搜档网
当前位置:搜档网 › 贝叶斯公式公式在数学模型中的应用

贝叶斯公式公式在数学模型中的应用

贝叶斯公式公式在数学模型中的应用
贝叶斯公式公式在数学模型中的应用

学院本科毕业论文(设计)

题目:贝叶斯公式公式在数学模型中的应用

院(系)理学院

专业数学与应用数学

年级2009级

姓名鲁威学号09031213

指导教师俊超职称讲师

2013 年6月1 日

目录

摘要 (1)

Abstract (2)

前言 (2)

第一章贝叶斯公式及全概率公式的推广概述........................................ 错误!未定义书签。

1.1贝叶斯公式与证明 (5)

1.1贝叶斯公式及其与全概率公式的联系 (5)

1.3贝叶斯公式公式推广与证明 (6)

1.3.1贝叶斯公式的推广 (6)

1.4贝叶斯公式的推广总结 (7)

第二章贝叶斯公式在数学模型中的应用 (8)

2.1数学建模的过程 (8)

2.2贝叶斯中常见的数学模型问题 (9)

2.2.1 全概率公式在医疗诊断中的应用 (9)

2.2.2全概率公式在市场预测中的应用 (11)

2.2.3全概率公式在信号估计中的应用. ......................................... 错误!未定义书签。

2.2.4全概率公式在概率推理中的应用 (15)

2.2.5全概率公式在工厂产品检查中的应用 ................................... 错误!未定义书签。

2.3全概率公式的推广在风险决策中的应用 (17)

2.3.1背景简介 (17)

2.3.2风险模型 (18)

2.3.3实例分析 (18)

第三章总结 (21)

3.1贝叶斯公式的概括 (21)

3.2贝叶斯公式的实际应用 (21)

结束语 (23)

参考文献 (24)

后记 (25)

摘要

贝叶斯公式在概率论这本书中占有很高的位置,在概率论的运算中也有着不可替代的位置。本文详细的对贝叶斯公式进行了深入的探究,而且列举了一些生活中的实例来说明了他的运用以及他所使用的生活模型,便于以后我们更好深入的理解贝叶斯公式我们必须先要了解全概率公式以及它在实际生活中的运用。简单的贝叶斯公式并不能满足生活中的需求,所以我们把贝叶斯公式进行了深入的了解,并用实际例子证明了贝叶斯公式推广后的公式在生产生活中所适合的模型比以前的贝叶斯公式更加的广阔。数学建模是一种科学的思维方法,随着社会的发展,数学模型运用于各学科以及各领域.本文通过对一些典型题的分析研究。总体概括出贝叶斯公式和贝叶斯公式的推广在数学模型中实际运用.构造数学模型更准确的利用贝叶斯公式求解问题的分析问题的方法、解决问题的步骤。

关键词贝叶斯公式;全概率公式;数学模型;

Abstract

The bayes formula is one important formulas in theory of probability, has a important role in the calculation of probability theory. Carefully analyzed in this paper, the bayes formula, and illustrates his usage and the applicable scheme, in order to better understand the bayes formula we need to introduce the whole probability formula. In order to solve practical problems, we will be the bayes formula for promotion, promotion after the formula in practical application is illustrated by an example of the applicable model wider than the original formula. Mathematical modeling is a kind of scientific thinking method, with the development of the society, the mathematical model used in various disciplines, and in various fields. In this article, through analysis and study of some typical questions. Summarizes the bayes formula and bayes formula promotion application in mathematical model. Mathematical model is set up and better using the bayes formula to solve the problem analysis, problem solving steps.

Key words :The bayes formula; Full probability formula; Mathematical model;

前言

贝叶斯公式在概率论一书中占有很中要的位置,它集中用于计算相对繁琐事件的发生概率,它本质上是乘法公式和加法公式的总体运用。概率论与数理统计是探索随即状况统计规律的一门现代数学学科出现于十几世纪。从出现这一门学科以来,已经开始深入到各个科学领域当中并有着举足轻重的位置。从十七世纪到现在很多国家对这个公式有了很多方面的研究。很长时间以来,由于许多这方面工作人员的积极工作,使概率论与数理统计在理论方面有了更深一步的进展,在实际生活中的应用也更加的宽泛了,促成了大小不一的许多分支,在当代数学中有着不可替代的独特位置。贝叶斯公式是在1763年由贝叶斯(Bayes)这位伟大的数学家发现的,它的实质是观察到事件A已经出现的情况下,寻求致使A出现的每个原因的概率.这个公式在我们的生活中有很多的应用在论文中我将逐一介绍。贝叶斯公式可以有助于人们了解一个结果(事件 A)出现的最大的可能性。运用贝叶斯公式我们可以更加简单明了的计算生活中遇到的一些数学问题,她在数学计算中有着很宽泛的应用。其本质就是在将各种前提引进的情况下,先将所给出的样本空间 分成若干份,并可以简单明了的计算出所需结果的概率,最后加以分析得出结果。

在当今社会中,随着发展的飞速前行,市场需求的突飞猛进,领导者不能在着眼于以前的生产信息,而是应该把过往的和现在的生产信息一同考虑分析,做出个比较全面的决策。决定性概率分析越来越显示其重要性。而在其中贝叶斯公式的主要用途就是用于处理先验概率与后验概率,是进行决策的重要工具。

贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

概率论对医学的渗透与结合,已成为现代医学领域的显著特征。利用数学方法充分利用好贝叶斯公式及其推广形式,定量的对医学问题进行相关分析,使其结论更加有可信度,更有利于促进对病人的对症施治。利用好贝叶斯公式可以用来解决投资、保险、工程等一些列问题中,公式及其推广形式的正确应用有助于进一步研究多个随机实验中目标事件及其条件下诱发事件的概率,有助于把握随机事件相互影响关系,为生产实践提供更有价值的决策信息。灵活使用贝叶斯公式会给我们的解题带来很大方便,而这些推广形式将进一步拓展贝叶斯公式的适用围,称为我们解决更复杂问题的有效工具。

本文研究了六类数学模型,阐述了贝叶斯公式及推广的全概率公式在:产品检验模型,销售、决策模型,摸球模型,实际比赛模型,医疗诊断模型,金融保险模型中的应用。财产保险的保险标准的复杂变性,使得保险精算中赔款额的估计异常重要,通过应用推广的全概率公式,本文对存在保险责任判定概率的赔款额进行数学建模,并由计算实例来阐述相关结论.全概率公式在数学模型中的应用远远不止这些,本文只是从他的某些方面做了一个概括,总的说来,全概率公式是概率当中一个非常重要而且实用的一个公式,能够在我们的生产实际中发挥着举足轻重的作用。用数学方法,充分利用好全概率公式在数学模型中的应用与推广形式。定量的对实际生活中的问题进行相关分析,使其结论更具可信度。更有利于促进对病人的对症施治,利用好全概率公式可以用来解决投资,保险,工程等一系列不确定的问题中,全概率及推广形式的正确应用有助于进一步研究多个随机过程的试验中目标事件及其条件下各诱发事件的概率,有助于把握随机事件间的相互影响关系,为生产实践提供更有价值的决策信息,灵活使用全概率公式会给我们的解题带很大方便,而这些推广形式将进一步拓展全概率的活用围,成为我们解决更复杂问题的有效工具。

第一章 贝叶斯公式及全概率公式的推广概述

1.1 贝叶斯公式与证明

设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且

1n i i B ==Ω,如果P( A ) > 0 ,()0i P B = (1,2,...,)i n =,则1()(/)(/),1,2,...,()(/)i i i n j j

j P B P A B P B A i n P B P A B ==

=∑。

证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)()

i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式,

()()(/)i i i P AB P B P A B =

1()()(/)n

i i j P A P B P A B ==∑ 1()(/)

(/),1,2,...,()(/)i i i n j j

j P B P A B P B A i n P B P A B ===∑

结论的证。

1.2 贝叶斯公式及其与全概率公式的联系

在介绍了贝叶斯公式以后还得介绍下全概率公式,因为全概率公式和贝叶斯公式是一组

互逆公式接下来先来看下全概率公式的概念。

设n B B B ,,21为样本空间Ω的一个分割,即n B B B ,,21互不相容,且Ω==i n

i B U 1,如果

n i B P i .,2,1.0)( =>,则对任一事件A 有∑==n

i i i B A P B P A P 1)|()()(

证明:因为

)()(11i n

i i n i AB B A A A U U ====Ω=

且n AB AB AB ,,2,1 互不相容,所以由可加性得

∑====n i i i n i AB P AB P A P U 11)

())(()(

再将n i B A P B P AB P i i i ,,2,1),|()()( ==代入上式即得∑==n

i i i B A P B P A P 1

)|()()(

由证明可以知道全概率公式其实就是贝叶斯公式的一种变形,它与贝叶斯公式是互逆应用的。它与贝叶斯公式一样在实际生活中也有很广泛的应用。下面来探讨贝叶斯公式在一下几个方面的应用。

1.3 贝叶斯公式推广与证明

1.3.1贝叶斯公式的推广

设当试验的随机过程不少于两个的时候,在影响目标事件的每一个试验过程中分别建立完备事件组,贝叶斯公式就可以进一步推广.

1.3.2贝叶斯公式推广定理

设(1,2,)i A i n =和(1,2,,)j B j n =是先后两个试验过程中的划分,

C 为目标事件.当()0,P C >()0,i P A >()0i P B >,()0i j P A B >,1,2,

,,1,2,,i n j m ==时,则

有:

(1)1()(|)(|)

(|),1,2,()m i j i i j j i P A P B A P C A B P A C i n P C ==

=∑

(2)1()(|)(|)(|),1,2,()

n i

j i i j i j P A P B A P C A B P B C j m P C ===∑ (3)()(|)(|)

(|),1,2,,1,,()

i j i i j i j P A P B A P C A B P A B C i n j m P C ===

证明:(1):1()()(|)()()m i j j i i P A B C P AC P A C P C P C ===∑=1

()(|)(|)()

m i j i i j j P A P B A P C A B P C =∑ 同理可以证明(2)、(3).

1.4 贝叶斯公式推广总结

整理文献之后,能把贝叶斯公式归为两种形式,事件型和随机变量型,这是就样本本身的性质而言的。

上述推广结论,是由不同的技巧推广而来的。从公式的条件出发,讨论拓宽公式应用的面。在经典的贝叶斯公式当中要求事件列是“互不相容”的,这方面削弱了这一条件给出广义的贝叶斯公式,无论相容与否都可以直接计算。从公式的形式出发,增加公式的灵活度。例如:在经典的贝叶斯公式中,样本是离散的,但是实际计算当中,遇到复杂事件的时候,就不太实用了,这时候可以把全概率公式推广到随机变量的情形。当然,随机变量有可能是离散的,或者是连续的,也可能是混合型随机变量,所以我们就可以再利用分布律来求解有关问题。从公式的计算辅助出发,创新的利用公式的推广。用在风险模型的改进、风险计算和风险过程的分析当中。但是,我们可以发现,随机变量的贝叶斯公式的推广结论,要明显少于事件型的推广结论。这一方面是,随机过程是一门很深很难的学科,另一方面,贝叶斯公式还是局限在概率的计算这个问题当中,用于例子的一般计算,采用事件型就能够完成。

不过,随着各个学科的相互渗透,事件型概率虽然已经有这么多的推广形式值得我们学习和借鉴,但是当遇到实际问题时,还是要对贝叶斯公式形式作一些新的变化,使之能更好的为我们的计算和研究服务。

第二章贝叶斯公式在数学模型中的应用

数学是一切科学和技术的基础,是研究现实世界数量关系,空间形式的科学。随着社会的发展,电子计算机出现和不断完善,数学不但运用于自然科学各学科,各领域,而且渗透到经济,管理以至于社会科学和社会活动的各领域,众所周知,利用数学解决实际问题,首先要建立数学模型,然后才能在该模型的基础上对实际问题进行分析,计算和研究。

数学建模活动是讨论建立数学模型和解决实际问题的全过程,是一种数学思维方式。

2.1数学建模的过程

数学建模的过程是通过对现实问题的简化,假设,抽象提炼出数学模型,然后运用数学方法各计算机工具等,得到数学上的解答,再把它反馈到现实问题给出解释,分析,并进行检验,若检验结果符合实际或基本符合,就可以用来指导实践否则再假设,再抽象,再修改,再求解再应用,构造数学模型不是一件容易的事,其建模过程和技巧具体主要包括以下步骤

模型准备

在建模前要了解实际问题的背景,明确建模的目的和要求深入调研,去粗取精,去伪存真,找出主要矛盾,并按要求收集必要的数据。

模型假设

在明确目的,掌握资料的基础上,抓住复杂问题的主要矛盾,舍去一些次要因素,对实际问题做出几个适当的假设,使复杂的实际问题得到必要的简化。

建立模型

首先根据主要矛盾确定主要变量,然后利用适当的数学工具刻画变量间的关系,从而

形成数学模型模型要尽量简化,不必复杂,以能获得实际问题的满意解为标准。

模型检验

建模后要对模型进行分析,用各种方法求得数学结果,将所求得的答案返回到实际问题中去检验其合理性,并反复修改模型的有关容,使其更切合实际,从而更具有实用性。

模型应用

用建立的模型分析,解释已有的现象,并预测未来的发展趋势,以便给人们的决策提供参考。总之数学建模是一种创造性劳动,成功的模型往往是科学与艺术的结晶,一个好的数学模型应该具有以下特点:考虑全面,抓住本质;新颖独特,大胆创新,善于检验,结果合理。而模型检验一般包括下列几个方面,稳定性和敏感性分析,统计检验和误差分析新旧模型的比较实际可行性检验因此数学建模的分析方法和操作途径不可能用一些条条框框规定得死板,下面通过实例探析建模过程与技巧。

2.2 贝叶斯中常见的数学模型问题

贝叶斯公式可以作如下解释:假定有n 个两两互斥的“原因” 12,,...,n A A A 可引起同一种“现象”B 的发生,若该现象已经发生,利用贝叶斯公式可以算出由某一个原因(1,2,...,)i A j n =所引起的可能性有多大,如果能找到某个i A ,使得

{}(/)=max (/)j i P A B P A B

1i n ≤≤

则j A 就是引起“现象” B 最大可能的“原因”。 生活中经常会遇到这样的

情况,事件A 已发生,我们需要判断引起A 发生的“原因”这就需要用到贝叶斯公式来判断引起A 发生的“原因”的概率。贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。

2.2.1贝叶斯公式在医疗诊断上的应用

例1 某地区肝癌的发病率为0.0004,先用甲胎蛋白法进行普查。医学研究表明,化验结果

是存在错误的。已知患有肝癌的人其化验结果99%呈阳性(有病),而没有患肝癌的人其化验结果99.9%呈阴性(无病)。现某人的检查结果呈阳性,问他真患肝癌的概率是多少?

解 记B 事件“被检查者患有肝癌”, A 为事件“检查结果为阳性”,有题设知

()0.0004P B = ()0.9996P B =

(/)0.99P A B = (/)0.001P A B =

我们现在的目的是求(/)P B A ,由贝叶斯公式得 ()(/)(/)()(/)()/)P B P A B P B A P B P A B P B PA B =

+ 0.00040.990.00040.990.99960.001

??+?= 0.284=

这表明,在检查结果呈阳性的人中,真患肝癌的人不到30%。这个结果可能会使人吃惊,但仔细分析一下就可以理解了。因为肝癌发病率很低,在10000人中越有四人,而约有9996人不患肝癌。对10000个人中,用甲胎蛋白法进行检查,按其错检的概率可知,9996个不患肝癌者中约有约有9996?0.001?90996个呈阳性。另外四个真患肝癌者的检查报告中约有4?0.99?3.96个呈阳性,仅从13.956个呈阳性者中看出,真患肝癌的3.96人约占28.4%。

进一步降低错检的概率是提高检验精度的关键,在实际中由于技术和操作等种种原因,降低错检的概率有事很困难的。所以在实际中,常采用复查的方法来减少错误率。或用另一些简单易行的辅助方法先进行初查,排除了大量明显不是肝癌的人后,再用甲胎蛋白法对被怀疑的对象进行检查,此时被怀疑的对象群体中,肝癌的发病率已大大提高了,譬如,对首次检查得的人群再进行复查,此时()P B =0.284,这时再用贝叶斯公式计算得 0.2840.990.2840.990.7160.001

(/)P B A ??+?= 0.997=

这就大大提高了甲胎蛋白法的准确率了。

在上面的例子里面,如果我们将事件B (“被检查者患有肝癌”)看作是“原因”,将

事件A (“检查结果呈阳性”)看作是最后“结果”。则我们用贝叶斯公式在已知“结果”的条件下,求出了“原因”的概率(/)P B A 。而求“结果”的(无条件)概率()P A ,用全概率公式。在上例中若取()P B =0.284,则

()()(/)()/)P A P B P A B P B PA B =+

0.2840.990.7160.001=?+?

0.2819=

条件概率的三公式中,乘法公式是求事件交的概率,全概率公式是求一个复杂事件的概率,而贝叶斯是求一个条件概率。

在贝叶斯公式中,如果()i P B 为i B 的先验概率,称(/)i P B A 为i B 的后验概率,则贝叶斯公式是专门用于计算后验概率的,也就是通过A 的发生这个新信息,来对i B 的概率作出的修正。

评注:此例子是现实生活中很常见的一个例子。用了两次贝叶斯公式,第一次利用贝叶斯公式计算出检出是阳性然后患肝癌的概率,第二次利用贝叶斯公式计算出利用甲胎蛋白检测的准确率。通过计算出来的概率,人们采用有效的方法降低错检的概率。使人们的生命财产得到更多的保障。

2.2.2 贝叶斯公式在市场预测中的应用

例2、我们知道,国外的旧车市场很多。出国留学或访问的人有时花很少的钱就可以买一辆相当不错的车,开上几年也没问题。但运气不好时,开不了几天就这儿坏那儿坏的,修车的钱是买车钱的好几倍,经常出毛病带来的烦恼就更别提了。

为了帮助买旧车的人了解各种旧车的质量和性能,国外出版一种专门介绍各品牌旧车以及各年代不同车型各主要部件质量数据的旧车杂志。比如有个买主想买某种型号的旧车,他从旧车杂志上可发现这种旧车平均有30%的传动装置有质量问题。除了从旧车杂志上寻找有关旧车质量的信息外,在旧车市场上买旧车时还需要有懂车的行来帮忙。比如可以找会修车的朋友帮助开一开,检查各主要部件的质量。因为旧车杂志上给出的是某种车辆质量的平均信息,就要买的某一辆来讲可能是好的传动装置,也可能会有问题。比较常见的

方法是花一点钱请个汽车修理工帮助开几圈,请他帮助判断一下传动装置和其他部件的质量。当然,尽管汽车修理工很有经验,也难免有判断不准的时候。假定从过去的记录知道某个修理工对于传动装置有间题的车,其中90%他可以判断出有问题,另有10%他发现不了其中的问题。对于传动装置没问题的车,他的判断也差不多同样出色,其中80%的车他会判断没问题,另外的20%他会认为有问题,即发生判断的错误。根据这些已知信息请你帮助买主计算如下的问题:

1、若买主不雇用修理工,他买到一辆传动装置有问题的车的概率是多少?

2、若买主花钱雇修理工帮他挑选和判断,当修理工说该车“传动装置有问题”时该车传动装置真有问题的概率是多少?

3、当修理工说该车“传动装置没问题”时而该车传动装置真有问题的概率是多少?

解 1、问题是简单的,即有30%的可能性买到一辆有传动装置间题的旧车,我们在这里只利用旧车杂志的信息。

第2问和第3问是贝叶斯估计或者利用贝叶斯公式进行决策的问题。

2、我们知道,贝叶斯公式是个条件概率的公式,即

1

()(/)

(/)()(/)i i i k j

j j P A P B A P A B P A P B A ==∑

其中(/)i P A B 称为事件i A 的后验概率,即在已知事件发生条件下事件i A 发生的概率;()i P A 是事件i A 的先验概率;(/)i P B A 称为样本信息,即在i A 发生条件下事件的概率。对于第2问,我们不妨令:

1A =实际有问题,2A =实际没问题

1B =修理工判断“有问题”, 2B =修理工判断“没问题”

则可将贝叶斯公式改写成:

(/P 实际有问题修理工判断“有问题”)

((/=((/+((/P P P P P P 实际有问题)修理工判断“有问题”实际有问题)

实际有问题)修理工判断“有问题”实际有问题)实际没问题)修理工判断“有问题”实际没问题)

111111212()(/)=()(/)()(/)

P A P B A P A P B A P A P B A + B B

根据已知条件,计算式中各项的概率分别为:

1()(=0.3P A P =实际有问题)

2()(=0.7P A P =实际没问题)

11(/)(=0.9P B A P =修理工判断“有问题”/实际有问题)

12(/)(=0.2P B A P =修理工判断“有问题”/实际没问题)

21(/)(=0.1P B A P =修理工判断“没问题”/实际没问题)

22(/)(=0.8P B A P =修理工判断“没问题”/实际没问题)

代入上式

(/P 实际有问题修理工判断“有问题”)

111111212()(/)=()(/)()(/)

P A P B A P A P B A P A P B A + 0.30.9=0.30.9+0.70.2

??? =0.66

这个结果表明,当修理工判断某辆车的传动装置“有问题”时,实际有问题的概率为0.66,即修理工的判断有问题使得真有问题的概率由0.30增长到0. 66。

3、(/P 实际有问题修理工判断“没问题”)

((/=((/+((/P P P P P P 实际有问题)修理工判断“没问题”实际有问题)

实际有问题)修理工判断“没问题”实际有问题)实际没问题)修理工判断“没问题”实际没问题)

111121222()(/)=()(/)()(/)

P A P B A P A P B A P A P B A + 由问题2知道

(/P 实际有问题修理工判断“没问题”)

121121222()(/) =()(/)()(/)

P A P B A P A P B A P A P B A + 0.10.3=0.30.1+0.70.8

??? =0.05

这个结果表明,当修理工判断某辆车的传动装置“没问题”时,实际有问题的概率为

0.05,即修理工的判断没问题而实际上有问题的概率由0.3下降到0.05。

评注 这是一个生活中很常见的问题。利用贝叶斯公式计算出买主花钱雇修理工帮他挑选和判断,当修理工说该车“传动装置有问题”时该车传动装置真有问题的概率,当修理工说该车“传动装置没问题”时而该车传动装置真有问题的概率。如果买主没有请修理工,他买到的旧车有质量问题的概率高达0.3,但是如果请修理工帮忙试车的话买到的旧车有质量问题的概率却可以降到0.05。这样不仅为买主剩下较多修车的钱,还帮助买主避免了日后的很多麻烦。

2.2.3 贝叶斯公式在信号估计中的应用

例3 背景:1948年,美国科学家香农发表了著名的论文《通信的数学理论》。世界上第一个给通信系统建立了数学模型。他认为通信系统由以下几个基本要素组成:信源、信道、编码、译码和干扰源。

信源指产生信息的来源。信道指传递信息的通道。将噪声统一为干扰源。编码是从消息到信号的函数,而译码是从信号到消息的函数。

因为信源发出什么消息是随机的,所以信源发出的消息可用随机变量来表示,于是可以用随机变量的分布律来描述信源。

信道由三个因素构成:输入信号,输出信号,以及输入信号与输出信号间的统计联系转移概率。转移概率一般用转移概率矩阵表示。

当信源发出某个消息后,由编码转变为信号,信号通过信道,因为信道中存在干扰,所以进入信道的是某个信号,从信道出来的可能不再是这个信号。那么自然我们要问,当接收到一个信号后,进入信道的信号是什么?

解 建模:有一个通信系统,假设信源发射0、1两个状态信号(我们将编码过程省略),其中发0的概率为0.55,发1的概率为0.45。无论信源发送的是什么,接收端可能接收到的是0,1,或“不清”。它的转移概率矩阵为:

0.90.050.050.050.850.1??????

分析: 利用贝叶斯公式求解, 设事件A 表示信源发出“0”的信号,A 表示信源发出“1”

的信号,B 表示接收到一个“1”的信号。当B 发生后,分别计算事件A 与事件A 的概率。 由贝叶斯公式:

()(/)(/)()(/)()(/)

P A P B A P A B P A P B A P A P B A =+ 0.067=

()(/)(/)()(/)()(/)

P A P B A P A B P A P B A P A P B A =+ 0.933=

因为 (/)(/)P A B P A B <,即接收到信号“1”后,信源发出的是“0”的可能性

比信源发出的是“1”的可能性小得多,所以我们应该判断信源发出的信号是“1”。 评注 某一信号在传输后得到各种信号的概率称为转移概率(包括得到它自身)。此例子运用贝叶斯公式,求得当B 发生后,分别计算事件A 与事件A 的概率,人们通过此概率可以做出最好的决策。

2.2.4 贝叶斯公式在概率推理中的应用

例4、有朋自远方来,他坐火车、坐船、坐汽车、坐飞机的概率分别是0.3,0.2,0.1,0.4,而他坐火车、坐船、坐汽车、坐飞机迟到的概率分别是0.25,0.3,0.1,0,实际上他是迟到了,推测他坐那种交通工具来的可能性大。

解 设1{A =做火车来} 2{A =坐船来}

3{A =坐汽车来} 4{A =坐飞机来}

{B =迟到}

1()0.3P A = 2()0.2P A =

3()0.1P A = 4()0.4P A =

1(/)0.25P B A = 2(/)0.3P B A =

3(/)0.1P B A = 4(/)0P B A =

由贝叶斯公式分别可以算得 11141

()(/)

(/)()(/)i i

i P A P B A P A B P A P B A ==∑

0.30.250.30.250.20.30.10.10.40

?=?+?+?+? 0.30.250.51720.145?=

22241()(/)

(/)()(/)i i

i P A P B A P A B P A P B A ==∑

0.20.30.41840.145

?=

≈ 333411()(/)

(/)()(/)i

i P A P B A P A B P A P B A ==∑

0.10.10.06900.145

?=

≈ 33441()(/)

(/)0()(/)i i

i P A P B A P A B P A P B A ===∑

比较以上四个概率值,可见他坐火车和坐船的概率大,坐汽车的可能性很小,且不可能是坐飞机过来的。

评注 此例子运用了四次贝叶斯公式,用所求出的概率判断某人迟到了,选择了何种交通工具的可能行最大。由果索因,果是某人迟到了,因是某人选择了那种交通工具。

2.2.5 贝叶斯公式在工厂产品检查中的应用

例5、某厂生产的产品次品率为0.1%,但是没有适当的仪器进行检验,有人声称发明一种仪器可以用来检验,误判的概率仅为5%.试问厂长能否采用该人所发明的仪器?

分析:“5%的误判率”给检验带来怎样的可信度,这是厂长决策的依据,即弄清“被检验出的正(或次)品中实际正(或次)品率”.

解:设事件A 表示“客观的次品”,事件B 表示“经检验判为次品的产品”,由题意知: ()0.001P A =,()0.999P A =,(|)0.95P B A =,(|)0.05P B A =.

由贝叶斯公式可计算“被检验出的次品中实际次品率”为: ()(|)

(|)()(|)()(|)P A P B A P A B P A P B A P A P B A =+ 0.0010.950.0010.950.9990.05

?=?+?

0.018664≈

同理,“被检验出的正品中实际正品率”为: (|)0.999947P A B ≈

由(|)0.018664P A B =可知,如果产品的成本较高,厂长就不能采用这

仪器,因为被仪器判为次品的产品中实际上有98%以上的是正品,这样导致损耗过高.同时,我们也注意到该仪器对正品的检验还是相当精确的,若检验对产品没有破坏作用,倒是可以在“被认定次品”的产品中反复检验,挑出“假次品”,这就降低了损耗,又保证了正品具有较高的可信度.

2.3贝叶斯公式的推广在风险决策模型中的应用

2.3.1背景简介

信息是决策的基础。由于市场环境中存在大量不确定因素和决策者本身知识能力的限制,再加上统计信息的不充分,决策者往往无法掌握与决策有关的所有信息,的决策必然

会给决策者带来某种程度的风险。信息是减少风险的有力手段。!信息越充分,决策环境的不确定性越小,风险也就越小。于是贝叶斯公式在风险决策中作为判断风险大小的工具就显的尤为重要。

2.3.2风险模型

以离散情况为例,设风险决策问题为:(),,Q A Ω),状态集=Ω{},i x n i ,,2,1Λ=,行动集{}n k a A k ,,2,1,Λ==,收益/损失函数为().,k a x Q Q i =状态变量的先验分布为

().,,2,1,s i x P i Λ=,决策信息值为.,,2,1,s j y j Λ=。决策信息值的准确率为:()

i j x y p ,即在状

态值i x 的条件下,信息值j y 的准确率。则状态变量的后验分布的贝叶斯公式为:()i j x y p =()()()()

∑=n i i i j i i j x p x y

p x p x y p 1.

2.3.3实例分析

某厂商要确定下一计划期产品的生产批量,有三种方案可供选择,即大批量生产(A )、中批量生

产(B )、小批量生产(C )。市场的销路状态有三种:销路好(1x )、销路一般(2x )、销路差(3x ),根据以前的资料,销路状态分布为()3.01=x p ,(),5.02=x p ()2

.03=x p 三种生产方案在不同需求状态下的收益如下表所示:

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划

全概率公式和贝叶斯公式

单位代码:005 分类号:o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号:0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete,discusses the two commonly used methods of events,and some practical applications.Full probability formula is one of the important full probability formula of calculation,it provides an effective complex events of the way the full probability of a complex events,full probability calculation problem change numerous will Jane.And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula;Bayes formula;Complete event group;

贝叶斯公式应用案例

贝叶斯公式应用案例 贝叶斯公式的定义是: 若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有 P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n ) 其中, P(A)可由全概率公式得到.即 n P(A)=∑P(B i)P(A|B i) i =1 在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。 假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。 现在让我们用贝叶斯公式分析一下该情况。 假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A) 则实际次品的概率P(B)=0.1%, 已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%, P(B)=1-0.001=0.999 所以,P(A)=0.001X0.95+0.999X0.01=0.01094 P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868 即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。 这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。 仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。 假设,两次检测的准确率相同,令 A=【零件为次品】B=【第一次检测为次品】C=【第二次检测为次品】 则为了确定零件为次品,我们所需要的是P(A|BC)

贝叶斯定理及应用

贝叶斯定理及应用 中央民族大学 孙媛

一贝叶斯定理 一、贝叶斯定理 贝叶斯定理(Bayes‘ theorem)由英国数学家托马斯贝叶斯(Thomas Bayes) ·Thomas Bayes 在1763年发表的一篇论文中,首先提出了这个定理。用来描述两个条件概率之间的这个定理 关系,比如P(A|B) 和P(B|A)。

一、贝叶斯定理 一贝叶斯定理 所谓的贝叶斯定理源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如假设袋子里面有N 个白球,M 个黑球,你伸手进去摸一如“假设袋子里面有N个白球M个黑球你伸手进去摸一把,摸出黑球的概率是多大”。而一个自然而然的问题是反过来:“如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测。这个问题,就是所谓的逆向概率问题。 样的推测”。这个问题就是所谓的逆向概率问题。

一、贝叶斯定理 一贝叶斯定理 ←实际上就是计算"条件概率"的公式。 p y, ←所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 的先验概率之所以称为先验是因为它不考虑任何←P(A)是A的先验概率,之所以称为先验是因为它不考虑任何B 的因素。 ←P(A|B)是在B发生时A发生的条件概率,称作A的后验概率。←P(B)是B的先验概率。 ←P(B|A)是在A发生时B发生的条件概率,称作B的后验概率。

浅谈贝叶斯公式及其应用.

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反 过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现, 这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且 1n i i B ==Ω,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑ 结论的证。

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈-CAL-FENGHAI.-(YICAI)-Company One1

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划没有被通过.

贝叶斯公式论文

哈尔滨学院本科毕业论文(设计)题目:贝叶斯公式公式在数学模型中的应用 院(系)理学院 专业数学与应用数学 年级2009级 姓名鲁威学号09031213 指导教师张俊超职称讲师 2013 年6月1 日

目录 摘要 (1) Abstract (2) 前言 (3) 第一章贝叶斯公式及全概率公式的推广概述..................................... 错误!未定义书签。 1.1贝叶斯公式与证明 (5) 1.1贝叶斯公式及其与全概率公式的联系 (5) 1.3贝叶斯公式公式推广与证明 (6) 1.3.1贝叶斯公式的推广 (6) 1.4贝叶斯公式的推广总结 (7) 第二章贝叶斯公式在数学模型中的应用 (8) 2.1数学建模的过程 (8) 2.2贝叶斯中常见的数学模型问题 (9) 2.2.1 全概率公式在医疗诊断中的应用 (9) 2.2.2全概率公式在市场预测中的应用 (11) 2.2.3全概率公式在信号估计中的应用. ...................................... 错误!未定义书签。 2.2.4全概率公式在概率推理中的应用 (15) 2.2.5全概率公式在工厂产品检查中的应用 ................................ 错误!未定义书签。 2.3全概率公式的推广在风险决策中的应用 (17) 2.3.1背景简介 (17) 2.3.2风险模型 (18) 2.3.3实例分析 (18) 第三章总结 (21) 3.1贝叶斯公式的概括 (21) 3.2贝叶斯公式的实际应用 (21) 结束语 (23) 参考文献 (24) 后记 (25)

贝叶斯经典例子

贝叶斯经典例子 我发现他有其他女人内衣,他出轨的可能性有多大? 2015-03-17 07:57 大数据文摘原创文章,如要转载,务必后台留言申请。 如果在男友的衣柜中发现了其他女人的内衣,你一定认为这个没良心的家伙出轨了,对不起你了,瞬间,你已经想出来N种对策——马上跳楼?不,我先去砍了他!哦,不!我得先砍了她再砍了他!不,我还是... 小编已经不敢再想了,太血腥了... 庆幸吧,你看到了这篇文章! 在你决定采取动作之前,请务必完整阅读,其实男友出轨的概率并没有你想象的那么高! 这个问题,老先生早就给出了答案 我们在计算一个事件发生的概率时需要考虑其他事件的信息则需要用到的概念。如果事件B的发生要以事件A的发生为前提,则 当然我们还可以用其他方法来计算条件概率。事件“B与A”与事件“A与B”是相同的,而又有 所以可得: 这便是由数学家托马斯×贝叶斯(Thomas Bayes)提出的著名(也称为贝叶斯定理)。这位18世纪英国教士留下的不起眼的公式给整个科学界和统计学界都带来了深远的影响。因为如果直接计算P(B|A)非常简单,但是想要反向计算P(A|B)就不是那么容易了。贝叶斯法则使得这种计算易如反掌。贝叶斯法则还有更加复杂的变形,现在常见的电子邮件垃圾过滤器与互联网里都用到了它。 分析男友出轨概率 不论你相信与否,对于这样的问题,贝叶斯定理总能给出答案——假如你知道(或者有意愿预估)下列三个量: 第一,你需要预测出自己伴侣在出轨的情况下,这件内衣出现的概率。(P(x|B))

这里一定要注意不能因为你手上拿了一件合格产品,就说是100%,实际上这个概率是要根据以下这个公式(即全概率公式)计算出来的:

贝叶斯公式与全概率公式的运用

1-3 全概率公式与贝叶斯公式的运用举例一、全概率公式 是一个完备事件组并且P P(B)= 全概率公式针对的是某一个过程中已知条件求出最后结果的概率,解题步骤如下: ①找出条件事件里的某一个完备事件组,分别命名为 ②命名目标的概率事件为事件B ③带入全概率公式求解 下面是具体实例对全概率公式的运用 1、甲盒子里面有4个红球3个白球,乙口袋有2个红球,5个白球,从甲口袋随机拿出一个球放到乙口袋,然后从一口袋中随机拿一个球,求这个球是红球的概率。 解:①完备事件组命名 ②目标事件B=“从乙里面取出红球” ③全概率公式求解 P(B)=P()P(B|+ P()P(B|= 2、甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解:①完备事件组命名 ②目标事件B=“从袋子里面取出白球” ③全概率公式求解 P(B)=P()P(B|+ P()P(B|= 3、某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人. 一、二、 三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率. 解:①完备事件组命名 ②目标事件B=“射手通过选拔赛” ③全概率公式求解 P(B)=P()P(B|+ P()P(B|+ P()P(B|+ P()P(B| =

= 二、贝叶斯公式 是一个完备事件组并且P P(|B)= 贝叶斯公式针对的是某一个过程中已知结果发生求出事件过程的某个条件成立的概率,解题步骤如下: ①找出目标条件所在的完备事件组,并命名 ②命名已知会发生的结果事件 ③带入贝叶斯公式求解 下面是具体实例对全概率公式的运用 4、某学生接连参加同一课程的考试两次,两次相互独立,第一次及格的概率是P,如果第一次及格,那么第二次及格的概率也是P,如果第一次不及格,那么第二次几个的概率就是,如果他第二次考试及格了,求第一次考试及格的概率 解:①完备事件组命名 ②目标事件B=“第二次考试及格” ③贝叶斯公式求解 == 5、设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:①完备事件组命名 ②目标事件B=“汽车停车修理” ③贝叶斯公式求解 = 6、甲袋中有4个红球,3个白球,乙袋中2个红球,5个白球,从两个袋子里任取一个袋子出来,然后从这个袋子里面拿出一个球,结果是红球,求这个球是从甲袋取出来的概率。

贝叶斯公式在处理垃圾邮件中的应用

贝叶斯公式在处理垃圾邮件中的应用

基于贝叶斯技术的垃圾邮件处理研究 易均,李晖,王歆 (江西省科学院,江西南昌 330029) 摘要:本论文首先对垃圾邮件进行了简要的描述,并叙述了反垃圾邮件技术的研究现状,介绍贝叶斯过滤技术的工作原理及技术原理,最后给出贝叶斯技术研究的发展方向。 关键词:贝叶斯技术;反垃圾邮件 1、前言 随着因特网应用的快速发展,电子邮件也逐步成为因特网的最大一个应用之一,给我们生活带来很大的方便,而且电子邮件的发展也代表了我国进入信息业高速发展的阶段。但是也同时产生了一个新的问题,即大量的垃圾邮件出现。如何把电子邮件中的垃圾邮件过滤掉,已经成为电子邮件用户此刻最关心的一大问题,这也就是所谓的“反垃圾邮件”问题。 反垃圾邮件是具有相当难度的事情,垃圾邮件每天都在增加和变化。据Radicati估计2007年,垃圾邮件的比例将达到70%。现在的垃圾邮件发送者变得更加狡猾,采用静态反垃圾邮件技术很难防范。垃圾邮件发送者只要简单的研究一下现在采用了哪些静态反垃圾邮件,然后相应的改变一下邮件的内容或发送方式,就可以逃避检查了,因此,必须采用一种新的技术来克服静态反垃圾邮件的弱点,这种技术应该对垃圾邮件发送者的各种伎俩了如指掌,还要能适应不同用户对于反垃圾邮件的个性化需求。这种技术就是贝叶斯过滤技术。 2、垃圾邮件概述以及反垃圾邮件技术的研究现状 2.1、垃圾邮件的概述 我国至今对垃圾邮件的定义有很多种,包括如下几种:①收件人没有提出要求或者同意接收的广告、及其各种形式的宣传品等宣传性的电子邮件;②在邮件中,隐藏了发件人身份、地址、标题等信息的电子邮件:③含有虚假的发件人的身份、地址等信息源的电子邮件;④收件人无法拒收或者无法删除的电子邮件。目前,垃圾邮件的定义被扩大了,除了上述对垃圾邮件定义外,病

贝叶斯公式公式在数学模型中的应用

学院本科毕业论文(设计) 题目:贝叶斯公式公式在数学模型中的应用 院(系)理学院 专业数学与应用数学 年级2009级 姓名鲁威学号09031213 指导教师俊超职称讲师 2013 年6月1 日

目录 摘要 (1) Abstract (2) 前言 (2) 第一章贝叶斯公式及全概率公式的推广概述........................................ 错误!未定义书签。 1.1贝叶斯公式与证明 (5) 1.1贝叶斯公式及其与全概率公式的联系 (5) 1.3贝叶斯公式公式推广与证明 (6) 1.3.1贝叶斯公式的推广 (6) 1.4贝叶斯公式的推广总结 (7) 第二章贝叶斯公式在数学模型中的应用 (8) 2.1数学建模的过程 (8) 2.2贝叶斯中常见的数学模型问题 (9) 2.2.1 全概率公式在医疗诊断中的应用 (9) 2.2.2全概率公式在市场预测中的应用 (11) 2.2.3全概率公式在信号估计中的应用. ......................................... 错误!未定义书签。 2.2.4全概率公式在概率推理中的应用 (15) 2.2.5全概率公式在工厂产品检查中的应用 ................................... 错误!未定义书签。 2.3全概率公式的推广在风险决策中的应用 (17) 2.3.1背景简介 (17) 2.3.2风险模型 (18) 2.3.3实例分析 (18) 第三章总结 (21) 3.1贝叶斯公式的概括 (21) 3.2贝叶斯公式的实际应用 (21) 结束语 (23) 参考文献 (24) 后记 (25)

贝叶斯公式的应用

贝叶斯公式的应用 张利娟 摘要:贝叶斯公式是概率论中重要的公式,在实际中有广泛的应用。本文结合全概率公式,就公共生活中有关传染病防治和测谎仪是否真的能测谎两个问题,说明了它们的用法。并给出相关的意见。 关键词:全概率公式;贝叶斯公式;应用 引言 一个随试验的样本空间都可以找到有限个或可列个基本事件构成一个分割,任一复合事件都可以由这几类基本事件组合而成。例如:有一个袋子,装有白球、黑球和红球,取出两个球,则“取出两球颜色相同”这一事件,可由“取出两个白球”,“取出两个黑球”,“取出两个红球”复合而成。对这类问题从概率上表达时发生可能性之间关系的公式就是全概率公式,与其互逆的即为贝叶斯公式。1.全概率与贝叶斯公式 若事件B1,B2,…,Bn是样本空间Ω的一个划分,P(Bi)> (i= 1、2、3、…n),A是任一事件且P(A)> 0,则有 其中, P(A) 可由全概公式得到。即 我们主要应用公式的简单情形, 即对任意两个事件A 和B, 根据贝叶斯公式有其中 事件B的概率通常是根据以往的数据分析得到的,对我们而言,所求的P(A|B)通常更有用。 2 . 贝叶斯公式的应用 资料显示, 某项艾滋病血液检测的灵敏度(即真有病的人检查为阳性)

为95%, 而对没有得病的人这种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病。为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查。该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划没有被通过。 现在我们用贝叶斯公式分析专家为何反对通过这项计划。 设A = { 检查为阳性} , B = { 一个人患有艾滋病} . 根据文中叙述可知, 由全概率公式 P(A)=0.001×0.95+0.999×0.01= 0.01094. 由贝叶斯公式 也就是说, 被检测患有艾滋病而此人确实患有该病的概率大约为0.087。这个结果使人难以接受, 好像与实际不符。从资料显示来看, 这种检测的精确性似乎很高。因此,一般人可能猜测,如果一个人检测为阳性, 他患有艾滋病的可能性很大。如果通过这项计划, 势必给申请登记的新婚夫妇带来不必要的恐慌。因为约有91. 3%的人并没有患艾滋病。为什么会出现与直觉如此相悖的结果呢? 这是因为人们忽略了一些基础信息, 就是患有艾滋病的概率很低, 仅为千分之一。因此,在检测出呈阳性的人中大部分是没有患艾滋病的。 但是, 我们也应该注意到, 这项检测还是为我们提供了一些新的信息. 计 算结果表明, 一个检测结果呈阳性的人患有艾滋病的概率从最初的0. 001 增加到了0. 087, 这是原来患有艾滋病概率的87倍.进一步的计算, 我们得到一个检查呈阴性而患有艾滋病的概率为 因此, 通过这项检测, 检查呈阴性的人大可放宽心, 他患有艾滋病的概率 已从千分之一降低到十万分之六。

贝叶斯公式的应用

贝叶斯公式的应用 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二、内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划没有被通过. 我们用贝叶斯公式分析专家为何反对通过这项计划. 设A= {检查为阳性}, B = { 一个人患有艾滋病}。据文中叙述可知: ()0.001,(|)0.95,()10.0010.999,(|)10.990.01 P B P A B P B P A B ===-==-= 由公式:()()(|)()((|) P A P B P A B P B P A B =+ 得:()0.001*0.950.999*0.010.01094 P A=+= 由公式: ()(|) (|) () P A P A B P A B P A =得: 0.001*0.95 (|)0.087 0.01094 P B A=≈ 也就是说, 被检测患有艾滋病而此人确实患有该病的概率大约为0. 087. 这个结果使人难以接受, 好像与实际不符. 从资料显示来看, 这种检测的精确性似乎很高. 因此, 一般人可能猜测, 如果一个人检测为阳性, 他患有艾滋病的可

贝叶斯公式与全概率公式的运用

1-3 全概率公式与贝叶斯公式的运用举例 一、全概率公式 是一个完备事件组并且P则对任意事件有 P(B)= 全概率公式针对的是某一个过程中已知条件求出最后结果的概率,解题步骤如下: ①找出条件事件里的某一个完备事件组,分别命名为 ②命名目标的概率事件为事件B ③带入全概率公式求解 下面是具体实例对全概率公式的运用 1、甲盒子里面有4个红球3个白球,乙口袋有2个红球,5个白球,从甲口袋随机拿出一个球放到乙口袋,然后从一口袋中随机拿一个球,求这个球是红球的概率。 解:①完备事件组命名“甲口袋里拿出的是红球”甲口袋里拿出的是白球” ②目标事件B=“从乙里面取出红球” ③全概率公式求解 P(B)=P()P(B|+ P()P(B|= 2、甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. ? 解:①完备事件组命名“取到的袋子是甲袋”取到的袋子是乙袋” ②目标事件B=“从袋子里面取出白球” ③全概率公式求解 P(B)=P()P(B|+ P()P(B|= 3、某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人. 一、二、三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率. ? 解:①完备事件组命名“选到的射手是级射手” ②目标事件B=“射手通过选拔赛” ③全概率公式求解 P(B)=P()P(B|+ P()P(B|+ P()P(B|+ P()P(B| = = 二、贝叶斯公式 是一个完备事件组并且P则对任意事件有

相关主题