搜档网
当前位置:搜档网 › 高中概率与统计复习知识点与题型

高中概率与统计复习知识点与题型

高中概率与统计复习知识点与题型
高中概率与统计复习知识点与题型

高中概率与统计复习知

识点与题型

文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

概率与统计知识点与题型

1、基本概念:

(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事

件;

(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;

(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事

件;

(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n

次试验中事件A 出现的次数nA 为事件A 出现的频数;称事件A 出现的比

例fn(A)=n n A

为事件A 出现的概率:对于给定的随机事件A ,如果随着试

验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次

数n 的比值n n A

,它具有一定的稳定性,总在某个常数附近摆动,且随着

试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

概率的基本性质

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;

(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件; (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对

立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);

3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。 (2)古典概型的解题步骤; ①求出总的基本事件数;

②求出事件A 所包含的基本事件数,然后利用公式P (A )=总的基本事件个数包含的基本事件数

A

1、基本概念:

(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式:

P (A )=积)的区域长度(面积或体试验的全部结果所构成积)

的区域长度(面积或体构成事件A ;

(1) 几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)

每个基本事件出现的可能性相等.

一、随机变量.

1. 随机试验的结构应该是不确定的.试验如果满足下述条件:

①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.

2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 设离散型随机变量ξ可能取的值为: ,,,,21i x x x

ξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列.

有性质① ,2,1,01=≥i p ; ②121=++++ i p p p .

注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.

3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中

这个事件恰好发生k 次的概率是:k

n k k n q

p C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作

ξ~B (n·p ),其中n ,p 为参数,并记p)n b(k;q

p C k n k k n ?=-. ⑵二项分布的判断与应用.

①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布. ②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列. 4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1 ==-k p q k 于是得到随机变量ξ的概率分布列.

我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q

5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为

)M N k n M,0k (0C C C k)P(ξn

N

k

n M

N k M -≤-≤≤≤??=

=--.〔分子是从M 件次品中取k 件,从N-M 件正品

中取n-k 件的取法数,如果规定m <r 时0C r m =,则k 的范围可以写为k=0,1,…,n.〕

⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n≤a+b ),则次品数ξ的分布列为n.,0,1,k C C C k)P(ξn b

a k

n b

k

a =?==+-.

⑶超几何分布与二项分布的关系.

设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取

n 次共有n b a )(+个可能结果,等可能:k)(η=含k

n k k n b

a C -个结果,故n ,0,1,2,k ,)b

a a (1)

b a a (

C b)(a b

a C k)P(ηk

n k k n n

k

n k k n =+-+=+=

=--,即η~)(b a a n B +?

.[我们先为k 个次品选

定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样. 二、数学期望与方差.

1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为

则称 ++++=n n p x p x p x E 2211ξ为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.

2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身.

②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.

③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.

⑵单点分布:c c E =?=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =?+?=10ξ,其分布列为:(p + q = 1)

⑷二项分布:∑=?-?=-np q p k n k n k E k n k )!

(!!

ξ 其分布列为ξ~),(p n B .(P

为发生ξ的概率)

⑸几何分布:p

E 1

=

ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称

+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为

ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根

方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.

⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1) ⑷二项分布:npq D =ξ ⑸几何分布:2

p q D =

ξ

5. 期望与方差的关系.

⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(

⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+?=)(,)( ⑶期望与方差的转化:22

)(ξξ

ξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)

0=-=ξξE E .

三、正态分布.

1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线

x = (如图阴影部分)的曲线叫ξ图像的函数)(x f 叫做ξ的密度函数,由于“(∈x 是必然事件,故密度曲线与x 轴所夹部分面积等于1.

2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:2

22)(21)(σμσ

π--

=

x e

x f .

(σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.

⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质.

①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.

③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.

④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.

⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.

3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(2

2+∞-∞=

-

x e

x x π

?,则称ξ

服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξ?,)(1)(x x --=??求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ??ξ-=≤ .

注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有

5.0)( x Φ.比如5.00793.0)5.0(

=-Φσ

μ

σ

μ

-5.0必然小于0,如图

⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ常用)(x F 表示,且有)σ

μ

x (

F(x)x)P(ξ-==≤?. 习题

1.6名同学排成两排,每排3人,其中甲排在前排的概率是 ( ) A .

12

1 B .2

1

C .

6

1

D .3

1

2.有10名学生,其中4名男生,6名女生,从中任选2名,恰好2名男生或2名女生的概

率是 ()

A .

45

2

B.

152 C. 3

1 D.

15

7

3.甲乙两人独立的解同一道题,甲乙解对的概率分别是21,p p ,那么至少有1人解对的概率

是 ()

A. 21p p +

B. 21p p ?

C. 211p p ?-

D.)1()1(121p p -?--

4.从数字1, 2, 3, 4, 5这五个数中, 随机抽取2个不同的数, 则这2个数的和为偶数的概率

是 ()

S 阴=0.5S a =0.5+S

A. 51

B. 52

C. 53

D. 5

4

5.有2n 个数字,其中一半是奇数,一半是偶数,从中任取两个数,则所取的两数之和

为偶数的概率是 ( )

A 、12

B 、12n

C 、121n n --

D 、121

n n ++

6.有10名学生,其中4名男生,6名女生,从中任选2名学生,恰好是2名男生或2名

女生的概率是 () A .

45

2

B .

15

2 C .

15

7

D .3

1

7.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色

外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再

从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的

概率等于

()

A .5

1

B .

1009 C .100

1

D .5

3

C9 2/C10 3 乘以C9 2/C10 3

8.已知集合A={12,14,16,18,20},B={11,13,15,17,19},在A 中任取一个元素

用a i (i=1,2,3,4,5)表示,在B 中任取一个元素用b j (j=1,2,3,4,5)表示,则

所取两数满足a i >b I 的概率为()

A 、43

B 、53

C 、21

D 、5

1

9.在圆周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随

机选择3个点,刚好构成直角三角形的概率是( )直径有5个 A.

B.

C.

D.

10.已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽

出的概率不小于,则至少应抽出产品 ( ) 个 个 个 个

11.甲、乙独立地解决 同一数学问题,甲解决这个问题的概率是,乙解决这个问题的

概率是,那么其中至少有1人解决这个问题的概率是( ) A 、 B 、 C 、 D 、

12.某小组有三名女生,两名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是___________

13.掷两枚骰子,出现点数之和为3的概率是_____________

14.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______________

15.我国西部一个地区的年降水量在下列区间内的概率如下表所示:

则年降水量在 [ 200,300 ] (m,m )范围内的概率是___________ 16、向面积为S 的△ABC 内任投一点P ,则△PBC 的面积小于

2

S

的概率是_________。 17、有五条线段,长度分别为1,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为_______

18、在等腰Rt △ABC 中,在斜边AB 上任取一点M ,则AM 的长小于AC 的长的概率为_____

19.甲、乙两名篮球运动员,投篮的命中率分别为与.

(1)如果每人投篮一次,求甲、乙两人至少有一人进球的概率; (2)如果每人投篮三次,求甲投进2球且乙投进1球的概率.

20.加工某种零件需要经过四道工序,已知死一、二、三、四道工序的合格率分别为

910876

、、、987

,且各道工序互不影响 (1)求该种零件的合格率

(2)从加工好的零件中任取3件,求至少取到2件合格品的概率

(3)假设某人依次抽取4件加工好的零件检查,求恰好连续2次抽到合格品的概率

(用最简分数表示结果)

21.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:

则比较两名工人的技术水平的高低为 .

思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.

.

22. 某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为

商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润. (Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.

参考答案:

1-5、BDDBC 6-11、CBBBCD

12. 51 13. 181 14. 75

15. 16、34 17、310

18、

2

19:解:设甲投中的事件记为A ,乙投中的事件记为B ,

(1)所求事件的概率为:

P=P (A ·B )+P (A ·B )+P (A ·B ) =×+×+× =.

(2)所求事件的概率为:

P=23××13×=0.042336.

20:解:(1)该种零件合格率为198763

109875

P =

???= (2)该种零件的合格率为35,则不合格率为2

5

,从加工好的零件中任意取3个,

至少取到2件合格品的概率2233

23332381()()()555125

P C C =+=

(3)恰好连续2次抽到合格品的概率

21:解:工人甲生产出次品数ε的期望和方差分别为:

7.0103

210111060=?+?+?

=εE ,

891.0103

)7.02(101)7.01(106)7.00(222=?-+?-+?

-=εD ;

工人乙生产出次品数η的期望和方差分别为:

7

.0102

210311050=?+?+?

=ηE ,664.0102)7.02(103)7.01(105)7.00(222=?-+?-+?-=ηD

由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.

小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度

22:解(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”

2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.

(Ⅱ)η的可能取值为200元,250元,300元.

(200)(1)0.4P P ηξ====,

(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,

(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.

η的分布列为

2000.42500.43000.2E η=?+?+?240=(元).

概率统计知识点汇总

概率第一章 (一)概率的加减乘除运算 (二) 概率的计算 1. 古典概型的计算 2. 条件概率的计算 (三) 全概率公式与贝叶斯公式 (四) n 重伯努利试验 概率第二章 (一)随机变量分布函数 1. 分布函数的定义及性质 2. 学会用分布函数表示随机变量落入指定区域的概率 (二)离散型随机变量 1. 具体问题会求解离散型随机变量的分布列 分布列要满足的条件 2. 由分布列会求解分布函数 3. 由分布函数会求解分布列 4. 掌握三个常见的离散型随机变量 (三)连续型随机变量 1. 由分布函数会求解分布密度 2. 由分布密度会求解分布函数 3. 利用分布密度求解未知参数 4. 掌握三个常见的连续型随机变量 (四)随机变量函数的分布 1. 离散型随机变量的函数 2. 连续型随机变量的函数 概率第三章 二维随机向量 (一)联合分布函数的定义及性质 联合概率分布函数定义为____),(=y x F 联合分布函数的性质: ___),(____,),(),(),(=+∞+∞=-∞-∞=-∞=-∞F F y F x F 用联合概率分布函数表示二维随机向量落入指定区域的概率 ____),(2121=≤<≤

高中概率与统计试题

概 率与统计 1. (安徽理19). 为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望 3E ξ=,标准差σξ为 2 (Ⅰ)求n,p 的值并写出ξ的分布列; (Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率 【解:】(1)由233,()(1),2E np np p ξσξ===-=得112p -=,从而1 6,2 n p ==, ξ的分布列为 (2)记”需要补种沙柳”为事件A,则()(3),P A P ξ=≤得 或156121 ()1(3)16432 P A P ξ++=->=-= 2. (安徽文18) 在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”. (Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g ”的概率。 (Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g ”的卡片不少于2张的概率。

【解:】(1)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有后鼻音“g ”的概率为 3 10 ,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为 33327 1010101000 ??= (2)设(1,2,3)i A i =表示所抽取的三张卡片中,恰有i 张卡片带有后鼻音“g ”的事件,且其相应的概率为(),i P A 则 127323107()40C C P A C == ,3333101 ()120 C P A C == 因而所求概率为 3. (北京理17) 甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列. 【解:】(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3 324541 ()40 A A P E C A ==, 即甲、乙两人同时参加A 岗位服务的概率是 1 40 . (Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E ,那么4424541 ()10 A P E C A ==, 所以,甲、乙两人不在同一岗位服务的概率是9()1()10 P E P E =-= . (Ⅲ)随机变量ξ可能取的值为1,2.事件“2ξ=”是指有两人同时参加A 岗位服务, 则23 5334541 (2)4 C A P C A ξ===. 所以3 (1)1(2)4 P P ξξ==-== ,ξ的分布列是

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数 :()() n n i i i i x x y y x y nx y r ---?∑∑= = 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -= ++++ ②.犯错误上界P 对照表 3、独立性检验步骤

高中数学统计与概率知识点(原稿)

高中数学统计与概率知识点(文) 第一部分:统计 一、什么是众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 二、.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 三 .众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同; (6)众数可能是一个或多个甚至没有; (7)平均数、众数和中位数都是描述一组数据集中趋势的量。

最新统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

高中数学专题――概率统计专题.

专题二概率统计专题 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然问题的方法,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算及应用都是考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必然思想的运用.由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考试卷中,一般是2—3个小题和一个解答题. 【考点透析】概率统计的考点主要有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等.【例题解析】 题型1 抽样方法 -)中,在公证部门监督下按照随机抽取的方法确【例1】在1000个有机会中奖的号码(编号为000999 定后两位数为的号码为中奖号码,该抽样运用的抽样方法是() A.简单随机抽样B.系统抽样C.分层抽样D.以上均不对 分析:实际“间隔距离相等”的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.答案B. 点评:关于系统抽样要注意如下几个问题:(1)系统抽样是将总体分成均衡几个部分,然按照预先定出的规则从每一部分抽取一个个体,得到所需要的样本的一种抽样方法.(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一段中用简单随机抽样确定起始的个体编号;④按事先研究的规则抽取样本.(3)适用范围:个体数较多的总体. 例2(2008年高考广东卷理3)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为() A.24B.18C.16D.12 Array 分析:根据给出的概率先求出x的值,这样就可以知道三年级的学生人数,问题就解决了. x=?=,这样一年级和二年级学生的解析:C 二年级女生占全校学生总数的19%,即20000.19380 +++=,三年级学生有500人,用分层抽样抽取的三年级学生应是总数是3733773803701500 64 50016 ?=.答案C. 2000 点评:本题考查概率统计最基础的知识,还涉及到一点分析问题的能力和运算能力,题目以抽样的等可能性为出发点考查随机抽样和分层抽样的知识. 例3.(2009江苏泰州期末第2题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系, 2500,3500(元)月收入段应抽要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[) 出人.

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

初中统计与概率知识点

(一)统计篇 主要知识点(三种统计图,科学计数法,近似数,有效数字,平均数,众数, 中位数,普查,抽查,频数,频率,极差,方差,标准差) 一、生活中的数据(一)(七年级上册第六章)三种统计图略 二、生活中的数据(二)(七年级下册第三章) 1.科学计数法: ①一个绝对值小于1的数也可以用科学记数法表示成的形式,其中,n是负整数。 ②技巧:n的绝对值等于这个数的左边第一个非零数字前面的零的个数。 ③一百万=1×106一亿=1×108 2.近似数和有效数字:目标:取近似数,能指出近似数的有效数字。 精确数是与实际完全符合的数,近似数是与实际非常接近的数。 有时我们根据具体情况,采用四舍五入法选择一个数的近似数。 注意:用四舍五入法取近似数时,很容易将小数点末尾的零去掉,一定要注意精确到的数位(及四舍五入到的数位)。如四舍五入到千分位是,注意不要去掉末尾的零。四舍五入到哪一位,就说这个近似数精确到哪一位。 对于一个近似数,从左边第一个不是0的数字起,到精确的数位(即四舍五入到的数位)止,所有的数字都叫做这个数的有效数字。 三、数据的代表(八年级上册第八章) 1.平均数:目标:会求一组数据的平均数与加权平均数 我们常用平均数(算术平均数)表示一组数据的“平均水平”。 在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”,这样的平均数叫做加权平均数。 例如;你的小测成绩是80分,期末考成绩是90分,老师要计算总的平均成绩,就按照小测40%、期末成绩60%的比例来算,所以你的平均成绩是:80×40%+90×60%=86 学校食堂吃饭,吃三碗的有χ人,吃两碗的有y人,吃一碗的z人。平均每人吃多少?

高中数学概率与统计测试题

概率与统计 1.如果一个整数为偶数的 概率为 (1)a+b 为偶数的概率; (2)a+b+c 为偶数的概率。 0.6 ,且 a,b,c 均为整数,求 2.从 10 位同学 (其中 6 女,4 男)中随机选出 3 位参加测验,每位女同学能通过测验的概率 43 均为,每位男同学能通过测验的概率均为,求55 (1)选出的 3 位同学中,至少有一位男同学的概率; (2)10 位同学中的女同学甲和男同学乙同时被选中且通过测验的概率。 3.袋中有 6 个白球, 4 个红球,甲首先从中取出 3 个球,乙再从余下的 7 个球中取出 4 个球,凡取得红球多者获胜。试求 (1)甲获胜的概率; (2)甲,乙成平局的概率。 4.箱子中放着 3 个 1 元硬币, 3 个 5 角硬币, 4 个 1 角硬币,从中任取 3 个,求总钱数超过 1 元 8 角的概率。 5.有 10 张卡片,其号码分别位 1,2,3?,10,从中任取 3 张。 (1)求恰有 1 张的号码为 3 的倍数的概率; (2)记号码为 3 的倍数的卡片张数为ξ,求ξ的数学期望。 6.某种电子玩具按下按钮后,会出现白球或绿球,已知按钮第一次按下后,出现红球与绿球 1 的概率都是,从按钮第二次按下起,若前次出现红球,则下次出现红球、绿球的概率2 1 2 3 2 分别为, ;若前次出现绿球,则下次出现红球、绿球的概率分别为, ,记第 n(n ∈ 3 3 5 5 N,n ≥1) 次按下后,出现红球的概率为P n

(1)求P2的值; (2)当 n∈N,n ≥2 时,求用P n 1表示P n的表达式; (3)求P n关于 n 的表达式。 7.有甲、乙两个盒子 ,甲盒子中有 8 张卡片 ,其中两张写有数字 0,三张写有数字 1 ,三张写有数字 2 ;乙盒子中有 8 张卡片,其中三张写有数字 0,两张写有数字1,三张写有数字 2 , (1) 如果从甲盒子中取两张卡片,从乙盒子中取一张卡片,那么取出的 3 张卡片都写有 1 的概率是多少? (2)如果从甲、乙盒子中各取一张卡片,设取出的两张卡片数字之和为ξ,求ξ的分布列和期望。 8.甲、乙两位同学做摸球游戏,游戏规则规定:两人轮流从一个放有 1 个白球, 3 个黑球, 2 个红球且只有颜色不同的 6 个小球的暗箱中取球,每次每人只取一球,每取出一个后立即放回,另一个人接着取,取出后也立即放回,谁先取到红球,谁为胜者,现甲先取 (1) 求甲摸球次数不超过三次就获胜的概率; (2) 求甲获胜的概率。 9.设有均由 A,B,C 三个部件构成的两种型号产品甲和乙,当A或 B 是合格品并且 C 是合格 品时,甲是正品;当 A, B 都是合格品或者 C 是合格品时,乙是正品。若 A 、 B、C 合格的概率均是 P,这里 A ,B,C 合格性是互相独立的。 (1) 产品甲为正品的概率P1是多少? (2)产品乙为正品的概率P2 是多少? (3)试比较P1与P2的大小。 10.一种电路控制器在出厂时每四件一等品装成一箱,工人在装箱时不小心把两件二等品和两件一等品装入了一箱,为了找出该箱的二等品,我们对该箱中的产品逐一取出进行测试。 (1) 求前二次取出的都是二等品的概率; (2) 求第二次取出的是二等品的概率; (3)用随机变量ξ表示第二个二等品被取出时共取的件数,求ξ的分布列及数学

高中概率知识点、高考考点、易错点归纳

概率知识要点 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例 ()= A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ??或A B)。 不可能事件记作?。 (2)相等。若B A A B ??且,则称事件A 与事件B 相等,记作A=B 。 (3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。 (4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。 (5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ? ,即事件A 与事件B 在任何一次试验中并不会同时发生。 (6)事件A 与事件B 互为对立事件:A B 为不可能事件,A B 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1P A ≤≤.(2)必然事件的概率为1.()1P E =.(3)不可能事件的概率为0. ()0P F =. (4)事件A 与事件B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。 (5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B = . 古典概型 1、基本事件: 基本事件的特点:(1)任何两个事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本时间的和。 2、古典概型:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。 具有这两个特点的概率模型称为古典概型。 3、公式:()= A P A 包含的基本事件的个数 基本事件的总数

概率统计知识点全面总结

知识点总结:统计与概率 I 统计 1.三大抽样 (1)基本定义: ① 总体:在统计中,所有考查对象的全体叫做全体. ② 个体:在所有考查对象中的每一个考查对象都叫做个体. ③ 样本:从总体中抽取的一部分个体叫做总体的样本. ④ 样本容量:样本中个体的数目叫做样本容量. (2)抽样方法: ①简单随机抽样:逐个不放回、等可能性、有限性。=======★适用于总体较少★ 抽签法:整体编号( 1~N )放入不透明的容器中搅拌均匀逐个抽取n 次,即可得样本容量为 n 的样本。 随机数表法:整体编号(等位数,如001、111不能是1、111) 从0~9中随机取一行一列然后初方向随机 (上、下、左、右)重复,超过范围则忽略不计直至取得以n 为样本容量的样本。 ②系统抽样:容量大.等距,等可能。=======★适用于总体多★ 用随机方法编号,若N 无法被整除,则剔除后再分组,n N k 。再用简单随机抽样法来抽取一个个体,设为l ,则编号为l ,k+l ,2k+l ……(n-1)k ,抽出容量为n 的样本。(每组编号相同)。 ③分层抽样:总体差异明显.按所占比例抽取.等可能.=======★适用于由差异明显的几部分构成的总体★ 总体有几个差异明显的部分构成,经总体分成几个部分,然后按照所占比例进行抽样.抽样比为:k =n N 3.总体分布的估计: (1)一表二图: ①频率分布表——数据详实 ②频率分布直方图——分布直观 ③频率分布折线图——便于观察总体分布趋势 ★注:总体分布的密度曲线与横轴围成的面积为1。 (2)茎叶图: ①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数.众位数等。 ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。

概率论和数理统计知识点总结[超详细版]

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

初中数学统计与概率知识点精炼

统计与概率 一、统计的基础知识 1、统计调查的两种基本形式: 普查:对调查对象的全体进行调查; 抽样调查:对调查对象的部分进行调查; 总体:所要考察对象的全体; 个体:总体中每一个考察的对象; 样本:从总体中所抽取的一部分个体; 样本容量:样本中个体的数目(不带单位); 平均数:对于n 个数12,,,n x x x ,我们把121()n x x x n +++ 叫做这n 个数的平均数; 中位数:几个数据按大小顺序排列时,处于最中间的一个数据(或是最中间两个数据的平均数)叫做中位数; 众数:一组数据中出现次数最多的那个数据; 方差:2222121()()()n S x x x x x x n ??=-+-++-?? ,其中n 为样本容量,x 为样本平均数; 标准差:S ,即方差的算术平方根; 极差:一组数据中最大数据与最小数据的差称为这组数据的极差; 频数:将数据分组后落在各小组内的数据个数叫做该小组的频数; 频率:每一小组的频数与样本容量的比值叫做这一小组的频率; ★ 频数和频率的基本关系式:频率 = —————— 各小组频数的总和等于样本容量,各小组频率的总和等于1; 扇形统计图:圆表示总体,扇形表示部分,统计图反映部分占总体的百分比,每个扇形的圆心角度数=360°× 该部分占总体的百分比; 会填写频数分布表,会补全频数分布直方图、频数折线图; 频数 样本容量 各 基 础 统 计 量 频 数 的 分 布 与 应 用 2、 3、

二、概率的基础知识 必然事件:一定条件下必然会发生的事件; 不可能事件:一定条件下必然不会发生的事件; 2、不确定事件(随机事件):在一定条件下可能发生,也可能不发生的事件; 3、概率:某件事情A 发生的可能性称为这件事情的概率,记为P(A); P (必然事件)=1,P(不可能事件)=0,0<P(不确定事件)<1; ★概率计算方法: P(A) = ———————————————— 例如 注:对于两种情况时,需注意第二种情况可能发生的结果总数 例:①袋子中有形状、大小相同的红球3个,白球2个,取出一个球后再取出一个球,求两个球都是白球的概率;P = 1 10 ②袋子中有形状、大小相同的红球3个,白球2个,取出一个球后放回 ..,再取出一个球,求两个球都是白球的概率;P = 4 25 1、确定事件 事件A发生的可能结果总数 所有事件可能发生的结果总数 运用列举法(常用树状图)计算简单事件发生的概率 …………

高中数学统计与概率测试题

高中数学统计与概率测试 题 Revised by Liu Jing on January 12, 2021

高中数学统计与概率测试题一选择题 1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是( ) A. 1000名学生是总体 B.每名学生是个体 C.每名学生的成绩是所抽取的一个样本 D.样本的容量是100 2.某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图,则以下说法不正确的是() A.获得参与奖的人数最多 B.各个奖项中三等奖的总费用最高C.购买奖品的费用平均数为元 D.购买奖品的费用中位数为2元3.滴滴公司为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查,为此将他们随机编号1,2,,2000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间[1,820]的人做问卷A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C 的人数为() A. 23 B. 24 C. 25 D. 26

4.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,则n=( ) A. 13 B. 12 C. 10 D. 9 5 ,,, A B C D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或D妈妈的车概率是 A.1 3 B. 1 2 C. 5 9 D. 2 3 6.如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图 根据频率分布直方图,下列说法正确的是 ①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值 ②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值 ③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值 ④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍 A.①②③ B.②③④ C.①③④ D.①④ 7.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为() A. 5 B. 4 C. 3 D. 2

高中统计与概率知识点

高中统计与概率知识点(文科) (一)统计 一、简单随机抽样 1.总体和样本 在统计学中 , 把研究对象的全体叫做总体. 把每个研究对象叫做个体. 把总体中个体的总数叫做总体容量. 为了研究总体的有关性质,一般从总体中随机抽取一部分:,,, 研究,我们称它为样本.其中个体的个数称为样本容量. 2.简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。 3.简单随机抽样常用的方法: (1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。 在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。4.抽签法: (1)给调查对象群体中的每一个对象编号; (2)准备抽签的工具,实施抽签 (3)对样本中的每一个个体进行测量或调查 例:请调查你所在的学校的学生做喜欢的体育活动情况。 5.随机数表法: 例:利用随机数表在所在的班级中抽取10位同学参加某项活动。 二、系统抽样 1.系统抽样(等距抽样或机械抽样): 把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。 K(抽样距离)=N(总体规模)/n(样本规模) 前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。

可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布成某种循环性规律,且这种循环和抽样距离重合。 系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。 三、分层抽样 1.分层抽样(类型抽样): 先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。 两种方法: (1)先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。 (2)先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。 2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。 分层标准: (1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。 (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。 (3)以那些有明显分层区分的变量作为分层变量。 3.分层的比例问题: (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。 (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。 四、用样本的频率分布估计总体分布 1.频率分布直方图 ①组距与分组:样本容量越大,分组越多,当样本容量不超过100时,一般可分成5~12组,组距力求“取整”。 ②直方图中小长方形的面积表示相应各组的频率,小长方形的面积之和为1。 ③频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。

统计和概率知识点总结

数据的收集、整理与描述 1、全面调查:考察全体对象的调查方式叫做全面调查。 2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。 3、总体:要考察的全体对象称为总体。 4、个体:组成总体的每一个考察对象称为个体。 5、样本:被抽取的所有个体组成一个样本。 6、样本容量:样本中个体的数目称为样本容量。 7、样本平均数:样本中所有个体的平均数叫做样本平均数。 8、总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。 9、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。 10、频率:频数与数据总数的比为频率。 11、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。 数据的分析 1、平均数:一般地,如果有n 个数 ,,,,21n x x x 那么,)(121n x x x n x +++= 叫做这n 个数的平均数,x 读作“x 拔”。 2、加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次 (这里n f f f k =++ 21)。那么,根据平均数的定义,这n 个数的平均数可以表示为 n f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。 3、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。 4、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode )。 5、极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。 6、在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

相关主题