搜档网
当前位置:搜档网 › 第五讲 二叉树模型的实际应用

第五讲 二叉树模型的实际应用

已知某二叉树的先序遍历和中序遍历的结果是先序遍历ABDEGCF

树与二叉树复习 一、填空 1、由二叉树的(中)序和(前、后)序遍历序列可以唯一确定一棵二叉树。 2、任意一棵二叉树,若度为0的结点个数为n0,度为2的结点个数为n2,则n0等于(n0=n2+1 )。 3、一棵二叉树的第i(i≥1)层最多有(2i-1 )个结点。 4、一棵有n个结点的二叉树,若它有n0个叶子结点,则该二叉树上度为1的结点个数n1=(n-2n0+1 )。 5、在一棵高度为5的完全二叉树中,最少含有( 16 )个结点。 6、 2.有一个有序表为{1,3,9,12,32,41,45,62,75,77,82,95,100},当折半查找值为82的结点时,( C )次比较后查找成功。 A. 11 B 5 C 4 D 8 7、在有n个叶结点的哈夫曼树中,总结点数( 2n-1 )。 8、若一个问题的求解既可以用递归算法,也可以用递推算法,则往往用(递推)算法,因为(递推算法效率高)。 9、设一棵完全二叉树有700个结点,则共有( 350 )叶子结点。 10、设一棵完全二叉树具有1000个结点,该树有(500)个叶子结点,有(499 )个度为2的结点,有( 1 )个结点只有非空左子树。 二、判断 1、( × )在哈夫曼树中,权值最小的结点离根结点最近。 2、( √ ) 完全二叉树中,若一个结点没有左孩子,则它必是叶子结点。 3、( √ )二叉树的前序遍历序列中,任意一个结点均处在其孩子结点的前面。 4、( × ) 若一搜索树(查找树)是一个有n个结点的完全二叉树,则该树的最大值一定在叶结点上。 5、( √ )若以二叉链表作为树和二叉树的存储结构,则给定任一棵树都可以找到唯一的一棵二叉树与之对应。 6、( √ )若一搜索树(查找树)是一个有n个结点的完全二叉树,则该树的最小

二叉树习题及答案

1.设一棵完全二叉树共有699 个结点,则在该二叉树中的叶子结点数? 1根据二叉树的第i层至多有2A(i - 1)个结点;深度为k的二叉树至多有2A k - 1 个结点(根结点的深度为1)”这个性质: 因为2A9-1 < 699 < 2A10-1 , 所以这个完全二叉树的深度是10,前9 层是一个满二叉树, 这样的话,前九层的结点就有2A9-1=511 个;而第九层的结点数是2A(9-1)=256 所以第十层的叶子结点数是699-511=188 个;现在来算第九层的叶子结点个数。由于第十层的叶子结点是从第九层延伸的,所以应该去掉第九层中还有子树的结点。因为第十层有188 个,所以应该去掉第九层中的188/2=94 个;所以,第九层的叶子结点个数是256-94=162,加上第十层有188 个,最后结果是350 个 2完全二叉树:若二叉树中最多只有最下面两层的结点的度可以小于2,并且最下面一层的结点 (叶结点) 都依次排列在该层最左边的位置上,这样的二叉树为完全二叉树。 比如图:完全二叉树除叶结点层外的所有结点数(叶结点层以上所有结点数)为奇数,此题中,699 是奇数,叶结点层以上的所有结点数为保证是奇数,则叶结点数必是偶数,这样我们可以立即选出答案为B!如果完全二叉树的叶结点都排满了,则是满二叉树,易得满二叉树的叶结点数是其以上所有层结点数+1 比如图: 此题的其实是一棵满二叉树,我们根据以上性质,699+1=700,700/2=350,即叶结点数为350,叶结点层以上所有结点数为350-1=349。 3完全二叉树中,只存在度为2 的结点和度为0 的结点,而二叉树的性质中有一条是: nO=n2+1 ; nO指度为0的结点,即叶子结点,n2指度为2的结点,所以2n2+1=699 n2=349 ; n0=350 2.在一棵二叉树上第 5 层的结点数最多是多少一棵二叉树,如果每个结点都是是满的,那么会满足2A(k-1)1 。所以第5 层至多有2A(5-1)=16 个结点! 3.在深度为5 的满二叉树中,叶子结点的个数为答案是16 ~ 叶子结点就是没有后件的结点~ 说白了~ 就是二叉树的最后一层~ 深度为K 的二叉树~ 最多有2Ak-1 个结点~ 最多有2A(k-1) 个结点~ 所以此题~ 最多有2A5-1=31 个结点~ 最多有2A(5-1)=16 个叶子结点~ 4.某二叉树中度为2 的结点有18 个,则该二叉树中有几个叶子结点?结点的度是指树中每个结点具有的子树个数或者说是后继结点数。 题中的度为2 是说具有的2 个子树的结点;二叉树有个性质:二叉树上叶子结点数等于度为2 的结点数加1。 5.在深度为7 的满二叉树中,度为2 的结点个数为多少,就是第一层只有一个节点,他有两个子节点,第二层有两个节点,他们也都有两个子节点以此类推,所以到第6 层,就有2的5次方个节点,他们都有两个子节点最后第7 层都没有子节点了。因为是深度为7 的。 所以就是1+2+4+8+16+32 了 2深度为1的时候有0个 深度为2的时候有1个 深度为3的时候有3个 深度为4的时候有7个 深度为n的时候有(2的n-1次方减1 )个 6?—棵二叉树中共有70个叶子结点与80个度为1的结点,则该二叉树中的总结点数为?

全国计算机等级考试二级公共基础之树与二叉树1

全国计算机等级考试二级公共基础之树与二叉树 1.6 树与二叉树 1.6.1 树的基本概念 树是一种简单的非线性结构。在树这种结构中,所有元素之间的关系具有明显的层次关系。用图形表示树这种数据结构时,就象自然界中的倒长的树,这种结构就用“树”来命名。如图: 在树结构中,每个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点,简称为树的根(如R)。 在树结构中,每一个结点可以有多个后件,它们都称为该结点的子结点。没有后件的结点称为叶子结点(如W,Z,A ,L,B,N,O,T,H,X)。 在树结构中,一个结点拥有的后件个数称为结点的度(如R的度为4,KPQDEC 结点度均为2)。 树的结点是层次结构,一般按如下原则分层:根结点在第1层;同一个层所有结点的所有子结点都在下一层。树的最大层次称为树的深度。如上图中的树深度为4。R结点有4棵子树,KPQDEC结占各有两棵子树;叶子没有子树。 在计算机中,可以用树结构表示算术运算。在算术运算中,一个运算符可以有若干个运算对象。如取正(+)与取负(-)运算符只有一个运算对象,称为单目运算符;加(+)、减(-)、乘(*)、除(/)、乘幂(**)有两个运算对象,称为双目运算符;三元函数f(x,y,z)为 f函数运算符,有三个运算对象,称为三目运算符。多元函数有多个运算对象称多目运算符。 用树表示算术表达式原则是: (1)表达式中的每一个运算符在树中对应一个结点,称为运算符结点

(2)运算符的每一个运算对象在树中为该运算结点的子树(在树中的顺序从 左到右) (3)运算对象中的单变量均为叶子结点 根据上面原则,可将表达式:a*(b+c/d)+c*h-g*f表示如下的树。 树在计算机中通常用多重链表表示,多重链表的每个结点描述了树中对应结点的信息,每个结点中的链域(指针域)个数随树中该结点的度而定。 1.6.2 二叉树及其基本性质 1. 什么是二叉树 二叉树是很有用的非线性结构。它与树结构很相似,树结构的所有术语都可用到二叉树这种结构上。 二叉树具有以下两个特点: (1)非空两叉树只有一个根结点 (2)每个结点最多有两棵子树,且分别称该结点的左子树与右子树。 也就是说,在二叉树中,每一个结点的度最大为2,而且所有子树也均为二叉树。二叉树中的每一个结点可以有左子树没有右子树,也可以有右子树没有左子树,甚至左右子树都没有。

树与图的简单遍历算法

树与图的简单遍历算法 发表时间:2019-01-14T09:56:22.797Z 来源:《科技新时代》2018年11期作者:闵俊齐 [导读] 树与图是两种重要的数据结构,而树可以说是一种特殊的图,它的两两结点之间存在唯一简单路径。 重庆第二外国语学校重庆 400065 摘要:树与图是两种重要的数据结构,而树可以说是一种特殊的图,它的两两结点之间存在唯一简单路径。利用其特殊性质,人们创造了许多算法来处理数据结构问题和程序调用问题。而树与图的遍历算法也是数据结构中重要的算法之一。本文从树与图的概念出发,简单的介绍了树与图的主要存储方式,并重点对二叉树的简单遍历算法、哈夫曼树的生成和图的深度优先遍历及广度优先遍历做出了介绍。 关键词:数据结构;二叉树;图;遍历算法 1.树与图的概念 树是一种数据结构,是由n(n≥0)个结点构成的具有明显层次关系的有限集合。一棵树一般由一个根节点和若干个子结点构成。结点与结点之间具有明显的并列或层次关系,这种层次关系称为父子关系。在一棵树中,没有父结点的结点被称为根结点。树有几个重要的概念,以下做出简单的介绍——树的度:某个结点拥有的子树的数量称为这个结点的度,度为零的结点也叫做叶结点,而度不为零的结点叫做分支结点。树的深度:一棵树的根结点的层次为1,其他结点的层次是其父结点的层次加1。一棵树里最大的层次的值被称为这棵树的深度。树有无序树,有序树,二叉树等。其中二叉树是每个结点最多有两个子结点的树,每个结点的子树通常被称为“左子树”和“右子树”,故二叉树中每个结点的度的最大值为2,而又有左右之分,二叉树中结点的次序不能任意颠倒。除最后一层的叶结点没有子结点外,其余每一层的每个结点都具有两个子结点的二叉树称为满二叉树。如果存在一个深度为h的二叉树,它的除h层外其余各层(1~h-1)的结点数都达到了最大值,并且它的第h层的结点全部集中在树的左边,这种二叉树就被称为完全二叉树。完全二叉树是由满二叉树引申出来的,它是一种效率很高的数据结构。本文后部分将会介绍二叉树的简单遍历算法。 图由若干个顶点组成的有限非空集合和各个顶点的边构成,通常表示为G(V,E),其中G表示一个图,V是图G中顶点的集合,E是图G中边的集合。图数据结构主要研究形状和图形数据元素之间的关系。它必须反映数据所对应的元素之间的几何关系和拓扑关系。图依照边的方向可分为有向图和无向图。有向图由顶点和弧构成。弧有弧尾和弧头,带箭头的一边称为弧头。图结构与树结构相比较,图中的任意两个元素都有可能相关。而对某个结点而言,树下层可能有多个元素,上层只有能一个元素,复杂度比树大[1]。 2二叉树与图的储存方式 2.1二叉树的储存方式 二叉树有两种储存方式:顺序存储和链式存储。 顺序储存就是按照完全二叉树的结点层次顺序存储的一种只适用于完全二叉树的储存方式,且在最坏的情况下,k个结点的单支数却只需要长度的 -1的一维数据。这种储存需要一个完全连续地址,所以会占用许多的储存空间。 在二叉树中,每个结点信息一般都由一下几个部分构成:该结点的数据元素(Data)、指向左子树的指针(L child)和指向右子树的指针(R child)。利用指针,我们可以很好的存储二叉树。若使用二叉链表,每个结点的结构如图1(a)所示。一般可以(L,D,R)来表示。在三叉链表中,可表示每个结点的父结点,结构如图1(b)所示。一般可以(L,D,P,R)来表示[5]。链式储存不需要完全连续地址,节约储存空间[2]。 图2 3.二叉树的遍历算法及哈夫曼树的生成 3.1二叉树的遍历算法 遍历,是指用某种方法沿着某条路对每一个元素做一且仅一次访问,它是二叉树的重要运算之一。二叉树的主要有三种访问方式:先序遍历、中序遍历、后序遍历。具体实现过程如下:

二叉树的4个普遍性质和2个特殊性质的完善推导过程

二叉树的5个性质 1、在二叉树的第k 层上,最多有2k-1(k ≥1)个结点 证明:在二叉树的第i 层上最多有2 i-1 个节点 1层 1个 20 2层 2个 21 3层 4个 22 ..... i 层 2 i-1个 2、二叉树中如果深度为k,那么最多有2k -1个节点 证明:在具有相同深度的二叉树中,仅当每一层都含有最大结点数时,其树中结点数最多。因此利用性质1可得,深度为k 的二叉树的结点数至多为: 20+21+…+2k-1=2k -1 故命题正确。 3、在任意一棵二叉树中,若终端结点的个数为n 0,度为2的结点数为n 2,则n o =n 2+1。 . 证明:n 0=n 2+1 n 0表示度数为0的节点 n 2表示度数为2的节点 推导过程 根据两个公式 1). n=n 0+n 1+n 2 n 表示二叉树中的节点总个数,n 1表示度数为1的节点个数 2). n-1=2n 2+n 1 通过观察二叉树我们可知,除了根节点之外,其余的任何节点都有一个入口分支(或其他节点都有一个入口分支),那么节点的总分支数等于节点个数减一,度数为2的节点有2个出口分支,度数为一的有1个出口分支,度数为0的节点没有出口分支 所以总的分支个数为 2n 2+n 1,因此有n=2n 2+n 1+1, 3).比较n=n 0+n 1+n 2和n=2n 2+n 1+1两式,可得n 0=n 2+1。 5.在完全二叉树中,具有n 个节点的完全二叉树的深度为[log2n]+1,其中[log2n]+1是向下取整。 证明: 根据性质 2: 假设深度为k 的满二叉树的节点个数一定为2k -1,那么n=2k -1推得满二叉树的深度数为k=log 2(n+1);——深度为m 的二叉树最多有2k -1个节点,即是满二叉树的情形。 设完全二叉树是具有n 个节点的二叉树,若按层序编号那么其编号与同样深度的满二叉() 11122111n m m n a q S q --===---() 11111220n k k n a a q k ---==?=≥

习题8(二叉树的定义和性质)

习题8(二叉树的定义和性质) 一、选择题 1、除个别结点外,其余结点只能有1个前驱结点,可有任意多个后继结点,这样的结构为( B )。 A)线性结构 B)树形结构 C)图形结构 D)拓扑结构 2、在下述结论中,正确的是( D )。 ①只有一个结点的二叉树的度为0 ②二叉树的度为2 ③二叉树的左右子树可任意交换 ④深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树 A)①②③ B)②③④ C)②④ D)①④ 3、下列有关树的概念错误的是( B )。 A)一颗树中只有一个无前驱的结点 B)一颗树的度为树中各个结点的度数之和 C)一颗树中,每个结点的度数之和等于结点的总数减1 D)一颗树中每个结点的度数之和与边的条数相等4、对任一颗树,设它有n个结点,这n个结点的度数之和为d,下列关系式正确的是( D )。 A)d=n B)d=n-2 C)d=n+1 D)d=n-1 5、下列说法中正确的是( D )。 A)二叉树中任何一个结点的度都为2 B)二叉树的度为2 C)任何一棵二叉树中至少有一个结点的度为2 D)一棵二叉树的度可以小于2 6、以二叉链表作为二叉树的存储结构,在具有n个结点的二叉链表中(n>0),空链域的个数为( C )。 A)2n-1 B)n-1 C)n+1 D)2n+1 7、树最适合用来表示( C )。 A)有序数据元素 B)无序数据元素 C)元素之间具有分支层次关系的数据 D)元素之间无联系的数据8、由4个结点可以构造出多少种不同的二叉树( C )。 A)4 B)5 C)14 D)15 9、一个二叉树具有( A )种基本形态。 A)5 B)4 C)3 D)2 10、二叉树的第I层上最多含有结点数为( C )。 A)2I B)2I-1-1 C)2I-1 D)2I -1 11、深度为5的二叉树至多有( C )个结点. A)16 B)32 C)31 D)10 12、一个满二叉树,共有n个结点,其中m个为树叶,则( B )。 A)n= m+1 B)m=( n +1)/2 C)n =2 m D)n =2 m 13、深度为h的满m叉树的第k层有( A )个结点。(1=

二叉树的基本参数计算

/*二叉树的基本参数计算*/ #include #include #define MaxSize 20 typedef int ElemType; #define OK 1 typedef struct BiTNode { ElemType data; struct BiTNode *lchild, *rchild; }BiTNode,*BiTree; //建立二叉树(按先序序列生成二叉树,#表示空节点) void CreateBiTree(BiTree *T) { char ch; scanf("%c",&ch); getchar();/*回车键(每次输入一个字符后,需敲回车键)*/ if(ch=='#') { printf("不产生子树。\n"); *T=NULL; } else { if(!(*T=(BiTNode *)malloc(sizeof(BiTNode)))) { printf("分配空间失败"); return; }//生成一个新节点 (*T)->data = ch; printf("产生左右子树。\n"); CreateBiTree(&(*T)->lchild); CreateBiTree(&(*T)->rchild); } } //交换左右子树产生新的树t返回到主函数 BiTNode *swap(BiTree T) { BiTree t,t1,t2; if(T==NULL) t=NULL; else {

t=(BiTNode*)malloc(sizeof(BiTNode)); t->data=T->data; t1=swap(T->lchild); //交换左右子树 t2=swap(T->rchild); t->lchild=t2; t->rchild=t1; } return(t); } //求树的叶子结点数 int leafs(BiTree T) { int num1,num2; if(T==NULL) return 0; else if(T->lchild==NULL&&T->rchild==NULL) return 1; else { num1=leafs(T->lchild); num2=leafs(T->rchild); return (num1+num2); } } //求二叉树的深度 int Depth(BiTNode *T) { int dep1,dep2; if(T==NULL) return(0); else { dep1=Depth(T->lchild); dep2=Depth(T->rchild); if(dep1>dep2) return(dep1+1); else return(dep2+1); } } //按广义表形式输出二叉树 void Disptree(BiTNode *T)

二叉树遍历方法技巧

二叉树遍历方法 1.中序遍历的投影法 如果给定一棵二叉树的图形形态,是否能根据此图快速地得出其中序遍历的序列?回答是肯定的。具体做法是:首先按照二叉树的标准绘制二叉树形态,即将所有左子树都严格绘于根结点的左边;将所有右子树都严格绘于根结点的右边。然后假设现在有一个光源从该二叉树的顶部投射下来,那么所有结点在地平线上一定会有相应的投影,从左至右顺序读出投影结点的数据即为该二叉树的中序遍历序列。如图11.10所示。 图示的中序遍历序列: D J G B H E A F I C 2.先序遍历的填空法 如果给定一棵二叉树的图形形态,可在图形基础上,采用填空法迅速写出该二叉树的先序遍历序列。具体做法是:我们知道,对于每个结点都由三个要素组成,即根结点,左子树、右子树;又已知先序遍历顺序是先访问根结点、然后访问左子树、访问右子树。那么,我们按层分别展开,逐层填空即可得到该二叉树的先序遍历序列。 图11.10 中序遍历投影法示意图 如图11.10 中的二叉树采用填空法的步骤如下: (1)根结点左子树右子树 A( )( ) (2)A (根结点(左子树)(右子树))(根结点(左子树)(右子树)) A B C (3)A(B(根结点(左)(右))(根结点(左)(右)))(C(……)(……)) A B D 无 G E H 无 C F 无 (4)A B D G J E H C F I 此即为该二叉树的先序遍历序列。 注:后序遍历的序列亦可以此方法类推,请读者自己尝试。

3.利用遍历序列构造二叉树 如果已知一棵二叉树的先序遍历序列和中序遍历序列,则可以用这两个遍历序列构造一棵唯一的二叉树形态。我们知道任意一棵二叉树的先序遍历序列和中序遍历序列是唯一的,那么首先从给定的先序遍历序列入手,该先序序列的第一个元素一定是该二叉树的根;再分析这个根结点在中序遍历序列中的位置,中序遍历序列中根结点的左边即为左子树的全部元素,而根结点的右边即为右子树的全部元素;然后据此再将先序遍历序列除根结点以外的其余部分分为左、右子树两部分,并在这两部分中分别找出左、右子树的根结点。依此类推,即可得到完整的二叉树。例11.1 已知一棵二叉树的先序遍历和中序遍历序列分别为: 先序: A B C I D E F H G 中序: C I B E D A H F G 请构造这棵二叉树。 按前述分析,这棵二叉树的构造过程如图11.11所示 图11.11 二叉树的构造过程 树、森林与二叉树的转换(flash演示) 如前所述,树(或森林)的存储结构及其操作算法的实现,由于其“度”的不确定性而导致其存储结构不是较为复杂就是浪费空间,因而,定义在其存储结构上的算法也相应地较难兼顾全面。如果我们设定一定的规则,用二叉树来表示树和森林的话,就可以方便地解决树、森林的存储结构及其相关算法问题。 1.树、森林转换为二叉树 我们知道,一棵树中每个结点的孩子是无序的,而二叉树中各结点的孩子必须有左右之分。在此,为避免概念混淆,首先约定树中每个结点的孩子按从左至右的顺序升序编号,即将树中同一层上的兄弟分出大小。那么将一棵树转换成二叉树的方法是: (1)在树中同层兄弟间加一连线; (2)对树中每个结点仅保留其与长兄(左边第一个孩子)的连线,擦去其与其它孩子的连线; (3)以树(或子树)的根作为轴心,将所有的水平连线顺时针旋转45度,即可得到与该树完全等价的一棵二叉树。

二叉树课程设计

实验6.1 实现二叉树各种基本运算的算法 编写一个程序algo6-1.cpp,实现二叉树的各种运算,并在此基础上设计一个主程序完成如下功能(T为如图所示的一棵二叉树): (1)以括号表示法输出二叉树T。 (2)输出H结点的左、右孩子结点值。 (3)输出二叉树T的叶子结点个数。 (4)输出二叉树T的深度。 (5)输出对二叉树T的先序遍历序列。 (6)输出对二叉树T的中序遍历序列。 (7)输出对二叉树T的后序遍历序列。 提示:创建二叉树的算法参见书上131页的算法6.4。按先序序列输入二叉树中结点的值(一个字符),#字符表示空树。输入序列: ABD##EHJ##KL##M#N###CF##G#I## 以括号表示法输出二叉树的结果为: A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))

程序段 #include #include #include //#define MAX 50 #define OK 1 //?t2?ê÷á′±í′?′¢?á11 typedef struct btnode { char Data;//?áμ?êy?Y?úèY struct btnode *Llink;//×ó×óê÷????struct btnode *Rlink;//óò×óê÷????}btnode,*btreetype; //11?ì???t2?ê÷ int InitBiTree(btreetype &T) { T=NULL; return OK; } //?¨á¢?t2?ê÷ void CreatBiTree(btreetype &T) {char ch; scanf("%c",&ch); if(ch==' ')T=NULL; else { T=(btreetype)malloc(sizeof(btnode)); if(!T)exit(-1); T->Data=ch; CreatBiTree(T->Llink); CreatBiTree(T->Rlink); } } //ê?3??áμ?μ?×óo¢×ó void LeftChild(btreetype &M,char e) {

树-顺序存储完全二叉树先、中、后序遍历-实验内容与要求

数据结构实验报告 知识范畴:树完成日期:2016年04月28日 实验题目:顺序存储完全二叉树先、中、后序遍历 实验内容及要求: 输入一个字符串,存储于一维数组。以该一维数组作为完全二叉树的存储结构,实现先、中、后序遍历,输出遍历结果。 将该完全二叉树转换为二叉链表存储结构,然后基于二叉链表存储结构再次进行先、中、后序遍历并输出遍历结果。 实验目的:掌握完全二叉树的顺序存储与链式存储结构以及遍历算法。 数据结构设计简要描述: 分别以一维数组和二叉链表为存储结构存储二叉树,并实现先序、中序、后序遍历。 算法设计简要描述: 分别以一维数组和二叉链表为存储结构存储二叉树。 以一维数组存储时,假设双亲结点的下标为i,则左儿子、右儿子的下标分别为2*i+1、2*i+2。利用递归算法分别对左子树和右子树进行遍历。 以二叉链表为存储结构时,结点数据域存储结点数据,然后依次递归左子树和右子树。输入/输出设计简要描述: 本实验中输入和输出分别只有一次。 输入:输入一个字符串,存储到一维数组中 输出:分别以一维数组和二叉链表为存储结构存储二叉树时,先序、中序、后序遍历结果。编程语言说明: 1.编程软件,CodeBlocks 16.0; 2.代码均用C++语言实现; 3.输入输出采用C++语言的cout和cin函数; 4.程序注释采用C/C++规范; 5.动态存储分配采用C++的new和delete操作符实现 主要函数说明: void preorder_array(char *s,int i,int count) //一维数组作为存储结构的前序遍历void midorder_array(char *s,int i,int count) //一维数组作为存储结构的中序遍历void lasorder_array(char *s,int i,int count) //一维数组作为存储结构的后序遍历void trans_tree(BiT &bt,char *s,int count,int t) //将该完全二叉树存储结构转换void preorder(BiT bt) //以二叉链表前序遍历 void midorder(BiT bt) //以二叉链表中序遍历 void lasorder(BiT bt) //以二叉链表后序遍历 程序测试简要报告:

二叉树运算实验报告

二 叉 树 基 本 运 算 班级:计科112 姓名:张航 学号:201100814205辅导老师:高艳霞

二叉树的各种基本运算 一、实验目的 1、使学生熟练掌握二叉树的逻辑结构和存储结构。 2、熟练掌握二叉树的各种遍历算法。 二、实验内容 [问题描述] 建立一棵二叉树,试编程实现二叉树的如下基本操作: 1. 按先序序列构造一棵二叉链表表示的二叉树T; 2. 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历, 分别输出结点的遍历序列; 3. 求二叉树的深度/结点数目/叶结点数目;(选做) 4. 将二叉树每个结点的左右子树交换位置。(选做) [基本要求] 从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立), [测试数据] 如输入:ABCффDEфGффFффф(其中ф表示空格字符)则输出结果为 先序:ABCDEGF 中序:CBEGDFA 后序:CGEFDBA 层序:ABCDEFG [选作内容] 采用非递归算法实现二叉树遍历。 三、实验步骤

1.程序源码 #include #include #include #include #define OK 1 #define ERROR 0 #define OVERFLOW -1 #define MAX_TREE_SIZE 100 typedef TElem Type sqBiTree [MAX_TREE_SIZE ]; typedef struct BiTNode{ TElemType data; struct BiTNode *lchild,*rchild; }biTNode,*BiTree; int CreateBtree(BiTree &T) { char c; cin>>c; if(c==‘#’) T=NULL; else{ T=new BiTNode if(!T) exit(OVERFLOW); T->data=c; create_tree(T->lchild); create_tree(T->rchild); } return ok; int preOrder(BiTree T) 先序遍历 { if(T!=NULL) { cout<data; preOrder(T–>lchild); preOrder(T–>rchild); } } return ok; }

基于二叉树模型的期权定价

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (3) 1.1 背景介绍 (3) 1.2 本文的主题 (4) 第二章预备知识 (5) 2.1 期权 (5) 2.2二叉树方法 (6) 2.2.1 方法概述 (6) 2.2.2 二叉树方法的优点和缺点 (9) 2.2.3 风险中性定价 (9) 2.3 Black-Scholes 期权定价模型 (11) 错误!未定义书签。 错误!未定义书签。 错误!未定义书签。 错误!未定义书签。

第三章本论 (14) 3.1期权定价的二叉树模型 (14) ................................................ 错误!未定义书签。 ................................................ 错误!未定义书签。 ................................................ 错误!未定义书签。 ................................................ 错误!未定义书签。 3.2 例子模拟计算和结果分析 (18) 3.3 模型改进——三叉树 (19) 第四章结论...................................... 错误!未定义书签。谢辞及参考文献 (23) 谢辞 (23) 参考文献 (23) 附录 (25) 计算过程中涉及算法 (25)

摘要 Black-Scholes 期权定价模型为期权定价尤其是欧式期权定价提供了良好的解析结果,而Black-Scholes 公式是此模型的核心,但是此公式并不能很好地求解出在很多衍生模型例如亚式期权以及美式期权中的解析解。二叉树方法作为一种数值方法,同时也是图论中一种重要方法,应用于期权定价问题中,它有了更特别的演变。本文利用二叉树方法计算期权定价的数值解,用二叉树方法迭代多次,求出较为准确的期权价格。通过B-S公式得出的结果与二叉树方法得到的结论对比,分析二叉树方法模拟的优点和缺点。同时,我们还要研究二叉树模拟的步数与预测结果和精度间的关系,从而更加深入了解二叉树方法。然而,我们在模型中设立了许多条件,这些都使模型离真实情况越来越远,我们必须不断发展模型,完善模型。三叉树方法正是二叉树方法的合适补充。 关键词:二叉树方法,Black-Scholes 模型,风险中性定价

完全二叉树的顺序存储

1 完全二叉树的顺序存储 #include #include class treenode { public: char data; int left, right, parent; treenode(){left=right=parent=-1;} }; int n; //全局变量 void creattree(char a[],treenode t[]) //建二叉树 { for(int i=0;a[i]!='\0';i++) { t[i].data=a[i]; if(2*i+1=n) cout<<"该树中无"<

各类型二叉树例题说明

5.1树的概念 树的递归定义如下:(1)至少有一个结点(称为根)(2)其它是互不相交的子树 1.树的度——也即是宽度,简单地说,就是结点的分支数。以组成该树各结点中最大的度作为该树的度,如上图的树,其度为3;树中度为零的结点称为叶结点或终端结点。树中度不为零的结点称为分枝结点或非终端结点。除根结点外的分枝结点统称为内部结点。 2.树的深度——组成该树各结点的最大层次,如上图,其深度为4; 3.森林——指若干棵互不相交的树的集合,如上图,去掉根结点A,其原来的二棵子树T1、T2、T3的集合{T1,T2,T3}就为森林; 4.有序树——指树中同层结点从左到右有次序排列,它们之间的次序不能互换,这样的树称为有序树,否则称为无序树。 5.树的表示 树的表示方法有许多,常用的方法是用括号:先将根结点放入一对圆括号中,然后把它的子树由左至右的顺序放入括号中,而对子树也采用同样的方法处理;同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔开,最后用闭括号括起来。如上图可写成如下形式: (A(B(E(K,L),F),C(G),D(H(M),I,J))) 5. 2 二叉树 1.二叉树的基本形态: 二叉树也是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态: (1)空二叉树——(a); (2)只有一个根结点的二叉树——(b); (3)右子树为空的二叉树——(c); (4)左子树为空的二叉树——(d); (5)完全二叉树——(e) 注意:尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。 2.两个重要的概念: (1)完全二叉树——只有最下面的两层结点度小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树; (2)满二叉树——除了叶结点外每一个结点都有左右子女且叶结点都处在最底层的二叉树,。 如下图: 完全二叉树 1页

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》 实验报告 实验题目 二叉树的基本操作及运算 一、需要分析 问题描述: 实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。 问题分析: 二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。处理本问题,我觉得应该:

1、建立二叉树; 2、通过递归方法来遍历(先序、中序和后序)二叉树; 3、通过队列应用来实现对二叉树的层次遍历; 4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等; 5、运用广义表对二叉树进行广义表形式的打印。 算法规定: 输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。 输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。对二叉树的一些运算结果以整型输出。 程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。 测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E 预测结果:先序遍历ABCDEGF 中序遍历CBEGDFA 后序遍历CGEFDBA 层次遍历ABCDEFG 广义表打印A(B(C,D(E(,G),F))) 叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2 查找5,成功,查找的元素为E 删除E后,以广义表形式打印A(B(C,D(,F))) 输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B 预测结果:先序遍历ABDEHCFG 中序遍历DBHEAGFC 后序遍历DHEBGFCA 层次遍历ABCDEFHG 广义表打印A(B(D,E(H)),C(F(,G))) 叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3 查找10,失败。

二叉树习题及答案

1.设一棵完全二叉树共有699个结点,则在该二叉树中的叶子结点数? 1根据“二叉树的第i层至多有2^(i ? 1)个结点;深度为k的二叉树至多有2^k ? 1个结点(根结点的深度为1)”这个性质: 因为2^9-1 < 699 < 2^10-1 ,所以这个完全二叉树的深度就是10,前9层就是一个满二叉树, 这样的话,前九层的结点就有2^9-1=511个;而第九层的结点数就是2^(9-1)=256 所以第十层的叶子结点数就是699-511=188个; 现在来算第九层的叶子结点个数。 由于第十层的叶子结点就是从第九层延伸的,所以应该去掉第九层中还有子树的结点。因为第十层有188个,所以应该去掉第九层中的188/2=94个; 所以,第九层的叶子结点个数就是256-94=162,加上第十层有188个,最后结果就是350个 2完全二叉树:若二叉树中最多只有最下面两层的结点的度可以小于2,并且最下面一层的结点(叶结点)都依次排列在该层最左边的位置上,这样的二叉树为完全二叉树。 比如图: 完全二叉树除叶结点层外的所有结点数(叶结点层以上所有结点数)为奇数,此题中,699就是奇数,叶结点层以上的所有结点数为保证就是奇数,则叶结点数必就是偶数,这样我们可以立即选出答案为B! 如果完全二叉树的叶结点都排满了,则就是满二叉树,易得满二叉树的叶结点数就是其以上所有层结点数+1比如图: 此题的其实就是一棵满二叉树,我们根据以上性质,699+1=700,700/2=350,即叶结点数为350,叶结点层以上所有结点数为350-1=349。 3完全二叉树中,只存在度为2的结点与度为0的结点,而二叉树的性质中有一条就是:n0=n2+1;n0指度为0的结点,即叶子结点,n2指度为2的结点,所以2n2+1=699 n2=349;n0=350 2.在一棵二叉树上第5层的结点数最多就是多少 一棵二叉树,如果每个结点都就是就是满的,那么会满足2^(k-1)1。 所以第5层至多有2^(5-1)=16个结点! 3、在深度为5的满二叉树中,叶子结点的个数为 答案就是16 ~ 叶子结点就就是没有后件的结点~ 说白了~ 就就是二叉树的最后一层~ 深度为K的二叉树~ 最多有2^k-1个结点~ 最多有2^(k-1)个结点~ 所以此题~ 最多有2^5-1=31个结点~ 最多有2^(5-1)=16个叶子结点~ 4、某二叉树中度为2的结点有18个,则该二叉树中有几个叶子结点? 结点的度就是指树中每个结点具有的子树个数或者说就是后继结点数。 题中的度为2就是说具有的2个子树的结点; 二叉树有个性质:二叉树上叶子结点数等于度为2的结点数加1。 5、在深度为7的满二叉树中,度为2的结点个数为多少, 就就是第一层只有一个节点,她有两个子节点,第二层有两个节点,她们也都有两个子节点以此类推,所以到第6层,就有2的5次方个节点,她们都有两个子节点 最后第7层都没有子节点了。因为就是深度为7的。 所以就就是1+2+4+8+16+32了

相关主题