搜档网
当前位置:搜档网 › 可聚合表面活性剂的研究进展_熊娉婷

可聚合表面活性剂的研究进展_熊娉婷

可聚合表面活性剂的研究进展_熊娉婷
可聚合表面活性剂的研究进展_熊娉婷

表面活性剂

表面活性剂总结 表面活性剂(surfactant),是指加入少量能使其溶液体系的界面状态发生明显变化的物质。具有固定的亲水亲油基团,在溶液的表面能定向排列。表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为憎水基团;亲水基团常为极性基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,羟基、酰胺基、醚键等也可作为极性亲水基团;而憎水基团常为非极性烃链,如8个碳原子以上烃链。表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。 结构: 传统观念上认为,表面活性剂是一类即使在很低浓度时也能显著降低表(界)面张力的物质。随着对表面活性剂研究的深入,一般认为只要在较低浓度下能显著改变表(界)面性质或与此相关、由此派生的性质的物质,都可以划归表面活性剂范畴。无论何种表面活性剂,其分子结构均由两部分构成。分子的一端为非极亲油的疏水基,有时也称为亲油基;分子的另一端为极性亲水的亲水基,有时也称为疏油基或形象地称为亲水头。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,便又不是整体亲水或亲油的特性。表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。 根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。 性质: 表面活性剂通过在气液两相界面吸附降低水的表面张力,也可以通过吸附在液体界面间来降低油水界面张力。许多表面活性剂也能在本体溶液中聚集成为聚集体。 囊泡和胶束都是此类聚集体。表面活性剂开始形成胶束的浓度叫做临界胶束浓度或CMC。当胶束在水中形成,胶束的尾形成能够包裹油滴的核,而它们的(离子/极性)头能够形成一个外壳,保持与水接触。表面活性剂在油中聚集,聚集体指的是反胶束。在反胶束中,头在核,尾保持与油的充分接触。表面活性剂通常分为四大类:阴离子,阳离子,非离子和两性离子(双电子)。表面活性剂系统的热动力学很重要,不论是理论上还是实践上。因为表面活性剂系统代表的是介于有序和无序物质状态之间的系统。表面活性剂溶液可能含有有序相(胶束)和无序相(自由表面活性剂分子和/或离子)。胶束——表面活性剂分子的亲脂尾端聚于胶束内部,避免与极性的水分子接触;分子的极性亲水头端则露于外部,与极性的水分子发生作用,并对胶束内部的憎水基团产生保护作用。形成胶束的化合物一般为两亲分子,因此一般胶束除可溶于水等极性溶剂以外,还能以反胶束的形式溶于非极性溶剂中。 比如,常用的洗涤剂能够提高水在土壤中的渗透能力,但是效果仅仅持续数日(许多标准洗衣粉含有一定量的化学品,比如钠和溴,由于它们会破坏植物,不适于土壤)。商业土壤润湿剂会持续起效果一段时间,最终还是会被微生物降解。然而,有一些会对水生物的生物循环产生影响,因此必须小心防止这些产品流入地表径流,过量产品不应该洗消。

表面活性剂最新研究进展

表面活性剂最新研究进展 人类的日常生活,各类生产活动,多种科学和技术的进步对表面活性剂品种和性能提出越来越高的要求,促使表面活性剂科学不断发展,迄今方兴未艾,表面活性剂已经深入到生命起源以及膜材料、纳米材料、对映体选择性的反应等各个领域中,设计新的有特殊用途和应用价值的表面活性分子仍不断受到人们的关注。新的功能型表面活型剂与附加的官能基团的性质和位置有密切关系, 对传统的表面活性剂分子结构的修饰会导致其结构形态有很大的变化,近几年国内外的相关研究单位在表面活性剂领域的最新研究进展主要有以下方面。 一、高分子表面活性剂 高分子表面活性剂的合成成为近年来表面活性剂合成研究的热点课题之一。高分子表面活性剂是相对一般常言的低相对分子质量表面活性剂而讲的,通常指相对分子质量大于1000且具有表面活性功能的高分子化合物。它像低分子表面活性剂一样,由亲水部分和疏水部分组成。高分子表面活性剂具有分散、凝聚、乳化、稳定泡沫、保护胶体、增溶等性质,广泛应用作胶凝剂、减阻剂、增黏剂、絮凝剂、分散剂、乳化剂、破乳剂、增溶剂、保湿剂、抗静电剂、纸张增强剂等。因此,高分子表面活性剂近年来发展迅速,目前已成为表面活性剂的重要发展方向之一。 高分子表面活性剂可根据在水中电离后亲水基所带电荷分为阴离子型、阳离子型、两性离子型和非离子型四类高分子表面活性剂。如阴离子型的高分子表面活性剂有聚(甲基)丙烯酸(钠)、羧甲基纤维素(钠)、缩合萘磺酸盐、木质素磺酸盐、缩合烷基苯醚硫酸酯等。两性离子型的高分子表面活性剂有丙烯酸乙烯基吡啶共聚物、丙烯酸-阳离子丙烯酸酯共聚物、两性聚丙烯酰胺等。非离子型的高分子表面活性剂有羟乙基纤维素、聚丙烯酰胺、聚乙烯吡咯烷酮、聚氧乙烯类共聚物等。阳离子型的高分子表面活性剂有聚烯烃基氯化铵阳离子表面活性剂、亚乙基多胺与表氯醇共聚季铵盐、淀粉或纤维素高取代度季铵盐、多聚季铵盐、聚多羧基季铵盐等。 开发低廉、无毒、无污染和一剂多效的高分子表面活性剂将是今后高分子表面

表面活性剂洗涤剂的成分及性能

表面活性剂洗涤剂的成分及性能 表面活性剂洗涤剂又称水剂清洗剂,一般是由表面活性剂、洗涤助剂和添加剂组成的; 一、表面活性剂 1.主要表面活性剂品种 表面活性剂是水剂清洗剂中的主要成分,通常使用的主要有以下品种。 (阴离子表面活性剂目前洗涤剂中仍大量使用阴离子表面活性剂,而非离子表面活性剂的用量正在日益增加,阳离子和两性离子表面活性剂则使用量较少。这主要是由表面活性剂的性能和经济成本决定的 最早使用的阴离子表面活性剂是肥皂,曲于它对硬水比较敏感,生成的钙、镁皂会沉积在织物和洗涤用具的器壁上影响清洗效果,因此已被其他表面活性剂所取代。目前肥皂主要在粉状洗涤剂做泡抹调节剂使用,由于它易于与碱土金属离子结合,所以在与其他表面活性剂结合使用时,可起到“牺牲剂”作用,以保证其他表面活性剂作用充分发挥。 直链烷基苯磺酸钠盐(LAS) 由于有良好的水溶性,较好的去污和泡沫性,比四聚丙烯烷基苯磺酸盐(ABS)的生物降解性好,而且价格较低,所以是目前洗涤剂配方中使用最多的阴离子表面活性剂。 其他一些常用的阴离子表面活性剂有仲烷基磺酸盐(SAS)、α—烯烃磺酸盐(AOS)、醇硫酸盐(FAS)、—磺基脂肪酸酯盐(MES)、脂肪酸聚氧乙烯醚硫酸盐(AES),虽然可以渭单独作为洗涤剂主成分,但通常是与直链烷基苯磺酸盐配合使用。 其中仲烷基磺酸盐(SAS)水溶性比LAS好,不会水解广陛能稳定,常用于配制液体浙溜α—烯烃磺酸盐(AOS)抗硬水性、泡沫性、去污性好,对皮肤刺激性低牛因此多用于皮肤清洁剂。其中尤以含碳原子数在14~18的α—烯烃磺酸盐性能最好。 脂肪醇硫酸盐(FAS)是重垢洗涤剂中常用的阴离子表面活性剂,有去污力强的优点厂它的缺点是对硬水比较敏感,因此使用的配方中必须加螯合剂。 d—磺基脂肪酸酯盐(MES)是以油脂等天然原料制成的,生物降解性好,对人体安全,是近年来开发的新品种,随着人们对保护环境的重视,它日益受到人们的重视二MES是一种对硬水敏感性低、钙皂分散力好,洗涤性能优良的新品种,缺点是会水解,使用时要加入适当稳定剂。 脂肪醇聚氧乙烯醚硫酸盐(AES),兼有阴离子非离子表面活性剂的特点,在硬水中仍有较好的去污力,形成的泡沫稳定,在液体状态下有较高稳定性,因此广泛用于配制各种液体洗涤剂。 (2)非离子表面活性剂洗涤剂中使用最多的非离子表面活性剂是脂肪醇聚氧乙烯醚(AEO)。它在较低浓度下就有良好的去污能力和对污垢的分散力,而且抗硬水性能好,具有独特的抗污垢再沉积作用。 过去常使用的烷基酚聚氧乙烯醚(APEO)虽然与脂肪醇,聚氧乙烯醚有类似的性能,但由于其生物降解性能差,目前在洗涤剂中用量正在减少。 烷醇酰胺配制的洗涤剂有丰富而稳定的泡沫,而且与其他表面活性剂有良好协同作、用,有利改进洗涤剂在低浓度和低温下的去污力,因此常做洗涤剂的配伍成分。 氧化胺水溶性好,与LAS配伍好,对皮肤刺激性低,有良好的泡沫稳定作用。缺点是热稳定性差,价格高,目前多用于配制液体洗涤剂。 两性离子表面活性剂虽然有良好的去污能力,但由于价格较高,目前只在个人卫生用品和特殊用途洗涤剂中有少量使用。阳离子表面活性剂去污性较差但柔软、杀菌、抗静电性能优良,因此把阳离子表面活性剂和非离子表面活性剂配合可制成兼有洗涤功能与柔软、消毒

Silwet系列高效有机硅表面活性剂

Silwet系列高效有机硅表面活性剂 GE-东芝有机硅 GE-TOSHIBA SILICONES

Silwet 系列高效有机硅表面活性剂 GE -东芝有机硅 GE -TOSHIBA SILICONES 一﹑Silwet 系列高效有机硅表面活性剂简介 Silwet 系列高效有机硅表面活性剂(GE 有机硅农用助剂)是美国GE (美国通用电气公司)开发的,基于烷氧基改性聚三硅氧烷的表面活性剂. 其中代表性的Silwet408的物理特性如下: 表面张力(0.1%) 20.5mN/m 浊点(0.1%) <10℃ 粘度 (25℃) 20cSt 临界胶束浓度 0.007%(重量比) 流点 -8℃ 比重(25/25℃) 1.007 闪点 116℃

Silwet系列高效有机硅表面活性剂,作为新一代的农用喷雾助剂,使农药使用与药效发挥发生了划时代的变革,使水基制剂低容量喷雾成为可能.有机硅表面活性剂作为农药助剂使用始于20世纪六十年代,直到20世纪八十年代才开始在农业上进行商业性的推广应用.目前在国外已大量使用,图一是在美国有机硅的销售情况. 图一 Silwet系列高效有机硅表面活性剂于2001年进入中国市场,但只是小规模使用(主要在纺织和印染方面应用).2004年开始应用于农业领域,2006的使用量开始大幅上升,预计在中国有广阔的市场应用前景.

Silwet系列高效有机硅表面活性剂有以下主要的特点: ?超级展扩剂 ?极大降低水的表面张力,降低药液和生物靶标的接触角 ?增加喷雾药液覆盖面 ?促进喷雾药液快速吸收 ?抗雨水冲刷 ?提高农药的有效利用率,降低农药投放量(减少农药使用量30-50%) ?符合环保要求 Silwet系列高效有机硅表面活性剂结构特殊,能够极大的降低水的表面张力(水的表面张力为72.4mN/m,0.1%的Silwet系列有机硅溶液的表面张力约为21mN/m,而常规的碳氢表面活性剂溶液的最低表面张力约为30mN/m),这使Silwet系列表面活性剂成为超级扩展剂. Silwet系列有机硅溶液可轻易湿润几乎所有种类的叶面,相对于传统助剂,显著提高了在靶标生物的覆盖面.同时,Silwet系列有机硅助剂具有极强的耐雨水冲刷及渗透能力,能显著提高农药的有效利用率,提高药效30-50%(减少使用量30-50%).毒性小,对环境安全. Silwet系列高效表面活性剂可应用于除草剂﹑杀虫剂﹑杀菌剂﹑职务生长调节剂﹑叶面肥和生物药剂的配方中,也可桶混使用. 目前GE公司投放在中国市场的主要有Silwet408, Silwet806,Silwet618和Silwet625, Silwet L-77.另外有SAG1522,SAG1571农用

总结常见表面活性剂的CMC.doc

一些常用表面活性剂的临界胶束浓度 当表面活性剂溶液达到临界胶束浓度时,除溶液的表面张力外,溶液的多种物理化学性质,如摩尔电导、粘度、渗透压、密度、光散射等也发生急剧变化。利用这些性质与表面活性剂度之间的关系,可以推测出表面活性剂的临界胶束浓度。但采用不同的测定方法得到的临界胶束浓度在数值上可能会有所差别。而且其数值也受温度、浓度、电解质、pH等因素的影响而发生变化。表2—14列出了一些常用表面活性剂的临界胶束浓度。 名称测定温度,℃CMC,mol/L 氯化十六烷基三甲基铵25 1.60×10-2 溴化十六烷基三甲基铵9.12×10-5 溴化十二烷基三甲基铵 1.60×10-2 溴化十二烷基代吡啶 1.23×10-2 辛烷基磺酸钠25 1.50×10-1 辛烷基硫酸钠40 1.36×10-1 十二烷基硫酸钠40 8.60×10-3 十四烷基硫酸钠40 2.40×10-3 十六烷基硫酸钠40 5.80×10-4 十八烷基硫酸钠40 1.70×10-4 硬脂酸钾50 4.5×10-4 油酸钾50 1.2×10-3 月桂酸钾25 1.25×10-2 十二烷基磺酸钠25 9.0×10-3 月桂醇聚氧乙烯(6)醚25 8.7×lO-5 月桂醇聚氧乙烯(9)醚25 1.0×10-4 月桂醇聚氧乙烯(12)醚25 1.4×10-4 十四醇聚氧乙烯(6)醚25 1.0×10-5 丁二酸二辛基磺酸钠25 1.24×10-2 氯化十二烷基胺25 1.6×10-2 对十二烷基苯磺酸钠25 1.4×10-2 月桂酸蔗糖酯 2.38×10-6 棕榈酸蔗糖酯9.5×10-5 硬脂酸蔗糖酯 6.6×10-5 吐温20 25 6×10-2(以下数据单位是g/L。) 吐温40 25 3.1×10-2 吐温60 25 2.8×10-2 吐温65 25 5.0×10-2 吐温80 25 1.4×10-2 吐温85 25 2.3×10-2

生物表面活性剂研究进展

生物表面活性剂研究进展 杨齐峰 (黄石理工学院,湖北,435000) 【摘要】:生物表面活性剂是由微生物分泌的天然产物,它无毒,可以生物降解,对环境影响很小,具有高效的表面活性,因此是合成表面活性剂的理想代替品。介绍了生物表面活性剂的特性及其生产制备方法,综述了近年生物表面活性剂在石油、洗涤、医药、食品等工业领域的应用与研究进展,主要介绍了利用生物表面活性剂在提高石油采收率等方面的应用,探讨了今后生物表面活性剂的主要发展方向。 【关键词】:生物表面活性剂;微生物;应用;发展趋势 Biosurfactant research progress Yangqifeng (Huangshi Institute of Technology School Hubei 435003)abstract:Biological surfactant is secreted by microbial natural products,it is avirulent,can biodegradation,a little influence and efficient surface activity,and is thus synthesis of surfactants ideal replacement. Introduces the characteristics and its biosurfactant production preparation methods,this paper reviews biosurfactant in petroleum,washing,pharmaceutical,food and other industrial areas of application and research progress,mainly introduced the use of biological surfactants in enhanced oil recovery of application,discusses the future biosurfactant the main development direction。 key words:biosurfactant;Microbial;application;development tendency 表面活性剂是一类能显著降低溶剂表面张力的物质,化学合成的表面活性剂都是以石油为原料化学合成而来的,在生产和使用过程中常常会给人类生存环境带来严重的污染,对人类的身体健康产生很大威胁。生物表面活性剂是从20世

减阻表面活性剂的研究进展

第24卷第1期2007年1月精细化工 FI NE C H E M I CAL S Vo.l24,No.1 J an.2007 表面活性剂 减阻表面活性剂的研究进展* 乔振亮,熊党生 (南京理工大学材料科学与工程系,江苏南京 210094) 摘要:介绍了表面活性剂减阻的机理。探讨了影响表面活性剂减阻效果的各种因素,包括:表面活性剂与补偿离子的结构及其浓度、管路系统的直径、流体的温度和速度以及环境中的金属离子。论述了表面活性剂的减阻与传热效率之间的关系;并且讨论了在使用减阻表面活性剂的循环系统中提高传热效率的方法。总结了减阻表面活性剂的一般特点。预测了减阻表面活性剂的发展趋势。引用文献35篇。 关键词:表面活性剂;减阻;传热效率 中图分类号:TQ423.99 文献标识码:A 文章编号:1003-5214(2007)01-0039-05 Progress i n D rag R educi ng Surfactant R esearch Q I A O Zhen li a ng,X I O NG Dang sheng (D e p ar t m ent of M aterial Science and E ngineer i ng,N anjin g Universit y of Science and T echnology,N anjing210094,J iangsu,China) Abstract:The m echanis m of drag reduc i n g surfactant is i n troduced.M any facto rs i n fluenc i n g t h e effectiveness o f drag reducing surfactant are addressed,such as surfactan,t counteri o n,concentra ti o n, dia m eter of c ircu lati n g syste m s,te m perature and velocity o f the fl u i d,and i o ns inside the recircu lation syste m s.The re l a ti o nship bet w een drag reduction and heat transfer ab ility i s discussed,and m ethods of i m prov i n g the effic i e ncy of heat transfer i n the recircu lation syste m s conta i n ing the drag reduci n g surfactan t are a lso described.Co mm on characteristics of drag reduc i n g surfactant are su mm arized. F i n ally,t h e developm ent trend of drag reduc i n g surfactant is i n d icated.35references are c ited. Key w ords:surfactan;t drag reduction;heat transfer ab ility 19世纪80年代的石油危机引起了人们对减阻技术的普遍关注,继而这一技术迅速应用于各个行业。主动减阻是一种向紊流中添加少量添加剂,使流体摩擦力大大降低的方法。流体的紊流被改变或者受到抑制,便产生了减阻的效果。 一些少量的高分子聚合物和阳离子表面活性剂可以加在水中降低紊流阻力,研究发现,紊流流动阻力最高可以降低80%[1]。所以,这一技术在远距离流体输送、城市供热制冷等领域具有良好的应用前景。虽然一些水溶性的高分子也可以用来减阻,但是在有工业泵的系统中,如果用水溶性高分子就存在着机械降解的问题,并且降解后分子结构无法恢复,使减阻能力下降。表面活性剂受大的剪切应力作用也会发生机械降解,但是它可以自行修复[2]。因此,在有机械力的场合,多用表面活性剂来进行减阻。 用来减阻的表面活性剂有阳离子、阴离子、两性离子等。阴离子表面活性剂做减阻剂使用时,易与水中的钙、镁离子形成沉淀而影响减阻效果;阳离子表面活性剂做减阻剂对水质要求不高,有更广泛的使用范围;在加热系统中用两性减阻表面活性剂也是一种增加经济效益的很有前途的方法[3]。在实际使用中最常用的表面活性剂是阳离子型和两性离子型两类。减阻表面活性剂的特殊重要性,使它受到广泛关注,国内许多人都做了相关研究[4~7]。 本文综述了减阻表面活性剂的研究进展。 *收稿日期:2006-06-19;定用日期:2006-09-08 作者简介:乔振亮(1970-),男,河南省巩义市人,博士研究生,师从熊党生教授,主要从事生物材料、仿生减阻材料的研究,电话:025-********,E-m ai:l q i aozhen liang@126.co m。

表面活性剂的理化性质

表面活性剂的理化性质和生物学性质 一、临界胶束浓度 当表面活性剂的正吸附到达饱和后继续加入表面活性剂,其分子则转入溶液中,因其亲油基团的存在,水分子与表面活性剂分子相互间的排斥力远大于吸引力,导致表面活性剂分子自身依赖范德华力相互聚集,形成亲油基团向内,亲水基团向外、在水中稳定分散、大小在胶体粒子范围的胶束(micelles)。在一定温度和一定的浓度范围内,表面活性剂胶束有一定的分子缔合数,但不同表面活性剂胶束的分子缔合数各不相同,离子表面活性剂的缔合数约在10~100,少数大于1000。非离子表面活性剂的缔合数一般较大,例如月桂醇聚氧乙烯醚在25℃的缔合数为5000。表面活性剂分子缔合形成胶束的最低浓度即为临界胶束浓度(critical micell concentration, CMC),不同表面活性剂的CMC不同,见表4-2。具有相同亲水基的同系列表面活性剂,若亲油基团越大,则CMC越小。在CMC 时,溶液的表面张力基本上到达最低值。在CMC到达后的一定范围内,单位体积内胶束数量和表面活性剂的总浓度几乎成正比。 表4-2 常用表面活性剂的临界胶束浓度 CMC/molL-1 名称测定温度/℃CMC/molL-1 名称测定温度 /℃ 25 1.6×10-2 辛烷基磺酸钠25 1.50×10-1氯化十二烷基 铵 辛烷基硫酸钠40 1.36×10-1月桂酸蔗糖 2.38×10-6 酯

十二烷基硫酸 钠40 8.60×10-3棕榈酸蔗糖 酯 9.5×10-5 十四烷基硫酸 钠40 2.40×10-3硬脂酸蔗糖 酯 6.6×10-5 十六烷基硫酸 钠40 5.80×10-4吐温20 25 6.0×10-2 (g/L,以下同) 十八烷基硫酸 钠 40 1.70×10-4吐温40 25 3.1×10-2 硬脂酸钾50 4.50×10-45吐温60 25 2.8×10-2油酸钾50 1.20×10-3吐温65 25 5.0×10-2月桂酸钾25 1.25×10-2吐温80 25 1.4×10-2 十二烷基磺酸 钠 25 9.0×10-3吐温85 25 2.3×10-2 (二)胶束的结构 在一定浓度范围的表面活性剂溶液中,胶束呈球形结构(图4-1a),其碳氢链无序缠绕构成内核,具非极性液态性质。碳氢链上一些与亲水基相邻的次甲基形成整齐排列的栅状层。亲水基则分布在胶束表面,由于亲水基与水分子的相互

17种常用表面活性剂

17种常用表面活性剂 月桂基磺化琥珀酸单酯二钠(DLS) 一、英文名:Disodium Monolauryl Sulfosuccinate 二、化学名:月桂基磺化琥珀酸单酯二钠 三、化学结构式: ROCO-CH2-CH(SO3Na)-COONa 四、产品特性 1. 常温下为白色细腻膏体,加热后(>70℃)为透明液体; 2. 泡沫细密丰富;无滑腻感,非常容易冲洗; 3. 去污力强,脱脂力低,属常见的温和性表面活性剂; 4. 能与其它表面活性剂配伍,并降低其刺激性; 5. 耐硬水,生物降解性好,性能价格比高。 五、技术指标: 1.外观(25℃)纯白色细腻膏状体 2.含量(%):48.0—50.0 3.Na2SO3(%):≤0.50 4.PH值(1%水溶液): 5.5—7.0 六、用途与用量: 1.用途:配制温和高粘度高度清洁的洗手膏(液)、泡沫洁面膏、泡沫洁面乳、泡沫剃须膏,也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。 2.推荐用量:10—60%。 脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠MES 一、英文名:Disodium Laureth(3) Sulfosuccinate 二、化学名:脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠 三、化学结构式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa 四、产品特性: 1.具有优良的洗涤、乳化、分散、润湿、增溶性能; 2.刺激性低,且能显著降低其他表面活性剂的刺激性; 3.泡沫丰富细密稳定;性能价格比高; 4.有优良的钙皂分散和抗硬水性能; 5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌)复配,形成十分稳定的体系,创制天然用品; 6.脱脂力低,去污力适中,极易冲洗且无滑腻感。 五、技术指标:

聚合物、表面活性剂与二元驱特点与机理

聚合物、表面活性剂及二元复合驱 一、聚合物、表面活性剂及二元复合驱特点分析 1、聚/表二元复合驱特点 ◆优点 (1)属于无碱体系,可以减少多价金属离子沉淀、岩石矿物溶蚀、井筒结垢、采 出原油破乳困难等现象。 (2)其粘度和弹性比三元体系高很多,因此其驱油效率和波及体积有可能更大, 采收率更高。 (3)可使用低分子量的聚合物,不需要加碱,减少了碱溶解岩石中的粘土而产生 的地层伤害问题,具有更宽的油藏适用范围。 (4)现场配置设备和工艺比三元体系简单,更适合海上油田应用。 (5)化学药剂成本比三元体系低,相应的投资成本降低。 (6)相同条件下,聚/表二元复合体系注入压力比聚合物驱低,有利于矿场实施。 ◆缺点 (1)对表面活性剂的要求严格,必须在无碱无盐的条件下使体系达到低(超低)界 面张力,以增加体系的洗油效率,因而能够促进一系列新的、效果更好的驱油用表面活性剂的研制、开发和生产。 (2)认为油水平衡界面张力只有达到10-3 mN/m数量级的超低值,才能大幅度地 提高采收率,这就大大缩小了选择表面活性剂的范围。在此基础上,还要考虑表面活性剂在高矿化度的地层水中具有理想的溶解性。 (3)由于温度和盐度使得聚合物分子在地层水中的构相呈收缩和卷曲状态,使得 复合体系的表观粘度较低。为了能使油层的波及效率达到理想的效果,不得不大幅度地提高聚合物的用量,最终导致聚合物的用量成倍增加,从而大幅度降低了复合驱的经济效果。

理论上讲,由于聚合物的加入,聚/表二元复合驱能够较好的控制流度,而表面活性剂的低界面张力性质,能够促使残余油的启动,因此能够既扩大波及体积又能提高微观驱油效率。如果驱油体系选择适当,能够比聚合物多采出由于界面张力降低而采出的油,其驱油效果不小于三元复合驱,同时还能够减少乳化对产能和乳化液处理带来的负面影响,消除了三元复合驱中含碱带来的结垢等一系列问题。 2、聚合物驱的特点 ◆优点 聚合物驱的优点为既能提高驱油效率,又能提高波及体积,并能较大幅度地降低表面活性剂的用量,从而使其具有技术经济可行性。 ◆缺点 聚合物注入油层后, 在高温条件下会发生热降解和进一步水解, 破坏聚合物的稳定性, 大大降低聚合物的驱油效果。同时地层水和注入水矿化度低有利聚合物增粘。因为水的矿化度高, 可导致聚合物的粘度降低, 增加聚合物的注入量, 从而增加成本, 不利于聚合物驱油的应用。 其他可参考信息 聚合物驱主要指在注入的水中加入增稠剂,提高水的黏度,降低水的流速,增大波及系数,改善驱油效率。选择水溶性聚合物,使之即使在很低的浓度下也可在很大程度上提高体系的黏度。聚合物驱适用于适中温度、中等原油黏度(5 mPa·s~100 mPa·s)且分均质比较严重的油藏。 聚合物驱是一种提高采收率的方法,在宏观上,它主要靠增加驱替液粘度,降低驱替液和被驱替液的流度比,从而扩大波及体积;在微观上,聚合物由于其固有的粘弹性,在流动过程中产生对油膜或油滴的拉伸作用,增加了携带力,提高了微观洗油效率。 近年来,研制出具有耐温、耐盐、抗剪切的新型疏水缔合水溶性聚合物。它是聚合物亲水性大分子链上带少量疏水基团的一类水溶性聚合物。由于疏水基团

表面活性剂的理化性质和生物学性质

表面活性剂的理化性质和生物学性质

表面活性剂的理化性质和生物学性质 一、临界胶束浓度 当表面活性剂的正吸附到达饱和后继续加入表面活性剂,其分子则转入溶液中,因其亲油基团的存在,水分子与表面活性剂分子相互间的排斥力远大于吸引力,导致表面活性剂分子自身依赖范德华力相互聚集,形成亲油基团向内,亲水基团向外、在水中稳定分散、大小在胶体粒子范围的胶束(micelles)。在一定温度和一定的浓度范围内,表面活性剂胶束有一定的分子缔合数,但不同表面活性剂胶束的分子缔合数各不相同,离子表面活性剂的缔合数约在10~100,少数大于1000。非离子表面活性剂的缔合数一般较大,例如月桂醇聚氧乙烯醚在25℃的缔合数为5000。表面活性剂分子缔合形成胶束的最低浓度即为临界胶束浓度(critical micell concentration, CMC),不同表面活性剂的CMC不同,见表4-2。具有相同亲水基的同系列表面活性剂,若亲油基团越大,则CMC 越小。在CMC时,溶液的表面张力基本上到达最低值。在CMC到达后的一定范围内,单位体积内胶束数量和表面活性剂的总浓度几乎成正比。 表4-2 常用表面活性剂的临界胶束浓度 名称测定温度 /℃ CMC/molL-1 名称测定温度/℃CMC/molL-1 辛烷基磺酸 钠25 1.50×10-1氯化十二烷基 铵 25 1.6×10-2 辛烷基硫酸 钠40 1.36×10-1月桂酸蔗糖 酯 2.38×10-6

十二烷基硫 酸钠40 8.60×10-3棕榈酸蔗糖 酯 9.5×10-5 十四烷基硫 酸钠40 2.40×10-3硬脂酸蔗糖 酯 6.6×10-5 十六烷基硫 酸钠40 5.80×10-4吐温20 25 6.0×10-2 (g/L,以下同) 十八烷基硫 酸钠 40 1.70×10-4吐温40 25 3.1×10-2 硬脂酸钾50 4.50×10-45吐温60 25 2.8×10-2 油酸钾50 1.20×10-3吐温65 25 5.0×10-2月桂酸钾25 1.25×10-2吐温80 25 1.4×10-2 十二烷基磺 酸钠 25 9.0×10-3吐温85 25 2.3×10-2 (二)胶束的结构 在一定浓度范围的表面活性剂溶液中,胶束呈球形结构(图4-1a),其碳氢链无序缠绕构成内核,具非极性液态性质。碳氢链上一些与亲水基相邻的次甲基形成整齐排列的栅状层。亲水基则分布在胶束表面,由于亲水基与水分子的

表面活性剂LAS废水处理研究进展

表面活性剂LAS 废水处理研究进展 作者:姜安玺, … 文章来源:本站收集 点击数: 64 更新时间:2008-2-17 荐 近年来我国洗涤剂工业发展迅速,其产量逐年增加。1985年我国合成洗涤剂产量为100.4万T,1990年为151.4万T,1995 年已达221.8万T,2000年为382.8万T,2005年预计为460万T 。 目前我国应用比较多的表面活性剂有:阴离子表面活性剂(以直链烷基苯磺酸钠LAS 为主)占总量的70%;非离子表面活性剂占总量的20%;其他占10%。合成洗涤剂用途广泛,几乎涉及到家庭生活、工农业生产的各个方面,最后大部分形成乳化胶体状废水排入自然界,其首要污染物LAS 进入水体后,与其他污染物结合在一起形成一定的分散胶体颗粒,对工业废水和生活污水的物化、生化特性都有很大影响。因此对于表面活性剂LAS 的处理是这类乳化胶体废水的共同要求,该类废水可称之为表面活性剂(LAS)废水。LAS 废水的处理对于保护资源,保持生态平衡,促进经济发展,都具有重要意义。表面活性剂废水的来源除了合成洗涤剂生产过程中排放大量的LAS 废水外,洗涤、化工、纺织等行业和日常生活中都会产生LAS 废水。其特点主要有以下3点。1)废水中除含有表面活性剂LAS 和其乳化携带的胶体性污染物外,还含有混合助剂、漂白剂和油类物质;废水中的LAS 以分散和胶粒表面吸附两种形式存在。2)废水一般偏碱性,pH 值约为8~11;废水中LAS 含量有的高达上千mg/L,如洗毛废水,有的只有十几mg/L,如洗浴废水;COD 值差异也很大,从几百到几万甚至十几万mg/L 。3)废水中的LAS 会造成水面产生大量不易消失的泡沫。废水中的LAS 本身有一定的毒性,对动植物和人体有慢性毒害作用,LAS 还会引起水中传氧速率降低,使水体自净受阻。另外,废水产生的泡沫也会影响环境卫生和美观。目前对LAS 废水的处理除了原有的物化和生化法外,还有膜分离、微电解等新方法,并得到了一定的应用。本文简要总结了目前我国LAS 废水的处理技术现状,并探讨了该类废水处理技术的发展方向。 1 处理方法进展 根据对废水中LAS 的破坏性,可以将处理技术分为两类,“非破坏性”技术,即分离法,包括混凝分离法、泡沫分离法、膜分离法、吸附法;“破坏性”技术,即氧化分解法,包括催化氧化法、微电解法、生物氧化法。 1.1 混凝分离法 常用的混凝剂包括无机混凝剂和有机混凝剂两大类:其中无机混凝剂主要是铁盐、铝盐及其聚合物。目前国内研究主要集中在对原有混凝剂的复配使用和新型混凝剂的开发上,如用铝铁复合混凝剂处理COD 为684mg/L 、LAS 为160mg/L 的废水。与传统的聚铁、聚铝混凝剂相比,COD 、LAS 的去除率可提高6%、8%左右,同时沉降速度、污泥量都有所改善[4]。有机混凝剂包括阳离子高分子混凝剂,两性有机高分子混凝剂,阴离子型高分子混凝剂和非离子型混凝剂。其中阳离子型混凝剂二甲基二烯丙基氯化铵(DMDAAC)作为水处理剂在国内用得不多,而在国外应用极为广泛,几乎涉及工业废水、生活污水以及饮用水的各个方面。今后混凝剂的开发应以现有混凝剂为基础,在混凝剂 的结

表面活性剂的基本知识

表面活性剂的基本知识(2009/08/30 22:46) 表面活性剂的基本知识 12.9.1 表面活性剂的基本性质 表面活性剂分子结构的特点是具有不对称性,即由一亲水基和另一憎水基(或称亲油基)组成。例如棕榈酸钠(C15H31COONa)的结构可分为如图12-31所示的亲水基和憎水基部分: 图12-31 棕榈酸钠的两亲性结构 表面活性剂的用途十分广泛,以下仅就其基本性质、结构和主要应用方面作一简单介绍。 实验证实,在低浓度时,溶液的表面力随着浓度增大近乎线性地下降,然而,在高浓时,则表现出不同寻常的物理性质。如图12-32所示,当达某一界限浓度时,某些物理性质如表面力、比电导、摩尔电导、渗透压以及浊度等,都发生了突然的变化。其中,渗透压随浓度增大的幅度反常地变低,说明在溶液中有某种缔合现象发生;而溶液比电导仍然随浓度增大而增大,说明电离作用还在继续进行。麦克拜因认为这种象是"反常"的行为可用"胶束"(Micelles)的形成解释之。在水溶液中十二烷基硫酸钠电离成为十二烷基硫酸根阴离子和钠离子,前者既有吸附于表面上让其憎水基朝着空气而亲水基朝着水相的倾向,也存在着形成如图12-33所示的憎水基朝而亲水基朝外的"胶

束"的倾向。当表面活性剂浓度低时,表面活性离子多数集结于表面上,少数溶于溶液中形成小型胶束。而达一定界限浓度时,表面活性离子无法再进入表面层,只能采取形成胶束的形式以使体系趋于稳定。(参考图12-34(动画观看))。胶束相当于一种"缔合分子",故"缔合现象"使渗透压随浓度变化规律发生明显的变化。然而尽管发生缔合现象,十二烷基硫酸钠电离成为十二烷基硫酸根离子和钠离子的过程仍在继续,故电导仍不断增大(图12-30)。 相当于图12-30所示各项物理性质产生突变的浓度,称为"临界胶束浓度"以"C.M.C"表示。临界胶束浓度在实验中往往表现为并非一敏锐的浓度值,而为一狭窄的浓度区域。298K 时十二烷基硫酸钠的C.M.C 值约为0.008mol·dm-3 。 根据条件不同,可形成各种不同形状的胶束,如图12-35所示。 图12-33 球状胶束 图12-34 胶束形成过程与表面活性剂浓度的关系 图12-35 各种胶束形状实例

常用表面活性剂汇总

商品名化学名中文名类型HLB Span 85 Sorbitan tribleate失水山梨醇三油酸酯非离子 1.8 Span 65 soibitan tristearate失水山梨醇三硬脂酸酯非离子 2.1 Span 80sorbitan monoo1eate失水山梨醇单油酸酯非离子 4.3 (O/W) Span 60sorbitan monostearate失水山梨醇单硬脂酸酯非离子 4.7 Span 40sorbitan monopalmitate失水山梨醇单棕榈酸酯非离子 6.7 Span 20sorbitan monolaurate失水山梨醇月桂酸酯非离子8.6 Tween 81Polyoxyethylene sorbitan monooleate聚氧乙烯(5EO)失水山梨醇单油酸酯非离子10.0 Tween 65Polyoxyethylene sorbitan tristearate聚氧乙烯(20EO)失水山梨醇三硬脂酸酯非离子10.5 Tween 85polyoxyethylenesorbitan trioleate聚氧乙烯(20EO)失水山梨醇三油酸酯非离子11.0 Tween 60polyoxyethylene sorbitan monostearate聚氧乙烯(20EO)失水山梨醇单硬脂酸酯非离子14.9 Tween 21polyoxyethylene sorbitan monolaurate聚氧乙烯(4EO)失水山梨醇单月桂酸酯非离子13.3 Tween 80 polyoxyethylene sorbitan monostearate聚氧乙烯(20EO)失水山梨醇单油酸酯非离子15.0 Tween 40polyoxyethylene sorbitan monopalmitate聚氧乙烯(20EO)失水山梨醇单棕榈酸酯非离子15.6 Tween 20Polyoxyethylene sorbitan monolaurate聚氧乙烯(20EO)失水山梨醇单月桂酸酯非离子16.7 普兰尼克Pluronic L31/L35/L38/L42/L43/L44/L61 /L62/L63/L64/L65/L72/L81/L92 /L94/L101/L121/L122/L123 F68/F77/F87/F88/F98/F108/F127 P75/P84/P85/P103/P104/P105 聚氧乙烯聚氧丙烯醚嵌段共聚物 PO-EO嵌段共聚:PE3100/PE4200 /PE4300/PE6100/PE6200/PE6400 /PE6800/PE8100/PE9200/PE10100 /PE10300/PE10500/RPE1740/ RPE2520/RPE3110 非离子 Atlas G-1050 polyoxyethylene sorbitol hexastearate聚氧乙烯山梨醇六硬脂酸酯非离子 2.6 Atlas G-1706 Polyoxyethylene sorbitol beeswax derivative聚氧乙烯山梨醇蜂蜡衍生物非离子 2.0 AtlasG-2859Polyoxyethyle esorbitol 4,5 oleate聚氧乙烯山梨醇4.5油酸酯非离子 3.7 Atlas G-2158 Propylene glycol fatty acid ester丙二醇单硬脂酸酯非离子 3.4 Atlas G—917propylene glycol monolaurate丙二醇单月桂酸酯非离子 4.5 AtlasG-385l propylene glycol monolaurate丙二醇单月桂酸酯非离子 4.5 AtlasG-2146diethylene glycol monostearate二乙二醇单硬脂酸酯非离子 4.7 AtlasG-1702polyoxyethylene sorbitol beeswax derivative聚氧乙烯山梨醇蜂蜡衍生物非离子 5.0 AtlasG-1725polyoxyethylene sorbitol beeswax derivative聚氧乙烯山梨醇蜂蜡衍生物非离子 6.0 第 1 页共4 页

聚醚高分子表面活性剂的性质

聚醚高分子表面活性剂的性质(胶束化) PEO-PPO-PEO嵌段共聚物是典型的高分子表面活性剂,与小分子表面活性剂的性质不同,如胶束内核含有大量的水、外界因素对胶束结构有显著影响等: 另一方面PEO-PPO-PEO嵌段共聚物具有温度敏感胶束化、温度敏感增溶以及温度敏感的液晶晶型结构等特点,鉴于对PEO-PPO-PEO嵌段共聚物物理化学性质的研究是扩展其应用领域的关键,许多研究小组从不同的技术,考察PEO-PPO-PEO嵌段共聚物的物理化学性质。 a.理论模型 Linse[1-3]从平均场格子理论基础上对PEO-PPO-PEO三嵌段共聚物在溶液中的胶束化进行了研究,通过实验得到了Pluroni型高分子表面活性剂的CMC、聚集数、水力半径受温度影响的半定量关系,发现分子量的增加或分子中EO/PO比的减小有利于在给定聚合物浓度下胶束化起始温度的降低,也相应地有利于在给定温度下CMC的降低。图1是Linse等人建立的格子理论模型图。 多种模型可以用于模拟表面活性剂在水溶液中的胶束化行为,最著名的是Hurter[4,5]习等使用自洽均匀场晶格理论模拟PEO-PPO-PEO嵌段共聚物在水溶液中的胶束化,均匀场近似限制在二维空间(同心的格子层内),应用步长加权的随机行走描述非均相体系。聚合物链节和溶剂分子分布在格子内,每条聚合物有多种构造方式,链节作用对自由能的贡献可用Flory-Huggins作用参数表达,在自由能最小的条件下确定每种构造的聚合物链数,大致计算出平衡时链节的密度。自洽均匀场模型PEO-PPO-PEO嵌段共聚物的结果表明:PPO链段组成胶束的内核,胶束的内核中包裹有部分的水,胶束的内核和外核之间以及胶束的外壳和溶剂水之间没有严格的分界,而是扩散的界面。Hurte:进一步模拟了PEO-PPO-PEO嵌段共聚物增溶多环芳香烃,一个多环芳香烃分子占据一个格子,芳香烃的增溶影响PEO-PPO-PEOO嵌段共聚物胶束的结构,降低胶束内核的含水量,自洽均匀场理论模型的胶束结构与实验观察的结果相一致。均匀场理论还能模拟PEO-PPO-PEO嵌段共聚物的三维介观结构,有序无序结构转变以及嵌段共聚物的熔化过程。 较高浓度的PEO-PPO-PEO嵌段共聚物水溶液的温度依赖的凝胶化、PEO一PPO一EPO嵌段共聚物在“油”中形成反相胶束以及PEO-PPO-PEO 嵌段共聚物一水一油三元体系丰富的相结构也是PEO-PPO-PEO嵌段共聚物的重要性质,也引起了许多研究者的兴趣。

相关主题