ技术主要专注于图像质量,压缩比小,因此需要的存储空间就大;MPEG4技术是时下比较流行的技术,使用这种技术可以节省空间、提高图像质量、节省网络传输带宽等优点。 来自:https://www.sodocs.net/doc/d816109168.html,/blog/static/80720305200842310109120/

视频的超分辨率增强技术综述

收稿日期:2004202226;修返日期:2004206211 基金项目:国家专项工程项目(“613”项目);国家杰出青年科学基金资助项目(60225015);高等学校优秀青年教师教学科研奖励计划资助项目 视频的超分辨率增强技术综述 3 王 勇1,2,郑 辉1,胡德文2 (11西南电子电信技术研究所国家重点实验室,四川成都610041;21国防科学技术大学机电工程与自动化学 院,湖南长沙410073) 摘 要:视频超分辨率增强的目的在于从时间上弥补视频采样设备采样帧率的不足,描述高速运动变化对象的细节信息;在空间上复原视频图像截止频率之外的信息,以使图像获得更多的细节。这项技术广泛应用于视频通信、监控、遥感和高清晰度电视等多个领域。从视频超分辨率的含义、发展现状、主要技术方法和未来研究展望等方面,对视频超分辨率增强领域的研究进行了综述。关键词:视频;图像;超分辨率;时空 中图法分类号:TP391 文献标识码:A 文章编号:100123695(2005)0120004204 Survey on Video Super 2Resolution Enhancement W ANG Y ong 1,2,ZHE NG Hui 1,H U De 2wen 2 (11National K ey Laboratory ,Southwest Institute o f Electronic &Telecommunication Techniques ,Chengdu Sichuan 610041,China ;21College o f Mecha 2tronics &Automation ,National University o f De fense Technology ,Changsha Hunan 410073,China ) Abstract :Video super 2res olution enhancement technique has tw o main aims.T he first is rein forcing the sh ortage of video device frame rate ,describing the details of fast 2m oving object.An other is recovering the lost image space in formation.T he technique is widely ap 2plied to many fields ,such as video communication ,surveillance ,rem ote 2sensing and H DT V.T his paper gives an overview of super 2res o 2lution in term of main used techniques.W ith the present problems in this area ,the paper gives s ome w ork and open issues that can be researched m ore in the future.K ey w ords :Video ;Image ;Super 2Res olution ;S pace 2T ime 1 引言 视频的超分辨率增强是指融合来自相同动态场景的多个低分辨率视频序列的信息,去重构一个高时空分辨率的视频序列。可想而知,视频超分辨率包括时间超分辨率和空间超分辨率。视频中某些事件发生变化比较快,这样就需要用所谓高速(高帧率)的摄像机来采样,如果使用普通帧率的摄像机,那么在时间上就会有一些细节信息的丢失。视频的时间超分辨率就是要恢复这些丢失的时间上的细节信息,而视频空间超分辨率就是通常人们提到的图像超分辨率复原。 摄像机在时间和空间上的分辨率能力是有限的。空间分辨率取决于摄像机光学传感器的空间密度及其本身引入的模糊误差,这些因素限制了图像中被观察到的物体或特征的最小空间尺寸;时间分辨率取决于摄像机的帧率和曝光时间,这就限制了视频序列中能被观察到的动态事件的最大变化速度。比摄像机帧率发生更快的动态事件在记录下来的视频序列中是不可见或者不正确的,如在网球比赛的视频中是不可能观察到高速运动的网球的全部运动和状态的。有两类非常 典型的由高速运动引起的可视化效果:①运动模糊,它是摄像机的曝光时间引起的,如高速运动的网球所带有的尾迹;②运动混淆,它是由于帧率限制的时间采样引起的,如一个小球以正弦波形向前运动,摄像机的帧率如果与小球正弦运动周期可比或相等,记录下的视频上就将观察到小球以很长的周期正弦运动或直线运动,这类似于一维信号的欠采样。这两种视频效果都不能依靠视频的慢速播放而消除,甚至使用复杂的时间插值算法来增加帧率也收效甚微[1],这是因为包含在单个视频序列中的信息是不足以恢复高速动态事件中丢失的信息。多个视频序列提供了附加的动态时空场景采样,这样就可融合这些信息去弥补丢失的信息,产生一个高时空分辨率的视频序列。 2 相关工作 图像超分辨率的概念和方法最早由Harris 和G oodman [2,3] 于20世纪60年代提出;随后有许多人对其进行了研究,并相继提出了各种方法,如长椭球波函数法[4]、线性外推法[5]、叠加正弦模板法[6]。以上这些方法虽然能给出令人印象深刻的仿真结果,但在实际应用中并没有获得理想的结果。80年代末之后,人们在超分辨率图像复原方法研究上取得了突破性的进展。Hunt 等人不仅在理论上说明了超分辨率存在的可能性[7],而且提出和发展了许多有实用价值的方法,如能量连续降减法[8]、Bayesian 分析法[9~12]和凸集投影法[13]。超分辨率 ?4?计算机应用研究2005年

有关于视频的分辨率

目 录 视频分辨率介绍 (2) 目前常见视频分辨率 (2) 视频分辨率的基本情况: (2) MPEG-4与H.264的码流计算 (3) 标准计算方法 (3) 码率表(以下均为25帧/秒的数据) (3) 实测使用空间 (3) 帧 (4)

视频分辨率介绍 分辨率有很多种,我们在视频监控领域听到的视频分辨率实际上是图像分辨率。 图像分辨率: 图像分辨率(Image Resolution):指图像中存储的信息量。这种分辨率有多种衡量方法,典型的是以每英寸的像素数(PPI)来衡量。图像分辨率和图像尺寸的值一起决定文件的大小及输出质量,该值越大图形文件所占用的磁盘空间也就越多。图像分辨率以比例关系影响着文件的大小,即文件大小与其图像分辨率的平方成正比。如果保持图像尺寸不变,将图像分辨率提高一倍,则其文件大小增大为原来的四倍。 目前常见视频分辨率 分辨率(像素) QCIF 176×144 CIF 352×288 DCIF 528*384 Half D1 702*288 D1(4 CIF) 702*576 Full D1 720×576 视频分辨率的基本情况: 由于在同一压缩格式下,其分辨率越高,占用的带宽以及存储空间就越大。所以我们应该根据实际需求的不同,向用户推荐不同的分辨率进行传输和存储。 一般来说,Full D1(D1)具有最清晰的画质,在高端视频监控领域(如国家安全机关、信息分析中心)会不考虑成本,采用该分辨率进行视频采集。 而QCIF由于其过低的分辨率,使得画面及时在模拟监视器上显示都不是很清晰,所以现在基本上就是在测试设备的时候采用。 CIF在九十年代曾经是非常流行的视频监控分辨率,但是随着近年来网络、存储、服务器技术的飞速发展以及视频监控需求的不断提升,人们已经渐渐不再满足于CIF的分辨率。由于CIF渐渐不能满足现有的需求,而D1又占用过大的带宽和存储空间。所以就衍生了2CIF (Half D1)和DCIF这两种格式。 Half D1虽然在码流上降低了不少,但是由于其分辨率(702×288)导致了他相对于CIF 只是水平分辨率的提升,图像质量提高不是特别明显,但码流增加很大。所以近期大家更多

视频分辨率大全

没有公告 加入收藏 设为首页 联系站长 .?网站首页?.?资讯中心?.?技术文库?.?在线学院?.?会员下载?.?电子商城?.?助您选购?.?邮购需知?.?技术论坛?.?TI OS高级应用?. |?技术文库首页?|?TI DSP?|?TI MCU?|?TI 综合应用?|?TI 解决方案?|?视频编码?|?音频编码?| 您现在的位置:?TIchinese?>>?技术文库?>>?视频编码?>>?正文 [图文]视频分辨率大全 视频分辨率大全 ★★★ 【字体:小 大】
视频分辨率大全 视频分辨率大全
作者:Free 文章来源:Free 点击数: 14 更新时间:2009-9-14
总觉得 次都被各式各样的分辨率名称 得一团 小姜带 五十分钟搞懂所有的分辨率 所有的分辨率吧 幕比例其实只有三种 4:3、 总觉得每次都被各式各样的分辨率名称搞得一团糨糊吗?让小姜带你五十分钟搞懂所有的分辨率吧!常见的屏幕比例其实只有三种:4:3、 16:9和 16:10,再加上一个特殊的(但也很常见 16:9和 16:10,再加上一个特殊的(但也很常见的)5:4。准备好了吗?开始啰! 5:4。 好了吗 4:3 家族 4:3 是最常见屏幕比例,从电视时代流传下来的古老(?)标准。在近代宽屏幕兴起前,绝大部份的屏幕分辨率都是照着这个比例的。不过最 近逛逛电脑商场,好像要买个 4:3 比例的屏幕非常困难了啊 a VGA (640x480) - 「VGA」 其实本来不是个分辨率的规格,而是 IBM 计算机的一种显示标准。在规范里有 320x200 / 256 色、320x20 0 / 16 色、640x350 / 16 色、640x480 / 16 色等多种模式,甚至还有 80x25 和 40x25 等文字模式。只是最后因为官方支持的最高 分辨率是 640x480,所以 VGA 就成为了 640x480 的代名词。VGA 的重要地位在于它是所有显卡都接受的基准分辨率,Windows 在加载 显卡驱动程序之前(BIOS 之后)有个蓝棒子跑跑跑的画面,那个画面就是在 VGA 分辨率下的。 SVGA (800x600) - SVGA 的情况和 VGA 有点像,也是以一种「规格」的身份起家的,只是最后好像变成无论规格如何,所有比 VGA 强 的显示器都自称自已是 Super VGA,或 SVGA。在分辨率上,SVGA 专指 800x600 的分辨率 -- 即使当年标榜自已是 SVGA 的屏幕其实 常常可到达 1024x768,或更高。 XGA (1024x768) - 到了 SVGA 的年代,IBM 已经失去了市场的独占性,PC 界也正式进入了百家争鸣的时代。IBM 虽然定义出了XGA 的 规格,但实际上它只是当年多种 Super VGA 规格中的一种。XGA 最后成为 1024x768 这个分辨率的代名词。 SXGA+ (1400x1050) - 咦?跳过了 SXGA?等会儿再回来 XD。SXGA+ 是大约 2003 年~2007 年间偶尔会在笔电上看到的分辨率。不过 近年来随着宽屏幕笔电大行其道,这个分辨率很难看到了。小姜的两台笔电都是这个分辨率的,算是工作需求吧 orz。

相关主题