搜档网
当前位置:搜档网 › 尼龙工程材料的改性.

尼龙工程材料的改性.

尼龙工程材料的改性.
尼龙工程材料的改性.

尼龙工程材料的改性

摘要:

尼龙66是由Du pont公司于1935年研制成功的,1939年实现工业化,1956年开始作为工程塑料使用。它是国际上产量最大,应用最广的工程塑料之一,也是我国主要的尼龙产品。尼龙66优越的力学性能、耐磨性、自润滑性、耐腐蚀性等使其在汽车部件、机械部件、电子电器、胶粘剂以及包装材料及领域得到了广泛的应用。但尼龙66在使用过程中还存在许多不足之处,如成型周期长、脱模性能差、尺寸不稳定、易脆断、耐热性差,还有不透明性、溶解性差等。因此对尼龙66的改性受到人们的广泛关注。国内外对尼龙改性多集中在共混、填充、共缩聚、接枝共聚等技术领域。

1.尼龙改性的研究进展

对尼龙66的改性主要有接枝共聚、共混、增强和添加助剂等方法,使其向多功能方向发展。本实验主要从快速成型和缩短成型周期的角度出发来改善尼龙66的综合性能,并使其得到更广泛的应用。

1.1共混改性

在尼龙改性研究中,高分子合金是最常用的一种手段。其中尼龙合金在所有工程塑料合金中发展最快,其原因是与周期长、投资大的新PA基础品种的开发相比, 尼龙合金的工艺简单、成本低、使用性能良好,且能满足不同用户对多元化、高性能化和功能化的要求。国外各大公司均十分重视尼龙合金的开发,很多产品已经商品化并具有一定市场规模。就尼龙合金而言,主要的研究集中在以下几个方面。1.1.1尼龙与聚烯烃(PO)共混改性

聚酰胺(PA)和聚丙烯(PP)是一对性能不同且使用场合也不一样的聚合物,但通过熔融混合工艺可以克服两者的固有缺点,取其各自的特点,得到所需性能的合金材料。此类合金可以提高尼龙在低温、干态下的冲击强度和降低吸湿性,特别使尼龙与含有烃基的烯烃弹性体或弹性体接枝共聚物等组成的共混合金可以得到超韧性的尼龙。

在极性的聚酰胺树脂和非极性的聚烯烃树脂共混改性的时候,最重要的一个问题是两者之间的相容性。PA 和PO 是一对热力学不相容体系,该共混物呈现相分离的双相结构。根据聚合物共混理论,理想的体系应该是两组分部分既相容,又各自成相,相间存在一界面层,在层中两种聚合物的分子链相互扩散,有明显的浓度梯度。通过增大共混组分间的相容性,进而增强扩散,使相界面弥散,界面层厚度加大,是获得综合性能优异共混物的重要条件。

顾书英等[1]用熔融接枝法制备了马来酸酐改性聚丙烯(PP-g-MAH),研究了引发剂用量对接枝过程的影响及改性 PP 与 PA 66共混物的性能。结果表明:改性 PP 与PA 66的相容性很好,从而大大提高了PA66的冲击强度,降低了PA66的吸水性,所以用PP-g-MAH改性PA 66可以得到综合性能优良的聚合物合金。

杨明山[2]系统地研究了尼龙6与化学改性 PP 共混物的改性工艺、组成与性能的关系。实验结果表明,马来酸酐接枝改性 PP 对尼龙6有较好的改性作用,其中接枝率2 3%的改性PP 改性作用最好。在尼龙6中加入改性 PP 后,冲击强度得到提高,吸湿性大大降低。当尼龙6与改性PP 共混比在60∶40~80∶20之间时,可获得综合性能优异的共混材料。特别重要的是在共混物中含30%左右改性PP时,可获得超韧性材料。

冯绍华等[3]采用聚烯烃(PO)与马来酸酐接枝物(PO-g-MAH)作为相容剂,讨论了PO-g-MAH对PO/PA及PO/ PO-g-MAH/PA6体系的物理机械性能的影响。结果表明,相容剂对PO/PA6共混体系具有较好的增容作用,提高冲击强度、降低了吸水性、促进分散相细化、提高了界面的键合力、增加了PA6基体的粘度,改善了PA6的加工性。TEM和SEM对共混体系的形态分析发现,PO接枝物改善了PO在PA中的分散相,分散均匀性提高,界面厚度增加,粘附性变高。

目前PA/PP共混体系主要采用PP与马来酸酐的接枝共聚物(PO-g-MAH)来实现增容,但是近些年的研究发现, PO-g-MAH增容体系的韧性大多低于纯的PA,而PA/ PP-g-MAH体系的冲击强度都高于纯PA,近期PA/ PP合金的研究主要集中在相容剂研究上。衣康酸接枝PP增容的PA/ PP合金在适宜配比下,其冲击韧性高于纯PA。由于马来酸酐的毒性较大,沸点较低(202℃)且易升华,熔融接枝时易挥发,损伤人的眼睛等器官,造成操作困难,使得MAH的应用存在一定的局限性。所以,寻找合适的相容剂是尼龙合金乃至聚合物合金制备的一个瓶颈问题,共混体系中相容性的改善则可明显地使材料获得更优异的综合性能。

1.1.2 尼龙与弹性体共混改性

张翠兰[4]采用马来酸酐熔融接枝低密度聚乙烯(LDPE)和乙丙橡胶(EPR),然后再与PA66进行共混的改性方法,着重研究了工艺配方及影响冲击强度的因素。解决了PE/EPR与PA66相容性差的问题,继而大幅度地提高了PA66的冲击强度。当共混物中EPR-g-MAH为9%,PE-g-MAH为30%时,共混材料的冲击强度是PA66的335倍,得到韧性较高的PA66/(PE/EPR)-g-MAH共混材料,提高了制品的综合性能,降低了成本,扩大了应用范围。Wllis等人还采用了(乙烯/甲基丙烯酸/丙烯酸丁酯)共聚物对

PA66/PP共混体系增容,也有一定的增容效果[5]。Holsti 等人用SEBS-g-MA 为PA/PP 增容剂也有一定的效果[6]。熊茂林等[7]以甲基丙烯酸缩水甘油酯为接枝单体、过氧化二异丙苯为引发剂对三元乙丙橡胶(EPDM)进行熔融接枝。用FTIR仪对接枝产物

进行了表征,分析测试了共混硫化胶的力学性能和微观结构。结果表明,随着共混体系中接枝EPDM用量的增加,EPDM与尼龙树脂的相容性不断改善,尼龙颗粒作为分散相在EPDM中分散得更加均匀和细致化,共混硫化胶的力学性能得到进一步提高。尼龙树脂原位生成的短纤维可明显提高共混硫化胶的撕裂强度,同时使其保持了弹性体伸长率高的特性[8]。

1.1.3 尼龙与工程塑料的共混改性

1.1.3.1PA/ABS

PA6与ABS是不相容的体系,为了改善其相容性,可用接枝法将MAH接枝在ABS 上,制得带有羧酸官能团的接枝共聚物(ABS-g-MAH),然后将ABS-g-MAH加入

PA6/ABS中,或直接加入到PA6中,或加入第三组分,如苯乙烯马来酸酐共聚物(SMAH)、线性环氧树脂(Bendfaste)等作相容剂。选择合适的橡胶相的ABS[9]是增加PA6韧性的关键,一般宜用橡胶含量高、苯乙烯含量低的品种。清华大学[10]研制的PA/ABS-g-MAH 弹性体M-g-MAH体系在常温下冲击强度超过900J/m,干态时冲击强度达到700 J/m。尼龙 6与ABS的另一种重要增容剂是苯乙烯一马来酸酐无规共聚物(SMA),添加SMA后的尼龙 6/ABS合金冲击强度可达1140 J/m [11]。

1.1.3.2PA/UHMWPE

吉林工业大学中科院长春应化所[12]共同对PA6/UHMWPE -g-MAH共混物进行研究,发现在熔融共混过程中,PA6和HDPE-g-MAH发生化学反应,生成的接枝共聚物对PA6/UHMWPE系有增容作用,共混物的分散性和界面形态以及力学性能明显改善。DSC分析表明,HDPE-g-MAH使两相间的相互作用增强,对两组分的熔融结晶产生较大的影响, SEM分析表明,相容剂使UHMWPE 分散相颗粒尺寸明显减小(约为2~4μm),较均匀地分散在基体中。

1.1.4IPN尼龙合金

利用IPN技术制备的尼龙与有机硅的掺混物,是在尼龙熔融成型中与有机硅发生交联反应,尼龙的结晶相网与有机硅的交联网形成相互贯穿的网络。这类掺混物的吸水性、尺寸稳定性和耐摩擦性可提高[13]。以尼龙 66和尼龙 12为主的IPN尼龙,比一般尼龙合金具有更高的冲击韧性和耐热性。一种商品名为Rimplaste的超高分子量的有机硅尼龙合金,此合金吸水率低,尺寸稳定性好,耐磨性优良,而且还可以加入玻纤或其他的热塑性塑料如聚四氟乙烯进一步提高其耐磨性。

大日本油墨化学公司研制生产了PIC-PPS-PN系列产品,具有140~170℃的长期耐热性能、较好的刚性和成本低的特点。涂开熙等人[14]利用接枝反应制成的带官能团的接枝GP作相容剂,使PPS与PA66的共混物综合性能有了提高,特别是缺口冲击强度提高幅度更大,还使PA 66的吸水率大大下降,且具有很好的耐磨性。

1.1.5各种尼龙之间的共混改性

为了获得高性能价格比的材料,拓宽尼龙材料用途,不同的尼龙品种之间可以通过共混平衡性能。PA46为高极性胺基基团,其结构内分子链相互缠结,与PA66相近。其冲击强度高、刚性高、耐疲劳、耐磨耗,内润滑性好,单位强度可与金属相当。吸水率低于PA6、PA66,因而尺寸稳定性好,制品精度高[15]。日本合成橡胶公司将质量比为80:20的PA46与PA6进行共混,冲击强度可高达100 J/m [16]。PA11和PA12是由单一长链单体缩聚而成的高聚物,其韧性极高,常温下缺口冲击不断。PA11分子中甲基链较长,具有优良的物理力学性能、优异的尺寸稳定性、良好的绝缘性、较强的可塑性。为了增加PA11/PA6共混物中两相的相容性,提高其力学性能,实验[17]采用添加树形分子作为相容剂。结果发现,共混物的拉伸强度和断裂伸长率的大幅度提高,缺口冲击强度有所提高,添加量为0 25%时可达最大值,并随着树形分子含量的进一步提高,缺口冲击强度尚有提高的趋势。目前国内有关各种尼龙之间共混的研究不是很多,我们应在这方面给予更多的关注[18]。

1.2填充改性

尼龙采用矿物质、各种纤维等无机物掺混以及纳米技术对塑料改性是目前的一种有效手段。虽然无机物对PA增韧的效果可能不如用弹性体增韧的效果好,但其在改善PA韧性的同时也改善PA的拉伸强度。

1.2.1 纤维及颗粒增强

尼龙碳纤维(CF)具有质轻,拉伸强度高,耐腐蚀等特点。碳纤维增强PA6复合材料具有更优异的综合性能,因而碳纤维增强尼龙材料近些年发展很快。碳纤维的加入将影响PA6的结晶行为[19]。对高含量玻璃纤维PA6复合材料结晶动力学的研究表明,AvrMi指数n值强烈依赖于结晶温度,而纯PA6的n值基本不随结晶温度变化而变化。吉林化学工业公司研究院[11]将处理的碳纤维与PA66共混,制得PA66/CF共混物。当CF含量为20%(质量份)时,PA66的冲击强度和拉伸强度都提高2倍,硬度提高1倍以上。

王庭慰等[20]采用硅烷类偶联剂和白油处理云母,填充在尼龙6中表现出良好的力学性能。通过对偶联剂种类、用量、云母细度,用量和填料种类等变量的研究,发现改性尼龙力学性能的变化规律。通过4种不同偶联剂对云母的作用,表明硅烷类偶联剂的偶联效果最佳,当云母填充含量为20%时,改性PA6具有较好的力学性能,增强后PA6的拉伸强度提高20%,弯曲强度也有所改善,热变形温度得到明显提高。这是因为填料云母本身耐热性能好,云母鳞片在一个平面上可以自由弯曲,弯曲模量高;但缺口冲击强度和熔体流动速率随着云母含量的增加而有所下降,这是由于无机填料云母的加入使材料的韧性下降,体系粘度增加。改性材料的微观结构分析说明,用KH 570偶联剂处理过的云母鳞片的边缘与尼龙基体结合得很好,可看出云母鳞片状结构均匀地分散在机体中间,在界面处没有明显的界面线。

1.2.2 晶须增强

尼龙近来随着晶须价格的降低,它在工程塑料的填充改性中开始占有越来越重要的地位。由于晶须本身结构纤细,且具有强度高、模量高等优异的力学性能,加入树脂或者合金能均匀分散,起到骨架作用,形成聚合物纤维复合材料。晶须的存在能够发展定向结构,但又不产生各向异性,可减少缺陷形成,有效地传递应力,阻止裂纹扩展,使聚合物内聚强度增大,减少薄弱环节,显著提高机械强度。

1.2.3纳米改性尼龙

采用无机填料填充改性可降低成本,但研究结果表明,在尼龙66中加入刚性粒子时,通常在提高材料刚性的同时,降低了材料的韧性,填充量越高,其作用越显著。近年来,聚合物基有机/无机纳米复合材料作为材料科学的一支新秀,已引起人们的广泛关注。这类材料具有有机和无机材料的特点,并通过两者之间的耦合作用产生出许多优异的性质,有着广阔的发展前景,是探索高性能复合材料的一条重要途径。纳米材料是指平均粒径在纳米量级(1~100nm)范围内固体材料的总称。用纳米材料改性聚合物是近几年发展的一项新技术,特别是纳米层状硅酸盐蒙脱土更是得到广泛研究和应用。加入这种材料可以改善聚合物的热学性能、模量、阻燃性能以及对于气体和水的阻隔性能。与传统的聚合物增强增韧改性方法相比,纳米材料不但能全面改善聚合物的综合性能,还能赋予其独特的性能,为聚合物的增韧增强改性增添了新的途径。

赵竹第等[21]人比较了处理与未处理蒙脱土填充尼龙6复合材料的力学性质随蒙脱土含量的变化。在给定的蒙脱土含量范围内,经11 氨基酸处理的蒙脱土填入到复合材料的基体中可以明显地促进这种材料的力学性质。这些力学性质的改善可以归因于尼龙6与蒙脱土之间形成的良好界面粘结。蒙脱土与尼龙6分子间的连接起到了类似于交联点的作用。当复合材料中处理蒙脱土含量为5%时,断裂伸长率却骤增到147%,是相同含量未处理蒙脱土复合材料的8倍。可以预期,如果蒙脱土的硅酸盐片层都被解离为更细的纳米片层而均匀地分散到尼龙6基体中,并和尼龙6分子实行界面偶联,这种材料的力学性质必将会有更大幅度的提高。

郝向阳等[22]用4种插层剂制备了有机改性蒙脱土(MMT),将PA6与改性MMT熔融共混制成纳米塑料,用IR、XRD和透射电镜表征了结构,观察到MMT/PA6纳米塑料的无熔滴等阻燃特性。通过改性纳米塑料性能的研究表明:质量分数为6%的MMT 能提高PA6的LOI值,MMT1831质量分数为3%时弯曲模量提高57 1%,MMT1831质量分数为5%时弯曲强度提高42 4%;MMT与常规阻燃剂之间有力学协效作用和阻燃协效作用,能同时提高PA6的力学性能和阻燃性能。

目前对于纳米改性单一组份聚合物的研究已经开展得非常广泛,但是在塑料合金中的应用并未见到太多报道。Xiaohui Liu [23]等为解决纳米尼龙复合材料的脆性

不足,突出表现在冲击强度有所下降的问题,研制了PA6 CN/PP-g-MAH共混合金。结果表明,与PA6 CN相比较,在10%~20%填充比例的合金中, PP-g-MAH以小于1μm的粒径在合金中良好分散,使其在保持较高硬度的同时合金材料的缺口冲击强度有较大提高,说明材料的韧性得到很大的改善。同时,填充5%纳米蒙脱土的尼龙6复合材料的吸水性降低25%,使材料在潮湿条件下的尺寸稳定性良好[8]。

1.3 共缩聚改性尼龙

将不同的尼龙通过共缩聚,可获得综合性能优良的尼龙制品。根据所得共聚物结构的不同,可将改性工艺分为:无规共聚、嵌段/短嵌段共聚、接枝共聚以及交替共聚等。目前,尼龙的无规共聚改性研究比较成熟,有些产品已经实现了工业化生产,如利用无规共聚得到的透明尼龙已广泛应用于精密光学仪器、观察镜、仪表盘及体育器材等诸多领域,法国和日本分别利用无规共聚合成工艺开发出了聚(庚二胺-3-叔丁基己二酸)及聚(间苯二酸2,5-二甲基己二胺)等透明尼龙。它们的相同之处就在于都是在共聚中引入含侧链或环结构的单体,从而破坏分子链的规整性,大大降低氢键分率和结晶度,从而获得透明的制品[24,25]。而嵌段、接枝共聚改性仍处于实验室阶段[3]。

PA作为工程材料的一大优点在于它不溶于大多数非极性溶剂,但为了提高其加工灵活性,拓宽其应用范围,人们利用无规共聚原理,研制了水溶和醇溶性尼龙。Swarts 等人在丁二酸、亚氨基二乙酸、乙二酸四乙胺与二亚乙基三胺、乙撑二(3-氨基丙胺)的共聚体系中,引入聚环氧乙烷和聚乙烯醇的衍生物来改善其水溶性,分子中大量的氨基和亚氨基能与药物分子形成共价键而成为高效的药物载体[26]。

盖凤云等在PA 6/PA 66二元共聚酰胺的研究中发现,PA6/PA66配比在0/50-

75/25之间时,体系为醇溶性,减小己内酰胺的用量将制得非醇溶性材料[27]。嵌段与接枝共聚合通过调节各链段的组成、长度、嵌段数目、接枝率及聚集结构来调整产品性能,以满足不同场合的需要,在高性能PA的合成中常用此法。

Raevskaya 等人通过熔融共混制得的PA6-b-12聚合物,由于PA12柔性好,结晶度低,从而提高了体系的冲击性能[28]。而Wang 等人对尼龙6与芳香族尼龙的嵌段共聚体系研究则表明:有嵌段组分的材料,其T g与T m均增大,热稳定性提高,力学性能增强,并且多嵌段体系比三嵌段体系的改性效果好。这可能是由于多嵌段的存在导致了新的晶型的产生[29]。在接枝共聚酰胺的合成中,找到合适的接枝点,可以取得比较理想的改性效果。如Aharoni 等人在芳环上所引入的硝基或胺胺与二亚乙基三胺、乙撑二(3-氨基丙胺)的共聚体系中,引入聚环氧乙烷和聚乙烯醇的衍生物来改善其水溶性,分子中大量的氨基和亚氨基能与药物分子形成共价键而成为高效的药物载体[30]。

盖凤云等在PA6/PA66二元共聚酰胺的研究中发现,PA6/PA66配比在0/50-75/25之间时,体系为醇溶性,减小己内酰胺的用量将制得非醇溶性材料。嵌段与接枝共聚

合通过调节各链段的组成、长度、嵌段数目、接枝率及聚集结构来调整产品性能,以满足不同场合的需要,在高性能PA的合成中常用此法。Raevskaya等人通过熔融共混制得的PA6-b-12聚合物,由于PA12柔性好,结晶度低,从而提高了体系的冲击性能。而Wang等人对尼龙6与芳香族尼龙的嵌段共聚体系研究则表明:有嵌段组分的材料,其T g与T m均增大,热稳定性提高,力学性能增强,并且多嵌段体系比三嵌段体系的改性效果好。这可能是由于多嵌段的存在导致了新的晶型的产生[31]。在接枝共聚酰胺的合成中,找到合适的接枝点,可以取得比较理想的改性效果。如Aharoni 等人在芳环上所引入的硝基或胺。

1.4 接枝共聚改性

尼龙66主链中的某一原子的氢取代基,在受到自由基、紫外光、高能射线等激发时,很容易发生电子或质子转移而形成大分子侧基自由基,改性的乙烯基单体就以此自由基为初级自由基进行引发聚合,从而在PA66侧链上形成该单体聚合物的长链,改性后的聚合物就叫接枝共聚物。由于PA66主链中引入了新的大分子侧基,其结构变化较大,分子间因大侧链的存在不能相互接近,原有的氢键受到削弱,分子间作用力降低, 结晶度下降,因而其性能受到较大影响.如果选择的单体合适,控制的接枝率和接枝效益恰当,那么就可以得到综合性能较好的接枝PA66。

Hamid 等人[32]针对以往液晶高分子表面处理方法的缺陷提出了一种可以工业化的工艺方法,所选择的物系是Kevlar 和PA66, Kevlar 的化学活性很低,经实验发现用冷态的氧等离子气体能提高其化学活性,而后将其浸渍于己二醇和浓硫酸的混合液中,在Kevlar的表面将发生化学反应生成羧基,将上面处理过的纤维牵引着分别通过己二酰氯溶液和己二胺溶液,在Kevlar表面将随机接枝上PA66(M r=34000),通过力学测试发现其性能获得明显改善。

Varma等人[33]研究了Ce4+引发丙烯腈、丙烯酰胺分别与尼龙纤维的接枝共聚合反应;A.Hebeish 等人[34]研究了硫脲/溴酸钾引发甲基丙烯酸对尼龙66纤维的接枝,但接枝率低,不超过70%。

王玉东等人以DMA/CuSO4、DMA/Cu (NO3)2为引发体系研究了MMA与尼龙66纤维的接枝;赵清香等人以KMnO4/H2SO4为引发体系研究了丙烯酸与尼龙66纤维的接枝共聚合反应,并对其反应机理进行了探讨。

Hoerl Hans heinrich 等人[35]研究了NaClO引发甲基丙烯酸羟乙酯对尼龙66的表面接枝,接枝程度达100%~150%.Gopalana 等人以过硫酸钾/抗坏血酸为引发剂,把聚丙烯腈对尼龙6和尼龙66的接枝共聚合反应做了比较研究,相同条件下的接枝率比较如下:聚酯>尼龙6≥尼龙66;Lin等[36]为提高尼龙66的抗热性和简化其抽丝过程,用聚六甲撑对苯二酰胺对尼龙66进行改性,改性后的尼龙66熔点、物理性能得到了提高,但其玻璃化温度未受影响。

刘英海等人[37]研究了用二过碘酸合银(Ⅲ)钾引发甲基丙烯酸对尼龙66的接

枝,Ag(Ⅲ)对该接枝共聚反应来说是一个有效的氧化还原引发剂,研究了引发剂、单体浓度、温度对反应的影响,指出其电子转移历程分为两个阶段.在PA66大分子上利用化学方法接枝烯烃类单体,其目的是为了改善尼龙66的染色性和吸水性,并赋予接枝物某些特殊性能而作为功能材料使用.如上所述接枝方法很多,但主要有熔融法、溶液法和固相接枝法等.不同的方法采用合适的引发剂、催化剂和表面活性剂等,以提高产物接枝率,获得性能优良的改性PA66.

2成核剂对尼龙结构与性能影响的研究进展

本实验主要通过向高聚物基体中加入成核剂这种重要的聚合物物理改性方法了来实现快速成型的。高效成核剂的用量很少就能有效改善材料性能,而对化学结构影响很小,克服了普通共混及化学改性的不足[38]。所以加成核剂是工业上常用的改性方法。国内外对聚丙烯、聚酯等结晶较慢的高聚物的成核剂研究很多,已取得了大量的研究成果。对结晶较快的尼龙类高聚物的成核剂研究相对较少。

2.1尼龙成核剂的种类及用量

2.1.1成核剂的种类

聚合物常用的成核剂一般有以下几种[39]:

(1)粒径小于40μm的无机粉末,如滑石粉、碳酸钙、氧化铝和硅石等;

(2)元素周期表第Ⅱ、Ⅲ主族的金属元素或过渡金属元素的氟化物,如氟化镉、氟化锌等;

(3)苯甲酸或苯甲酸的碱金属、碱土金属或铵盐,脂肪羧酸金属皂、山梨醇苄叉衍生物、芳香族羧酸金属皂和有机磷酸盐;

(4)比树脂熔点高的结晶性树脂。

2.1.2 成核剂用量

一般无机类和有机类成核剂的最佳用量为0.001~5%[40],而高分子类成核剂的最佳用量为5~500ppm[41]。低于此用量时起不到成核效果,高于此用量时其结晶促进作用不提高,反而可能损害制品的性能,从实际应用上讲也不经济。有文献[42]对用尼龙66和半芳香尼龙的共聚物作为纺丝用尼龙成核剂时的用量作了调查,其结果如图1-1所示。由图1-1可见,当成核剂含量在0.005~0.5%之间时,结晶温度随成核剂含量增加升高很快。结晶温度升高说明尼龙丝的结晶速率加快,由此可知在此温度区间结晶速率随成核剂含量的增加而增大。而当含量低于0.005%时,几乎不起成核作用,含量高于0.05%时,结晶温度增加缓慢,即结晶速率变化不大。

图1 成核剂用量与结晶温度关系

Fig.1 Plot of crystallization temperature versus dosage of nucleating agent

2.2 有效成核剂的表征[43]方法

聚合物的结晶过程可以在等温结晶条件下,也可以在非等温结晶条件下研究。而研究成核剂对聚合物结晶过程的影响的实验方法很多,有偏光显微镜 (PLM )法、扫描电子显微镜 (SEM )法、小角激光光散射 (SALS)法、差示扫描量热 (DSC)法、光谱法、膨胀法和解偏振光法等。尽管成核剂对聚合物结晶成核的促进作用有选择性,并非一种成核剂能不同程度促进所有的聚合物成核结晶,同时不同的成核剂对同一聚合物的成核结晶促进作用效果是不同的,但大致可以从以下几个方面来考察成核剂的有效性。

(1)结晶温度结晶温度越高,结晶峰越强,结晶能力越强。需要说明的是,用结晶温度的方法只能大致判断聚合物的整体结晶速率,并不能分辨成核剂的引入是促进聚合物结晶成核还是促进晶体生长。

(2)结晶峰半高宽非等温结晶峰高极大值的一半所对应的结晶峰的温度宽度,称为半高宽(D)。D值越小,表示结晶速率越快,球晶大小越均匀,分布越窄。

(3)结晶最快时间和半结晶时间从结晶开始,到达结晶速率最快时的时间称为结晶最快时间(t max)。该值越小,表明结晶速率越快。半结晶时间是结晶进行到总结晶量的一半时所需的时间,用t1/2表示。该值越小,也表明结晶速率越快。

(4)最快结晶速率结晶度随时间增长最快时的值((dx/dt)max)。值越大,结晶速率越快。

(5)结晶表面能和活化能成核剂使结晶表面能和结晶活化能降低的越多,聚

合物成核结晶越容易。

3. 工作思路

在上届同学实验基础上,选择了G23、G205、P1、MgO、CaF2和滑石粉六种不同的成核剂。将这几种成核剂与尼龙66粉料共混改性,通过DSC实验考察它们的对尼龙66结晶过程的影响,用偏光显微镜 (PLM )对它们的结晶形态进行考察。选出两种较有效的成核剂,分别考察不同含量和不同粒度成核剂对成核效果的影响。再分别选取不同样品在毛细管流变仪中测试成核剂对流变性能的影响,并用偏光显微镜(PLM )观察成核剂在样品中的分散结构,由此,筛选出不同成核剂的最佳用量和粒度。

4.结束语

由以上综述可以看出,国内外学者对尼龙改性进行了大量的研究,也获得了许多综合性能优良、加工性能好的产品。然而,聚酰胺带有极性较强的酰胺基团,与非极性的聚烯烃类弹性体共混时,两相之间的相容性较差,相分离现象严重,导致合金冲击强度下降,所以相容性问题的解决仍然是关键。性能更好的相容剂的开发研制成为合金性能提高的主要制约因素。合金只是作为改性树脂的一种手段,弥补合金制得后性能降低的研究还比较少。

参考文献:

[1] 顾书英,马广华,罗源.马来酸酐改性聚丙烯与尼龙66共混物的性能[J].塑料科技,2000,(4):1-4.

[2]杨明山.尼龙6与改性PP的共混研究[J].高分子材料科学与工程,1996,(12):86-89.

[3]冯绍华,王玲玲.聚烯烃相容剂改性尼龙6的研究[J].青岛化工学院学报,1999,(20):136-141

[4]张翠兰.MAH改性PE和EPR增韧PA 66的研究[J].辽阳石油化工高等专科学校学

报,2000,(16):23-25.

[5] Willis J M,Favis B D.Processing morphology relationship of compatibilized

polyolefin/polyamide blends[J].Polym Eng Sci,1988,(21):1416-1426.

[6] Lee J,de Dong,YangSeung Man.Effect of mixing procedure on properties of compatibilized

polypropylene/Nylon6 blends.[J].Polym Eng Sci,1995,35(23):1821-1833.

[7]熊茂林,马军,朱玉俊.三元乙丙橡胶与尼龙树脂的增容共混[J].合成橡胶工

业,2001,24(6):361-364.

[8] 杨宁,贵大勇,刘吉平.尼龙共混及填充改性的研究现状[J]. 塑料,2003,32卷(5):53-58.

[9]丁军高冲击强度ABSPA合金的制备[J] 石化技术与应用,2002,20(2)

[10]邱志勇、李松PAABS塑料合金的研制[J] 现代塑料加工应用,1996,8(1)

[11]Majumdar B,Keakkula H Paui D R.Polymer 1994.35:3164

[12]孙国恩、殷敬华 PA6/UHMWPE/HDPE -g-MAH共混物反应增容作用的研究[J] 高分子

材料科学与工程,2001,17(2)

[13]Kurauch T Ohta J.Mar Sci,1984,19:1699

[14]涂开熙、周健丽特种工程塑料合金PPS/PA66和PPS/PPO的性能与应用[J] 塑科科

技,1997,6:28.

[15]汪多仁尼龙 46的开发与应用展望[J] 化工新型材料,1997(8)

[16]JPO 967517[P]

[17] 吴彤、罗运军树形分子对PA11/PA6共混物性能的影响[J] 工程塑料应用

[18] 左建东,冯绍华,刘忠杰,黄昭阁,刘光烨. 尼龙的增韧耐磨共混改性[J] 塑料科技,2003(6)

[19] 林志勇,蒋婵杰,林金清,等.高含量碳纤维增强尼龙6等温结晶动力学的研究[J].塑料工

业,2000,9(5):27-29

[20]王庭慰,张军,邵英先.云母在尼龙6中的增强作用[J].中国塑料,2002,16(8):40-43.

[21]赵竹第,李强,欧玉春,等.尼龙6/蒙脱土纳米复合材料的制备、结构与力学性能研究[J].高

分子学报,1997,(5):519-523.

[22]郝向阳,刘吉平,冯顺山.插层剂对蒙脱土/PA6纳米塑料性能的影响[J].塑料工

业,2002,30(3):48-51.

[23] Xiaohu Liu,Qiuju Wu,Lars A,etal.Polypropylene grafted malei canhydride alloys [J].Polymer,

2001,42:8235-8239.

[24]法国专利,FR2202112.

[25]日本公开特许公报,JP96-208834.

[26]SWARTS J C,NEUSEW,PERLWITZ A G,etal.Angew Markromol Chem,1993,207

[27]盖凤云.工程塑料应用,1993,21(2):36.

[28]AHAEONISM. J. Appl polym Sci, 1994,53:1615.

[29]苏联专利,SU1527880.

[30]AHARONISM.J. Appl. polym Sci, 1994,53:1615.

[31] WANGHH,LINMF.J. Polym. Res, 1998,68(7):10301.

[32] Harmid S M,etal,[J],Polym Eng Sci,1996,36(6):778.

[33] Varma D S, etal,[J] Angwew Macromol Chem,1993,3281.

[34] Hebeishi A, etal,[J] J PolySci,1996,14(12):2895.

[35] Hoerl H H, etal,[J] GerD E Appl,1990,29:17.

[36] Lin W J,[J] Annu Tech Gonf-Sco Plast Eng ,1994,52(2):1514.

[37] 刘英海等,[J]河北大学学报,1997,17(3):30.

[38] 钱知勉, 等.塑料助剂手册, 上海:上海科技文献出版社, 1984.

[39]B.Π. 普里瓦尔科编. 聚合物物理化学手册, 第二卷, [乌克兰], 中国石化出版社, 1995, 1.

[40]Lysek Bruce A., et al. Non-Halogenated Polyamide Composition, WO 0 034 374 , June15,2000.

[41] Peter R. Thomas. Process For Spinning Polyamide Filaments Containing Nucleating Agents. US3585264, June15, 1971.

[42] Hori Hiroyuki, et al. Process for Crystal Nucleation of Crystalline Thermoplastic Resin and Crystalline Thermoplastic Resin Composition EP 0686 663 A1, Dec.13, 1995.

[43] 陈彦, 等. 聚合物结晶成核作用的表征方法的比较与研究. 高分子学报,1998,

(12):671~678.

改性增强尼龙6主要技术指标

改性增强尼龙6主要技术指标 弯曲强度(MPa)≥100 缺口冲击强度(kJ/m2)≥6.0 拉伸强度(MPa)≥70 压缩强度(MPa)≥78 相对密度≤1.22 熔融值的测定方法 一、目的: 区别热塑性塑料在熔融状态下的粘流特性。 二、定义: 熔体流动速率测定仪亦称熔融指数仪;是测定热塑性塑料在一定温度和负荷下,熔体每10分钟通过标准口模毛细管的质量或熔融体积。 三、操作环境、要求: 温度:10~30℃湿度:≤80%RH 四、仪器规格、测试范围: 1、温度控制范围:100-400℃ 2、波动:±0.1℃ 3、测定范围:0.031-1500g/10min 4、口模内径:Ф2.095±0.005mm、Ф1.180±0.010mm 5、料筒内径:Ф9.550±0.020mm 6、电源:AC220V 50Hz 5A

五、仪器介绍: 六、操作方法: 1、将口模与料杆装入料筒: 2、开启左侧电源开关,上显示器显示当前料筒实际温度,下显示器显示(上次)设置温度,并根据所设置的温度开始升温、控温,行程指示灯(25.4)亮(如图2);按行程键选择行程,仪器按上次设置的参数运行,参数设置方法如下: 按一下设置键,上显示器显示T,下显示器显示当前己设置温度值;如需修改按键,下显示器第一位灯闪,按▼键或▲键修改当前数值,使该位数值“+1”或“-1”,再按下显示器第二位灯闪,仍按▼键或▲键修改数值,直至修改完成依次按一下设置键与返回键,既可保存修改,并回到工作状态;依次按设置键可修改温度、日期、批号、负荷、密度、温度修正值(参数修改方法同上); 3、行程设置:在自动工作状态下的初始杠杆上翘时,自动行程自动设置在25.4,相应指示灯亮,按行程键,转换至6.35(相应灯亮),再按行程键,转至25.4。6.35或25.4(“1/4”或“1”)的选择依据参见表一。 MFR(g/min) 料杆移动距离(mm) 0.031~10 6.35( 1/4″) 10~1500 25.4( 1″) (表一)

尼龙工程材料的改性

尼龙工程材料的改性 摘要: 尼龙66是由Du pont公司于1935年研制成功的,1939年实现工业化,1956年开始作为工程塑料使用。它是国际上产量最大,应用最广的工程塑料之一,也是我国主要的尼龙产品。尼龙66优越的力学性能、耐磨性、自润滑性、耐腐蚀性等使其在汽车部件、机械部件、电子电器、胶粘剂以及包装材料及领域得到了广泛的应用。但尼龙66在使用过程中还存在许多不足之处,如成型周期长、脱模性能差、尺寸不稳定、易脆断、耐热性差,还有不透明性、溶解性差等。因此对尼龙66的改性受到人们的广泛关注。国内外对尼龙改性多集中在共混、填充、共缩聚、接枝共聚等技术领域。 1.尼龙改性的研究进展 对尼龙66的改性主要有接枝共聚、共混、增强和添加助剂等方法,使其向多功能方向发展。本实验主要从快速成型和缩短成型周期的角度出发来改善尼龙66的综合性能,并使其得到更广泛的应用。 1.1共混改性 在尼龙改性研究中,高分子合金是最常用的一种手段。其中尼龙合金在所有工程塑料合金中发展最快,其原因是与周期长、投资大的新PA基础品种的开发相比, 尼龙合金的工艺简单、成本低、使用性能良好,且能满足不同用户对多元化、高性能化和功能化的要求。国外各大公司均十分重视尼龙合金的开发,很多产品已经商品化并具有一定市场规模。就尼龙合金而言,主要的研究集中在以下几个方面。1.1.1尼龙与聚烯烃(PO)共混改性 聚酰胺(PA)和聚丙烯(PP)是一对性能不同且使用场合也不一样的聚合物,但通过熔融混合工艺可以克服两者的固有缺点,取其各自的特点,得到所需性能的合金材料。此类合金可以提高尼龙在低温、干态下的冲击强度和降低吸湿性,特别使尼龙与含有烃基的烯烃弹性体或弹性体接枝共聚物等组成的共混合金可以得到超韧性的尼龙。 在极性的聚酰胺树脂和非极性的聚烯烃树脂共混改性的时候,最重要的一个问题是两者之间的相容性。PA 和PO 是一对热力学不相容体系,该共混物呈现相分离的双相结构。根据聚合物共混理论,理想的体系应该是两组分部分既相容,又各自成相,相间存在一界面层,在层中两种聚合物的分子链相互扩散,有明显的浓度梯度。通过增大共混组分间的相容性,进而增强扩散,使相界面弥散,界面层厚度加大,是获得综合性能优异共混物的重要条件。

改性尼龙需要注意的问题点

聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。包括脂肪族PA,脂肪—芳香族PA和芳香族PA。其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。是美国著名化学家卡罗瑟斯和他的科研小组发明的。 尼龙中的主要品种是尼龙6和尼龙66,占绝对主导地位,其次是尼龙11,尼龙12,尼龙610,尼龙612,另外还有尼龙1010,尼龙46,尼龙7,尼龙9,尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。 尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。 尼龙[1],是聚酰胺纤维(锦纶)是一种说法. 可制成长纤或短纤。 尼龙是美国杰出的科学家卡罗瑟斯(Carothers)及其领导下的一个科研小组研制出来的,是世界上出现的第一种合成纤维。尼龙的出现使纺织品的面貌焕然一新,它的合成是合成纤维工业的重大突破,同时也是高分子化学的一个重要里程碑。 1928年,美国最大的化学工业公司——杜邦公司成立了基础化学研究所,年仅32岁的卡罗瑟斯博士受聘担任该所的负责人。他主要从事聚合反应方面的研究。他首先研究双官能团分子的缩聚反应,通过二元醇和二元羧酸的酯化缩合,合成长链的、相对分子质量高的聚酯。在不到两年的时间内,卡罗瑟斯在制备线型聚合物特别是聚酯方面,取得了重要的进展,将聚合物的相对分子质量提高到10 000~25 000,他把相对分子质量高于10 000的聚合物称为高聚物(Superpolymer)。1930年,卡罗瑟斯的助手发现,二元醇和二元羧酸通过缩聚反应制取的高聚酯,其熔融物能像制棉花糖那样抽出丝来,而且这种纤维状的细丝即使冷却后还能继续拉伸,拉伸长度可达到原来的几倍,经过冷却拉伸后纤维的强度、弹性、透明度和光泽度都大大增加。这种聚酯的奇特性质使他们预感到可能具有重大的商业价值,有可能用熔融的聚合物来纺制纤维。然而,继续研究表明,从聚酯得到纤维只具有理论上的意义。因为高聚酯在100 ℃以下即熔化,特别易溶于各种有机溶剂,只是在水中还稍稳定些,因此不适合用于纺织。 随后卡罗瑟斯又对一系列的聚酯和聚酰胺类化合物进行了深入的研究。经过多方对比,选定他在1935年2月28日首次由己二胺和己二酸合成出的聚酰胺66(第一个6表示二胺中的碳原子数,第二个6表示二酸中的碳原子数)。这种聚酰胺不溶于普通溶剂,熔点为263 ℃,高于通常使用的熨烫温度,拉制的纤维具有丝的外观和光泽,在结构和性质上也接近天然丝,其耐磨性和强度超过当时任何一种纤维。从其性质和制造成本综合考虑,在已知聚酰胺中它是最佳选择。接着,杜邦公司又解决了生产聚酰胺66原料的工业来源问题,1938年10月27日正式宣布世界上第一种合成纤维诞生了,并将聚酰胺66这种合成纤维命名为尼龙(Nylon)。尼龙后来在英语中成了“从煤、空气、水或其他物质合成的,具有耐磨性和柔韧性、类似蛋白质化学结构的所有聚酰胺的总称”。 聚酰胺(尼龙) 聚癸二酸癸二胺(尼龙1010) 聚十一酰胺(尼龙11) 聚十二酰胺(尼龙12) 聚己内酰胺(尼龙6) 聚癸二酰乙二胺(尼龙610) 聚十二烷二酰乙二胺(尼龙612) 聚己二酸己二胺(尼龙66) CAS编码:32131-17-2

尼龙的改性特性以及应用范围

本文摘自再生资源回收-变宝网(https://www.sodocs.net/doc/e915106201.html,)尼龙的改性特性以及应用范围 由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。 因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。主要在以下几方面进行改性: ①改善尼龙的吸水性,提高制品的尺寸稳定性。 ②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。 ③提高尼龙的机械强度,以达到金属材料的强度,取代金属 ④提高尼龙的抗低温性能,增强其对耐环境应变的能力。 ⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。 ⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。 ⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。 ⑧降低尼龙的成本,提高产品竞争力。

总之,通过上述改进,实现尼龙复合材料的高性能化与功能化,进而促进相关行业产品向高性能、高质量方向发展。 改性PA产品的最新发展 前面提到,玻璃纤维增强PA在20世纪50年代就有研究,但形成产业化是20世纪70年代,自1976年美国杜邦公司开发出超韧PA66后,各国大公司纷纷开发新的改性PA产品,美国、西欧、日本、荷兰、意大利等大力开发增强PA、阻燃PA、填充PA,大量的改性PA 投放市场。 20世纪80年代,相容剂技术开发成功,推动了PA合金的发展,世界各国相继开发出PA/PE、PA/PP、PA/ABS、PA/PC、PA/PBT、PA/PET、PA/PPO、PA/PPS、PA/I.CP(液晶高分子)、PA/PA等上千种合金,广泛用于汽车、机车、电子、电气械、纺织、体育用品、办公用品、家电部件等行业。 20世纪90年代,改性尼龙新品种不断增加,这个时期改性尼龙走向商品化,形成了新的产业,并得到了迅速发展,20世纪90年代末,世界尼龙合金产量达110万吨/年。 在产品开发方面,主要以高性能尼龙PPO/PA6,PPS/PA66、增韧尼龙、纳米尼龙、无卤阻燃尼龙为主导方向;在应用方面,汽车部件、电器部件开发取得了重大进展,如汽车进气歧管用高流动改性尼龙已经商品化,这种结构复杂的部件的塑料化,除在应用方面具有重大意义外,更重要的是延长了部件的寿命,促进了工程塑料加工技术的发展。 改性尼龙发展的趋势 尼龙作为工程塑料中最大最重要的品种,具有很强的生命力,主要在于它改性后实现高性能化,其次是汽车、电器、通讯、电子、机械等产业自身对产品高性能的要求越来越强烈,相关产业的飞速发展,促进了工程塑料高性能化的进程,改性尼龙未来发展趋势如下。

尼龙改性中使用的相容剂和增韧剂

尼龙改性中主要可以使用的相容剂为POE接枝相容剂ST-2,另外还有EPDM接枝相容剂ST-18,我们现在生产得最多的是POE 接枝相容剂ST-2,在玻纤增强尼龙、防火尼龙、玻纤防火增强尼龙以及增韧尼龙中,我们都建议大家使用ST-2,因为POE接枝相容剂ST-2在尼龙中的增韧效果比较理想,ST-2在尼龙中的作用主要是提高尼龙的韧性及冲击强度。在玻纤增强尼龙、防火尼龙、玻纤防火增强尼龙中,建议大家使用ST-2的添加量为5-10%时较为理想,添加量太少,可能增韧效果达不到要求,添加量太多,可能对尼龙的防火、拉伸强度以及耐温会有一定的影响,任何事物只能是量力而为,相容剂的使用亦是如此。而在上述尼龙改性中的一些特殊情况,如用户只要求冲击强度达到一定高度而对尼龙耐温和拉伸强度没有什么要求,则ST-2的使用量可以在10%以上。另外ST-2的一个大的用途是在超韧尼龙和超韧耐寒尼龙中使用,这时ST-2的建议使用量为15-20%,甚至在一些高要求的情况中,ST-2的使用量需达25%以上。ST-2在尼龙中使用时,尼龙最高缺口冲击强度可达120KJ/ m2,耐寒尼龙最低温度可做到零下35℃,另外在超韧耐寒尼龙改性中,对尼龙的粘度的选择亦有较高要求,这一点是许多尼龙改性工作者所不注意的,在超韧耐寒尼龙改性中,要求尼龙粘度达2.8以上,否则,相容剂加得再多,冲击强度也难提高。我公司ST-2在PBT改性中亦能起到很好的相容增韧作用,用户如作高韧性要求的PBT改性产品,ST-2 一定会让你得到意想不到的帮助。 EPDM接枝相容剂ST-18主要用于超耐寒尼龙中,如要求尼龙的耐寒在-35℃到-40℃的情况,就需用它。

尼龙材料相关整理

1.聚酰胺特性 聚酰胺(PA)具有品种多、产量大、应用广泛的特点,是五大工程塑料之一。但是,也由于聚酰胺品种繁多,在应用领域方面有些产品具有相似性,有些又有相当大的差别,需要仔细区分。 聚酰胺(Polyamide)俗称尼龙,是分子主链上含有重复酰胺基团-[-NHCO-]-的热塑性树脂总称。 尼龙中的主要品种是PA6和PA66,占绝对主导地位;其次是PA11、PA12、PA610、PA612,另外还有PA1010、PA46、PA7、PA9、PA13。新品种有尼龙6I、尼龙9T、特殊尼龙MXD6(阻隔性树脂)等;改性品种包括:增强尼龙、单体浇铸尼龙(MC尼龙)、反应注射成型(RIM)尼龙、芳香族尼龙、透明尼龙、高抗冲(超韧)尼龙、电镀尼龙、导电尼龙、阻燃尼龙、尼龙与其他聚合物共混物和合金等。 1.1.性能指标 尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般为15000-30000。尼龙具有很高的机械强度,软化点高,耐热,摩擦系数低,耐磨损,具有自润滑性、吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂;电绝缘性好,有自熄性,无毒,无臭,耐候性好等。尼龙与玻璃纤维亲合性十分良好,因而容易增强。但是尼龙染色性差,不易着色。尼龙的吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。其中尼龙66的硬度、刚性最高,但韧性最差。尼龙的燃烧性为UL94V2级,氧指数为24-28。尼龙的分解温度﹥299℃,在449℃-499℃会发生自燃。尼

龙的熔体流动性好,故制品壁厚可小到1mm。 1.2.性能特点与用途 1.2.1.PA6 物性:乳白色或微黄色透明到不透明角质状结晶性聚合物;可自由着色,韧性、耐磨性、自润滑性好、刚性小、耐低温,耐细菌、能慢燃,离火慢熄,有滴落、起泡现象。最高使用温度可达180℃,加抗冲改性剂后会降至160℃;用15%-50%玻纤增强,可提高至199℃,无机填充PA能提高其热变形温度。 加工:成型加工性极好,可注塑、吹塑、浇塑、喷涂、粉末成型、机加工、焊接、粘接。 PA6是吸水率最高的PA,尺寸稳定性差,并影响电性能(击穿电压)。 应用:轴承、齿轮、凸轮、滚子、滑轮、辊轴、螺钉、螺帽、垫片、高压油管、储油容器等。 1.2.2.PA66 物性:半透明或不透明的乳白色结晶聚合物,受紫外光照射会发紫白色或蓝白色光,机械强度较高,耐应力开裂性好,是耐磨性最好的PA,自润滑性优良,仅次于聚四氟乙烯和聚甲醛,耐热性也较好,属自熄性材料,化学稳定性好,尤其耐油性极佳,但易溶于苯酚,甲酸等极性溶剂,加碳黑可提高耐候性;吸水性大,因而尺寸稳定性差。 加工:成型加工性好,可用于注塑、挤出、吹塑、喷涂、浇铸成型、机械加工、焊接、粘接。

尼龙66改性的最新研究进展

xx66改性的最新进展 第一章诸论 1.1xx66的概述 尼龙66是一种高档热塑性树脂,是制造化学纤维和工程塑料优良的聚合材料。它是高级合成纤维的原料,可广泛用于制作针织品、轮胎帘子线、滤布、绳索、渔网等。经过加工还可以制成弹力尼龙,更适合于生产民用仿真丝制品、泳衣、球拍及高级地毯等。尼龙66还是工程塑料的主要原料,用于生产机械零件,如齿轮润滑轴承等。也可以代替有色金属材料作机器的外壳。由于用它制成的工程塑料具有比重小,化学性能稳定,机械性能良好,电绝缘性能优越,易加工成型等众多优点,因此,被广泛应用于汽车、电子电器、机械仪器仪表等工业领域,其后续加工前景广阔。 尼龙66由己二胺和己二酸缩合制得,常见的尼龙是一种结晶性高分子,不同牌号、不同测试方法报道的尼龙66的熔点在250-271℃之间。由于尼龙66无定型部分的酞胺基易与水分子结合,常温下尼龙66的吸水率较高。与一般塑料相比,尼龙66的冲击韧性大,耐磨性优良,摩擦噪音小,另外,尼龙66对烃类溶剂,特别是汽油和润滑油的耐受力较强。尼龙66的90%应用于工业制品领域。 其中,尼龙在汽车工业中的用量占总用量的37%,其用途包括储油槽、汽缸盖、散热器、油箱、水箱、水泵叶轮、车轮盖、进气管、手柄、齿轮、轴承、轴瓦、外板、接线柱等。尼龙66的第二大应用领域是电子电器工业,消耗量占总量的22%,其用途包括电器外壳、各类插件、接线柱等。此外尼龙66也被广泛应用于文化办公用品、医疗卫生用品、工具、玩具等场合。 我国尼龙66的生产起步于60年代中期。1964年辽阳石油化纤公司引进了法国生产技术,建设了年产 4.6万吨的生产装置。1994年,我国第二个尼龙“生产装置开工建设,该装置引进日本的技术,年产尼龙66为

增强增韧尼龙66汽车专用料的性能研究

新技术与产品开发 增强增韧尼龙66汽车专用料的性能研究 Ξ 崔 欣1,王静江2 (11中国石油辽阳石化分公司研究院,辽宁辽阳111003;21中国石油辽阳石油化纤公司技术中心,辽宁辽阳111003) 摘要:采用双螺杆挤出加工工艺,对增强增韧尼龙66材料综合性能进行了研究;比较了尼龙品种、增韧剂、玻璃纤维及助剂对内饰件材料的改性效果;并分析了生产工艺对材料性能的影响。确定了材料的最佳工艺参数和配方,并成功应用在出口汽车座椅滑块制品上。 关键词:尼龙;玻璃纤维;增韧剂;结构;性能;应用 中图分类号:T Q32316 文献标识码:B 文章编号:1005-5770(2007)04-0062-04 Study of Property of R einforced and Toughened N ylon 66 Special Compound for Auto I ndustry C UI X in 1,W ANGJing 2jiang 2 (11Research Institute of Liaoyang Petrochemical Branch ,PetroChina ,Liaoyang 111003,China ;21T echnical Center of Liaoyang Petrochemical Fiber C o.,PetroChina ,Liaoyang 111003,China ) Abstract :The overall property of rein forced and toughened nylon 66com pound was studied by means of extru 2sion technology on twin 2screw extruder 1The effect of the variety of nylon and the effects of toughener ,glass fiber and additive on the m odification of the decorative com pounds were com pared ,the effect of processing technology on the property of the com pound was analyzed 1The optimum processing parameter and formulation for the com pound were determined and applied to the production of the slide bar of the saddle of car for export success fully 1 K eyw ords :Nylon ;G lass Fiber ;T oughener ;Structure ;Property ;Application 汽车上零部件要求能耐高低温、耐油、耐化学药 品、耐候和一定的机械性能,达到节能降耗、提高车速、改进外观和舒适性、降低成本等众多目标。普通单牌号尼龙虽具有良好的强度和刚性,但冲击强度各有不同,且熔融范围较窄,熔体强度对温度敏感,以30%玻纤增强尼龙66为例,其熔体质量流动速率(MFR )为10~25g/10min ,波动较大,给注塑制件的工艺调整带来不便。随着国内汽车业的不断发展和成熟,对车用材料提出了更高要求的同时,成本控制也近乎苛刻,通过合金工艺生产的尼龙合金复合材料,可以很好地解决上述问题,满足汽车用材料的要求。以汽车座椅滑块为例,要求材料具有高强度、高刚性,良好的尺寸稳定性,并具备适当的韧性和良好的加工性。本项目组采用共混合金工艺,经过反复试验,取得了良好的效果,材料性能满足使用要求。 1 实验部分 111 主要原材料及设备 尼龙66:中黏EPR27、高黏EPR32,平顶山神马集团;尼龙6:高黏32,岳阳石化;中黏26228,岳阳石化/石家庄化纤;接枝聚丙烯:K T J 21A ,沈阳科通;接枝聚乙烯:K T 25A ,大连工大;接枝POE :K TR 23C ,沈阳科通;接枝POE :长春应化所;接枝POE :9805,上海日之升;接枝EPDM :9802,上海 日之升;接枝EPDM :南京驰鸿;玻璃纤维:988(长),浙江巨石;抗氧剂:1010,瑞士汽巴/吉林大河东;光亮润滑剂:T AF ,苏州国光。 双螺杆挤出机:SH J582Ⅱ,南京信立;注塑机:CWI 2120D ,上海纪威;万能试验机:C MT5204,深圳 新三思;冲击试验机:X JU 2515,承德金建;热变形温度检测仪:XRW 2300,承德金建;熔体质量流动速率仪:SRZ 2400C ,长春智能;尺寸变化测定仪:XC B 2150,承德金建。 ? 26?塑料工业 CHI NA P LASTICS I NDUSTRY 第35卷第4期2007年4月 Ξ作者简介:崔欣,女,1968年生,大学本科,高级工程师,长期从事化工材料材料的研究,发表论文多篇。 cuixin823@sina 1com

尼龙改性

尼龙改性认识 一、尼龙的种类及特性 1.1尼龙的种类 尼龙系分子主链的重复结构单元中,含有酰胺基(—CONH—)的一类热塑性树脂,包括脂肪族聚酰胺、脂肪-芳香族聚酰胺及芳香族聚酰胺。脂肪族聚酰胺品种多、产量大、应用广泛,既可作纤维,也可作塑料。脂肪-芳香族聚酰胺品种少,产量也小;芳香族聚酰胺常简称为聚芳酰胺,主要用作纤维(芳纶)。脂肪族尼龙分尼龙6、尼龙66、尼龙1010等。 1.2尼龙的特性 尼龙属于聚酰胺,在它的主链上有氨基。氨基具有极性,会因氢键的作用而相互吸引。所以尼龙容易结晶,可以制成强度很高的纤维。聚酰胺为韧性角质状半透明或乳白色结晶性树脂,常制成圆柱状粒料,作塑料用的聚酰胺分子量一般为1.5万~2万。 各种聚酰胺的共同特点是耐燃,抗张强度高(达104MPa),耐磨,电绝缘性好,耐热(在455kPa下热变形温度均在150℃以上),熔点150~250℃,熔融态树脂的流动性高,相对密度1.05~1.15(加入填料可增至1.6),大都无毒。

二、尼龙的现有主要种类及市场概况 2.1HTN HTN属于杜邦尼龙家族。杜邦HTN分为51G、52G、53G和54G四个系列,其中51G、52G和54G是属于6T的改性产品,可归属于半芳香族尼龙PPA,而53G系列因分子中苯环含量较少杜邦把它归为高性能尼龙。 Zytel?HTN51G=PA6T/MPMDT………..PPA Zytel?HTN52G=PA6T/66……………….PPA Zytel?HTN53G=PA……………………..HPPA Zytel?HTN54G=PA6T/XT+PA6T/66…PPA 作为老牌尼龙制造商,拥有强劲开发实力的杜邦实现HTN的工业化也比较早,并最先推出高温尼龙的无卤阻燃系列。杜邦高温尼龙目前在市场上表现平平,后期在无卤规格上可能会有所作为。 2.2 ARLEN? PA6T ARLEN?为日本三井化学公司所开发出的一种耐高温尼龙,是基于对苯二甲酸,己二酸及己二胺的改性尼龙6T,其熔点高达310℃。ARLEN?主要应用于电子零件用ARLEN为一种对于苯二甲酸,己二酸及己二胺的改質尼龙6T,其熔点高于310℃。电子零件。ARLEN 的主要特性为优异的高温刚性,尺寸安定性以及耐化学品性。 2.3 PA9T PA9T由KURARAY公司首度开发成功并实现工业化。商品名为

改性尼龙塑料主要改性技术手段

改性尼龙塑料主要改性技术手段 衡水金轮网销部讯:在通用尼龙塑料的基础上,通过物理、化学、机械等方式,经过填充、共混、增强等手段,改善尼龙塑料的性能,对强度、抗冲击性、阻燃性等机械性能得到改善和提高,使得塑料能适用在更多的环境条件。那么改性尼龙塑料有哪些改性技术手段呢? 在改性手段上有物理改性和化学改性。物理改性是不发生化学反应,主要是物理混合过程。化学改性是在聚合物分子链上通过化学方法进行嵌段共聚、接枝共聚、交联与降解等反应,或者引入新的官能团而形成特定功能的高分子材料,主要的改性技术手段主要有:增强、增韧、填充、阻燃、耐候、合金。 ①增强 通过添加玻璃纤维、碳纤维等纤维状物质,与尼龙树脂经过双螺杆挤出机充分混炼挤出,能够明显改善材料的刚性强度和硬度。尼龙树脂本身具有很多固有的物理性能、化学性能和加工性能,经过挤出机混炼后,可以起到树脂的力学或其他性能,而树脂对材料可以起到粘合和传递载荷的作用。 ②增韧 有很多的材料韧性不足,可以通过加热韧性较好的材料或者超细无机材料,增加韧性和耐低温性能。常使用的增韧剂有马来酸酐POE、EPDM(三元乙丙橡胶),可以降低改性尼龙硬化后的脆性,提高冲击强度和伸长率。

③填充 通过给尼龙加入矿物粉末,改善材料的刚性、硬度、耐热性等性能,常使用的填充剂有活性碳酸钙、云母、滑石粉,提高加工性能,降低成本。 ④阻燃 尼龙本身属于HB阻燃,在UL94中级别较低,在很多使用环境电子电器、汽车行业等对阻燃性要求较高,往往通过物理添加阻燃剂来获得阻燃性,阻燃剂添加的多少与阻燃性有直接的关系。常使用的阻燃剂有含卤阻燃剂和无卤阻燃剂两种,无卤阻燃剂更先进更环保一些,更受到大家的喜爱。 ⑤耐候 尼龙在低温下的耐寒能力是比较差的,和塑料一样固有一些低温脆性,使材料在低温下变脆。耐候性是指塑料制品因受到阳光照射、温度变化、风吹雨打等外界条件的影响,而出现褪色、变色、龟裂、粉化和强度下降等一系列老化现象,其中紫外线是促进老化的关键因素。可以添加抗紫外线剂、抗水解剂等来得到改善。 ⑥合金 尼龙合金是利用物理共混或化学接枝、共聚的方法,将两种或多种材料制备成高性能、功能化、专业化的一种材料,达到改善一种材料的性能或兼具更多性能的目的。往往采用的有PE合金、PP合金等,改性尼龙合金主要应用于汽车、办公设备、电子电器、包装材料等行业。

尼龙6改性研究进展

聚己内酰胺又称尼龙6(Nylon6),1938年由德国I.G.Farbon公司的P.Schlach发明,并于1943年由该公司首先实现工业化。普通尼龙6且有良好的物理、机械性能,例如拉伸强度高,耐磨性优异,抗冲击韧性好,耐化学药品和耐油性突出,是五大工程塑料中应用最广的品种。但由于其在低温和干燥状况下易脆化、抗冲击性能差,且吸水性差、尺寸稳定性差,限制了其更加广泛的应用。为此,国内外的研究者对尼龙6进行了大量的改性研究和开发,研制出许多综合性能优越、可满足特殊要求的改性尼龙材料,使普通工程塑料向高性能的工程塑料和功能塑料发展。 尼龙是重要的工程塑料,对其进行改性可以得到性能多样的产品,拓宽其应用领域。尼龙6的改性研究内容丰富,方法多样,增强改性是其中的重要内容。由于尼龙本身的优点以及生产厂商不断开发新品种及新的加工方法以适应新的用途,通过共混、共聚、嵌段、接枝、互穿网络、填充、增强、复合,包括目前日益成为热点的纳米级复合材料技术,赋予了尼龙工程塑料的高性能,从而使尼龙工程塑料在当今激烈的市场竞争中仍能占据五大工程塑料之首。尼龙6的增强改性主要是添加纤维状、片状或其它形状的填料,在保证其原有的耐化学性和良好的加工性的基础上,使其强度大幅度提高,尺寸稳定性和耐热性也得到明显改善。改性后的尼龙6作为一种性能优良的工程塑料广泛应用于机械、电子、交通、建筑和包装等领域。 纤维增强 典型的纤维增强有玻璃纤维、碳纤维、石棉纤维。 用高强度纤维与树脂配合后能提高机体的物理力学性能,其增强效果主要依赖于纤维材料与机体的牢固粘结使塑料所受负荷能转移到高强度纤维上,并将负荷由局部传递到较大范围甚至于整个物体。 玻璃纤维增强尼龙材料是较为常用的纤维增强改性方法。表1列出了玻纤增强尼龙6复合材料和纯尼龙6材料的性能对比。 玻纤与基体之间的结合力起着控制聚合物复合材料力学性能的重要作用,并主要受玻纤表面处理的影响。偶联剂是某些具有特定基团的化合物,它能通过化学或物理作用将两种性质相差很大的材料结合起来。硅烷偶联剂在玻纤表面的应用能起到改善结合力的作用。崔周平等人系统考察了玻纤增强尼龙6复合材料力学性能的影响因素,并通过对比实验表明,用A1100偶联剂处理的玻纤较用A187及其它偶联剂处理的玻纤增强效果好。且玻纤的加入量以30%-40%为宜。 玻纤长度是决定纤维增强复合材料的又一主要因素。短玻纤增强尼龙中,玻纤在混合中逐步被剪碎,最终制品中的玻纤长度一般在0.2-0.4mm范围内。长玻纤比短玻纤具有更加的增强效果,拓宽了尼龙6在汽车、机械、电器和军工领域的应用。高志秋等人采用容体浸滞工艺制备了长玻纤增强尼龙6的预浸料,由表2可以看出,长玻纤增强尼龙复合材料的力学性能明显优于短玻纤尼龙复合材料。这一方面是由于长玻纤在复合材料中是相互交织在一起的无序排列,而不同于短玻纤在复合材料中的流动方向排列;另一方面是因为玻纤长度的增加,使玻纤与尼龙的界面面积增大,玻纤从基体中抽出的阻力增大,从而提高了承受拉伸载荷的能力。 GMT是以热塑性树脂为基体,以玻璃纤维毡为增强骨架的轻质板片状结构材料,因其密度小、强度高、废料可生产利用和可无限起存放的优点而被广泛应用。吴妙生等人通过优化优选研制出玻纤毡增强尼龙6复合片材,该材料是一种轻量化和节能的新型结构材料,可用于汽车发动机油底壳、转矩链条罩和负载地板等。

改性尼龙以及聚酰胺纤维的性能介绍及发展

改性尼龙以及聚酰胺纤维的性能介绍及发展尼龙作为工程塑料中最大最重要的品种,具有很强的生命力,主要在于它改性后实现高性能化,其次是汽车、电器、通讯、电子、机械等产业自身对产品高性能的要求越来越强烈,相关产业的飞速发展,促进了工程塑料高性能化的进程,改性尼龙未来发展趋势如下。 ①高强度高刚性尼龙的市场需求量越来越大,新的增强材料如无机晶须增强、碳纤维增强PA将成为重要的品种,主要是用于汽车发动机部件,机械部件以及航空设备部件。 ②尼龙合金化将成为改性工程塑料发展的主流。尼龙合金化是实现尼龙高性能的重要途径,也是制造 尼龙专用料、提高尼龙性能的主要手段。通过掺混其他高聚物,来改善尼龙的吸水性,提高制品的尺寸稳定性,以及低温脆性、耐热性和耐磨性。从而,适用车种不同要求的用途。 ③纳米尼龙的制造技术与应用将得到迅速发展。纳米尼龙的优点在于其热性能、力学性能、阻燃性、阻隔性比纯尼龙高,而制造成本与普通尼龙相当。因而,具有很大的竞争力。 ④用于电子、电气、电器的阻燃尼龙与日俱增,绿色化阻燃尼龙越来越受到市场的重视。 ⑤抗静电、导电尼龙以及磁性尼龙将成为电子设备、矿山机械、纺织机械的首选材料。 ⑥加工助剂的研究与应用,将推动改性尼龙的功能化、高性能化的进程。

⑦综合技术的应用,产品的精细化是推动其产业发展的动力。 聚酰胺纤维是大分子链上具有C9-NH基团一类纤维的总称。常用的为脂肪族聚酯胺夕主要品种有聚酰胺6和聚酰胺66,我国商品名称为锦纶6和锦纶66。锦纶纤维以长丝为主,少量的短纤维主要用于和棉,毛或其它化纤混纺。锦纶长丝大量用于变形加工制造弹力丝,作为机织或针织原料。锦纶纤维一般采用熔体法纺丝。锦纶6和锦纶66纤维的强度为4~5.3cN/dtex,高强涤纶可达7.9cN/dtex以上,伸长率18%~45%,在10%伸长时的弹性回复率在90%以上。据测定,锦纶纤维的耐磨为棉纤维的20倍、羊毛的20倍、粘胶的50倍。耐疲劳性能居各种纤维之首。在民用上大量用于加工袜子和其他混纺制品,提高织物的耐磨牢度,但锦纶纤维模量低,抗摺皱性能不及涤纶,限制了锦纶在衣着领域的应用。锦纶帘子线的寿命比粘胶大3倍,冲击吸收能大,因此轮胎能在坏的路面上行驶,但由于锦纶帘子线伸长大,汽车停止时,轮胎变形产生平点,起动初期汽车跳动厉害。因此只能用于货车的轮胎,不宜作客车的轮胎帘子线之用。 锦纶纤维表面平整,不加油剂的纤维摩擦系数很高,锦纶油剂贮存日久易失效,纺织加工时还需要重新添加油剂。 锦纶纤维的吸湿比涤纶高,锦纶6与锦纶66在标准条件下的回潮率为4.5%,在合纤中仅次于维纶。染色性能好,可用酸性染料,分散性染料及其他染料染色。

尼龙的增韧改性.

《聚合物复合材料设计与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 学号:2010130101025

尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。 关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方

蒙脱土改性低熔点尼龙6结构与性能的研究

蒙脱土改性低熔点尼龙6结构与性能的研究 甘华华1,2鲁圣军1,2张敏1,2何敏1,2于杰2** 1.贵州大学材料与冶金学院,贵州,贵阳 5500032.国家复合改性聚合物材料工程技术研究中心,贵州,贵阳 550014 尼龙6 (PA6)具有机械强度高、抗冲击性能好、电气性能佳、耐磨、耐化学药品性等一系列优异性能,是一种应用广泛的工程塑料。针对低熔点尼龙6国内外的研究尚处在实验室阶段,且目前聚合物同金属离子配位的研究工作主要针对溶液反应法或间歇性的熔融密炼加工方法,有很大的局限性,并且不利于聚合物材料的加工和应用[1,2]。本课题组[3,4]选用容易工业化生产的熔融挤出反应的方法,采用CaCl2、LiCl对PA6进行熔融络合改性制备了低熔点PA6,实现了低熔点尼龙6的大规模生产,但低熔点PA6的力学性能,特别是维卡软化点有待提高。

The Study on the Structure and Properties of Low Melting Point Nylon 6 Modified by OMMT GAN Huahua1,2LU Shengjun1,2ZHANG Min1HE Min1,2YU Jie2* 1. School of Materials Science and Metallurgical Engineering, Guizhou University, Guiyang  550003; 2.China National Engineering Research Center for Compounding and Modification of  Polymeric Materials, Guiyang 550014, China Abstract: The research focused on the effect of the content of OMMT and feeding methods on the

尼龙的增韧改性

《聚合物复合材料设计 与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,

年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方法,改进聚酰眩塑料的冲击性、热变形性、力学性能、阻燃性及成型加工性能。 2.国内外的技术情况 国内外学者对尼龙改性进行了大量的研究,近年来已有了新的进展,同时有了一些成熟的工业化产品,也获得了许多综合性能优良,加工性能好的产品。 尼龙自发明以来,生产能力和产量都居于五大通用工程塑料之首(PA,Pc,PoM,PBT/PET,PPO)的第一位"美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化,20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求,因而被广泛用于电子电气、交通运输、机械设备及日常生活用品等领域,在经济中的地位日益显着"。 但于我国经济发展的需求和国外先进技术相比,差距是不言而喻的。目前我们应当重视将比较成熟的研究成果进行中试,直至规模生产,从而减低国内用户的生产成本。同时应当在加强传统PA6共混手段研究的基础上,逐步开展一些新型PA6改性方法的研究,加速尼龙6改性研究步伐,开发系列化的耐高温、低吸湿、可电镀、高硬度、高强度、高阻隔性等特殊性能的改性PA6,进一步拓宽尼龙6应用领域以适应科技发展需要。我国尼龙66的生产起步于60年代中期。1964年辽阳石油化纤公司引进了法国生产技术,建设了年产4.6万吨的生产装置。1994年,我国第二个尼龙“生产装置开工建设,该装置引进日本的技术,年产尼龙66为6.5万吨。在当前形势下,外商普遍看好我国尼龙“产品市场。美国杜邦、德国伍德、日本东洋和旭化成等公司均将大量尼龙66等制品投放中国市场,面对跨国公司的激烈竞争,我国必须建设我们自己的尼龙66生产与加工产业,提高国内企业在市场中的地位。由于尼龙66的生产目前仍是走国外引进的路子,就要求国内加大尼龙66深加工的力度,拓展尼龙66的广阔市场。尼龙66的深度加工具有加工工艺简单、建设周期短、投资少、增值快的特点,大部分属于短平快项目。有的深加工项目只需增添一些增强剂、改性剂,然后注塑成型即可制成工程塑料。目前,我国对尼龙66的深加工主要是用来生产轮胎帘子布和高级合成纤维,而用于工程塑料尚处于摸索起

尼龙的增韧改性

尼龙的增韧改性 Prepared on 22 November 2020

《聚合物复合材料设计 与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。 关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙

lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方法,改进聚酰眩塑料的冲击性、热变形性、力学性能、阻燃性及成型加工性能。 2.国内外的技术情况 国内外学者对尼龙改性进行了大量的研究,近年来已有了新的进展,同时有了一些成熟的工业化产品,也获得了许多综合性能优良,加工性能好的产品。 尼龙自发明以来,生产能力和产量都居于五大通用工程塑料之首 (PA,Pc,PoM,PBT/PET,PPO)的第一位"美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化,20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求,因而被广泛用于电子电气、交通运输、机械设备及日常生活用品等领域,在经济中的地位日益显着"。 但于我国经济发展的需求和国外先进技术相比,差距是不言而喻的。目前我们应当重视将比较成熟的研究成果进行中试,直至规模生产,从而减低国内用户的生产成

相关主题