搜档网
当前位置:搜档网 › 放缩法

放缩法

放缩法
放缩法

放缩法的主要理论依据

(1)不等式的传递性;

(2)等量加不等量为不等量;

(3)同分子(母)异分母(子)的两个分式大小的比较。

放缩法是贯穿证明不等式始终的指导变形方向的一种思考方法。

放缩法的常见技巧

(1)舍掉(或加进)一些项。

(2)在分式中放大或缩小分子或分母。

(3)应用基本不等式放缩(例如均值不等式)。

(4)应用函数的单调性进行放缩。

(5)根据题目条件进行放缩。

(6)构造等比数列进行放缩。

(7)构造裂项条件进行放缩。

(8)利用函数切线、割线逼近进行放缩。

不等式是高考数学中的难点,而用放缩法证明不等式学生更加难以掌握。不等式是衡量学生数学素质的有效工具,在高考试题中不等式的考查是热点难点。本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力。放缩法的理论依据是不等式性质的传递性,难在找中间量,难在怎样放缩、怎样展开。证明不等式时,要依据题设、题目的特点和内在联系,选择适当的放缩方法。

⒈利用三角形的三边关系

[例1]已知a,b,c是△ABC的三边,求证:

证明:﹥∵=为增函数,又∵

∴。

点评:学生知道要利用三角形的三边关系,但无法找到放缩的方法,难在构造函数。

⒉利用函数的单调性

[例2]求证:对于一切大于1的自然数n,恒有

证明:原不等式变形为,

令则

,所

以。

即是单调增函数(n=2,3,…),所以。故原不等式成立。

点评:一开始学生就用数学归纳法进行尝试,结果失败,就放弃了。若使不等式的右边变为常数,再用单调性放缩就好了。

⒊利用基本不等式

[例3]已知f(x)=x+(x﹥0) 求证:-

证明:,

设(1)

(2)

(1)+(2)得

点评:用数学归纳法证明,思路简单,但是难度很大,可以通过二项式定理展开,倒序法与基本不等式相结合进行放缩。

⒋利用绝对值不等式

[例4]设=,当时,总有,求证:。证明:∵,∴,,,

又∵∴

所以,∴

=7。

点评:本题是一道函数与绝对值不等式综合题,学生不能找到解题的突破口,关键在于找到a,b,c与f(0),f(1),f(-1)的联系,再利用绝对值内三角形不等式适当放缩。

⒌利用不等式和等比数列求和

[例5]求证:。

证明:=,利用不等式

∴﹤=﹤。

点评:有些学生两次用错位相减进行放缩,但是没有找到恰当的变形放缩,对利用不等式进行放缩不熟悉。若经过“凑”与不等式相结合,再利用等比数列求和放缩就到了。

⒍ 利用错位相减法求和

[例6]已知a1, a2, a3, ……, a n, ……构成一等差数列,其前n项和为S n=n2, 设b n=,

记{b n}的前n项和为T n, (1) 求数列{a n}的通项公式;(2) 证明:T n<1。

解:(1) a1=S1=1, 当n≥2时, a n=S n-S n-1=2n-1; 由于n=1时符合公式,∴ a n=2n-1 (n≥1). (2) T n=, ∴ T n=

,

两式相减得T n=+=+(1-)-

,

∴ T n=+(1-)-<1。

⒎ 利用裂项法求和

[例7]已知函数在上有定义,且满足①对任意的

②当时,.证明不等式

.

证明:令,则.令,则,故在上为奇函数.

设,且由可得

,则由题有

,故,即

,所以为上减函数.从而函数在时,.

所以,即

.

点评:本题将数列与不等式、函数综合考查数学逻辑推理能力,分析问题能力,变形能力,可以用数学归纳法证明不等式,但学生解题的过程不过完善。若用裂项法进行数列求和放缩就简单

⒏利用二项式定理展开

[例8]已知数列满足(n∈N*),是的前n项的和,并且.(1)求数列的前项的和;(2)证明:≤.(3)求证:

解: (1)由题意得

两式相减得

所以再相加

所以数列是等差数列.又又

所以数列的前项的和为.

而≤.

(3)证明:

点评:这是一道很有研究价值的用放缩法证明不等式的典例。考查了与a n 的关系,有些学生没有对a n中的n进行讨论,也没有合并,虽用了二项式展开,但无法构造不等式进行放缩。对第3小题的放缩也可裂项法求和进行放缩。

(浙江宁波市鄞州区同济中学徐峰)

更多的不等式问题,可以到这里讨论:不等式论坛

在这里您可以进一步学习更多的不等式相关知识:不等式

放缩法证明“数列+不等式”问题的两条途径

数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问

题常常用到放缩法。用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。 1、 先放缩再求和

例1 (05年湖北理)已知不等式

],[log 2

1

131212n n >+++ 其中n 为不大于2的整数,][log 2n 表示不超过n 2log 的最大整数。设数列{}n a 的各项为正且满足111),0(--+≤

>=n n n a n na a b b a )4,3,2( =n ,证明:][log 222n b b

a n +<

, 5,4,3=n 分析:由条件11--+≤

n n n a n na a 得:

n

a a n n 1

111+≥- n a a n n 1

111≥-∴

- )2(≥n

1

1112

1

-≥---n a a n n ……

2

11112≥-a a 以上各式两边分别相加得:

21111111++-+≥- n n a a n 2

1

11111++-++≥∴

n n b a n ][log 2

1

12n b +>

)3(≥n =

b

n b 2]

[log 22+

∴ ]

[log 222n b b

a n +<

)3(≥n

本题由题设条件直接进行放缩,然后求和,命题即得以证明。

例2 (04全国三)已知数列}{n a 的前n 项和n S 满足:n

n n a S )1(2-+=, 1≥n

(1)写出数列}{n a 的前三项1a ,2a ,3a ; (2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有

8

711154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;

⑵由已知得:1

112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1) 化简得:1

122(1)n n n a a --=+-

2)1(2)1(11---=---n n n n a a ,]32

)

1([232)1(1

1+--=+---n n n n a a 故数列{

32)1(+-n n a }是以3

2

1

+-a 为首项, 公比为2-的等比数列. 故

1)2)(31(32)1(---=+-n n

n a ∴22[2(1)]3

n n n a -=-- ∴数列{n a }的通项公式为:2

2[2(1)]3

n n n a -=

--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能

够求和。而左边=

23245

1113111

[]22121

2(1)

m m

m a a a -+++

=+++

-+--,如果我们把上式中的分母中的1±去掉,就可利用等比数列的前n 项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:

3

2322

1

21121121+>++-, 43432121121121+

<-++,因此,可将1

21

2-保留,再将后面的项两两组合后放缩,即可求和。这里需要对m 进行分类讨论,(1)当m 为偶数)4(>m 时,

m a a a 11154+++ )1

1()11(11654m

m a a a a a +++++=- )21

2121(2321243-++++<

m )2

1

1(4123214--?+=m

8321+<

8

7= (2)当m 是奇数)4(>m 时,1+m 为偶数,

8

711111111165454<+++++<++++m m m a a a a a a a a 所以对任意整数4>m ,有

m a a a 11154+++ 8

7

<。 本题的关键是并项后进行适当的放缩。 2、 先求和再放缩

例3(武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,22

11

证明:(1)对于*

∈N n 恒有n n a a >+1成立。

(2)当*

∈>N n n 且2,有11211+=-+a a a a a n n n 成立。

(3)11112112006

212006

<+++<

-

a a a 。 分析:(1)用数学归纳法易证。 (2)由12

1+-=+n n n a a a 得:

)1(11-=-+n n n a a a

)1(111-=-∴--n n n a a a … …

)1(1112-=-a a a 以上各式两边分别相乘得:

)1(111211-=--+a a a a a a n n n ,又21=a 11211+=∴-+a a a a a n n n (3)要证不等式11

112112006

212006

<+++<

-

a a a ,

可先设法求和:

2006

21111a a a +++ ,再进行适当的放缩。 )1(11-=-+n n n a a a

n

n n a a a 1111

11--=

-∴

+ 111111---=∴

+n n n a a a 2006

21111a a a +++∴

)1

1

11()1111()1111(

200720063221---++---+---=a a a a a a 11

1120071---=

a a 2006

211

1a a a -

=1<

又20062006

1

2006212=>a a a a

20062006212

1

111->-

∴a a a

∴原不等式得证。

本题的关键是根据题设条件裂项求和。

高中数列放缩法技巧大全

高中数列放缩法技巧大全 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:2 1153n k k =<∑ . 解析:(1)因为 1 21 121)12)(12(21422+- -=+-= -n n n n n ,所以1 2212111 42 1 2 += +- =-∑=n n n k n k (2)因为22211411214121214 n n n n n ??<==- ?--+??- , 所以35321121121513121112 =+

常用放缩方法技巧

常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高得放缩技巧而充满思考性与挑战性,能全面而综合地考查学生得潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题得极好素材。这类问题得求解策略往往就是:通过多角度观察所给数列通项得结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如:; ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:; ⑷二项式放缩:,, (5)利用常用结论: Ⅰ、得放缩 : Ⅱ、得放缩(1) : (程度大) Ⅲ、得放缩(2):(程度小) Ⅳ、得放缩(3):(程度更小) Ⅴ、分式放缩还可利用真(假)分数得性质:与 记忆口诀“小者小,大者大”。解释:瞧b,若b小,则不等号就是小于号,反之亦然、 Ⅵ、构造函数法构造单调函数实现放缩。例:,从而实现利用函数单调性质得放缩:。 一.先求与再放缩 例1、,前n项与为S n ,求证: 例2、 , 前n项与为S n ,求证: 二.先放缩再求与 (一)放缩后裂项相消 例3.数列,,其前项与为 ,求证: (二)放缩后转化为等比数列。 例4、满足: (1)用数学归纳法证明: (2),求证: 三、裂项放缩 例5、(1)求得值; (2)求证:、 例6、(1)求证: (2)求证: (3)求证: 例7、求证: 例8、已知,,求证:、 四、分式放缩 姐妹不等式:与 记忆口诀”小者小,大者大” 解释:瞧b,若b小,则不等号就是小于号,反之亦然、 例9、姐妹不等式:与 也可以表示成为 与 例10、证明: 五、均值不等式放缩 例11、设求证 例12、已知函数,a>0,b>0,若,且在[0,1]上得最大值为, 求证: 六、二项式放缩 ,, 例13、设,求证、 例14、 , 试证明:、

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高中数学放缩法技巧全总结材料

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1)1(1 ≥--<+n n n n n (15) 11 1) 11)((1122222 222<++++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++ (3)求证:1122642)12(531642531423121-+< ????-????++????+??+n n n (4) 求证:)112(213 12 11)11(2-+<++++<-+n n n

第一轮复习 放缩法技巧全总结

放缩法在数列不等式中的应用 数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。 1. 直接放缩,消项求解 例1在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈, (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512 n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。 (Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。 (Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612 a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ??+++<++++ ?+++??+?? …… 111111116223341n n ??=+-+-++- ?+?? … 111111562216412n ??= +-<+= ?+??,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。再用裂项的方法求解。 另外,熟悉一些常用的放缩方法, 如: ),,2,1(1 1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数

常用放缩方法技巧

常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如: a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )2 5lg 3lg (5lg 3lg 2=<=+n n n n (5)利用常用结论: Ⅰ. 的放缩 Ⅱ. 21k 的放缩(1) : 2111(1)(1) k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211k k k k k k <==+-+--+(程度小) Ⅳ. 2 1k 的放缩(3):221 4112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

用放缩法证明不等式的方法与技巧答案

用放缩法证明不等式的方法与技巧 一.常用公式 k(k +1) k(k -1) 2. _____________ w ___ £ ________ ____ k 2 2 >k (k > 4) k 4. 1 x 2x 3x”…X k >2 (k > 2) 丄凸丄 k ! 2 ( k _1)! b (待学) 二?放缩技巧 (1) 所谓放缩的技巧:即欲证 A < B ,欲寻找一个(或多个)中间变量 C ,使A < C < B , 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 若 t 〉0, a+t >"a,a — t ■7^^ = n 1 1 1 —— --- = -------- n n +1 n(n +1) (4) 2( J n +1 - >/n)= 1 1 11,^

----- ,一 < ---- b b+m b b 1 “1 + 1 . . 1 n! 2 22 2n 」 1 1 1 1 + …c 1 +(1 —一) +(— 一一) n 2 2 3 + 1 3! 1 (7) (8) =2(V n - J n -1) J 2! 1 + — + — 22 32 1 1 1 --)(因为—< -------------- ) n n (n-1) n 丄+丄+丄1 n +1 n +2 n +3 或丄十丄十丄 n +1 n +2 n +3 1 +丄+丄+…+丄 …亠丄 2n n +1 ,丄」 2n A 丄+丄+… 需T n +丄 n +1 十丄+ 2n 2n ?+丄 T n "丄 n +1 2n —<1 n +1 _ n _ 1 —2n — 2 -n = V n 等等。 v n 三?常见题型 (一).先求和再放缩: 1?设 s, =! + 1+ 丄+■- + 2 6 12 n(n+1) 1 ,求证:Si <1 1 M 2 .设0=— ( n 匸N ),数列{b n b n^}的前n 项和为T n ,求证: n

最新高考数学数列放缩法技巧全总结

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = +-?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

高中数学方法讲解之放缩法

高中数学方法讲解之放 缩法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

放缩法 将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。 放缩法的方法有: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如: 4lg 16lg 15lg )2 5lg 3lg ( 5lg 3log 2 =<=+k k k k k (程度大) Ⅲ、 )1111(21)1)(1(11 112 2+--=+-=- c b a d d b a d c c a c b a b d c b a a m

2=+++++++< c d d d c c b a b b a a m ∴1 < m < 2 即原式成立 例2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n ∴ 2 22 2)1(log 2)1(log )1(log )1(log )1(log ?? ????-=??? ???++-<+-n n n n n n n n n n 12log 22=?? ? ??? 2时, 1)1(log )1(log <+-n n n n 例3.求证: 21 3121112222<++++n 【巧证】:n n n n n 1 11)1(112 --=-< ∴ 21 21113121211113121112 222<-=+-++-+-+<++++n n n n 十二、放缩法: 巧练一:设x > 0, y > 0,y x y x a +++=1, y y x x b +++=11,求 证:a < b 巧练一:【巧证】: y y x x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9?lg11 < 1 巧练二:【巧证】: 122299lg 211lg 9lg 11lg 9lg 2 2 2 =?? ? ??

高考数学_压轴题_放缩法技巧全总结(最强大)

放缩技巧 (高考数学备考资料) 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 1 2142的值; (2)求证:3 511 2 <∑=n k k . 解析:(1)因为 121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 11 1222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 112 22 2+-+-+j i j i j i

高中数学方法讲解之放缩法

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 放缩法 将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。 放缩法的方法有: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶ 利用基本不等式,如: 4lg 16lg 15lg )2 5lg 3lg ( 5lg 3log 2 =<=+k k k k k (程度大) Ⅲ、)1 1 11(21)1)(1(11112 2+--=+-=-< k k k k k k ; (程度小)

例1.若a , b , c , d ∈R +,求证: 21<+++++++++++< c a d d b d c c a c b b d b a a 【巧证】:记m =c a d d b d c c a c b b d b a a +++ ++++++++ ∵a , b , c , d ∈R + ∴ 1=+++++++++++++++> c b a d d b a d c c a c b a b d c b a a m 2=+++++++ 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n ∴ 2 22 2)1(log 2)1(log )1(log )1(log )1(log ?? ????-=??????++-<+-n n n n n n n n n n 12log 22=?? ? ??? 2时, 1)1(log )1(log <+-n n n n 例3.求证:21 3121112222<++++n 【巧证】:n n n n n 111)1(112 --=-< ∴ 21 21113121211113121112 222<-=+-++-+-+<++++n n n n 十二、放缩法: 巧练一:设x > 0, y > 0,y x y x a +++=1, y y x x b +++=11,求 证:a < b

高考数学数列放缩法技巧全汇总

高考数学数列放缩法技巧全汇总

————————————————————————————————作者:————————————————————————————————日期:

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = + -?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

放缩法技巧全总结(非常精辟-是尖子生解决高考数学最后一题之瓶颈之精华!!)

例析放缩法在数列不等式中的应用 孙卫 (安徽省芜湖市第一中学 241000) 数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。 1. 直接放缩,消项求解 例1(2008 辽宁21)在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈, (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512 n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。(Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。 (Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612 a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ??+++<++++ ?+++??+?? …… 111111116223341n n ??=+-+-++- ?+?? … 111111562216412n ??= +-<+= ?+??,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。再用裂项的方法求解。 另外,熟悉一些常用的放缩方法, 如:),,2,1(1 1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2(2008 安徽21.节选)设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数 (Ⅰ)证明:[0,1]n a ∈对任意* n N ∈成立的充分必要条件是[0,1]c ∈;

高中数学放缩法公式[001]

“放缩法”证明不等式的基本策略 1、添加或舍弃一些正项(或负项) 例1、已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111 .,1,2,...,,2122(21)2 3.222232 k k k k k k k k a k n a +++-==-=-≥-=--+-Q 1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->- *122311...().232 n n a a a n n n N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的 值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例2、函数f (x )= x x 414+,求证:f (1)+f (2)+…+f (n )>n + )(2 1 21*1 N n n ∈-+. 证明:由f (n )= n n 414+=1- 11 11422n n >-+? 得f (1)+f (2)+…+f (n )>n 2211221122112 1 ?- ++?- +?-Λ )(21 2 1)2141211(41*11N n n n n n ∈-+=++++-=+-Λ. 此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。 3、逐项放大或缩小

【专题整理】【解答题】【数学归纳法、放缩法】【数列】

数学归纳法和放缩法 放缩法证明不等式 1、添加或舍弃一些正项(或负项) 【例1】已知:* 21().n n a n N =-∈,求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈. 【解析】 111211111111 .,1,2,...,,2122(21)2 3.222232 k k k k k k k k a k n a +++-==-=-≥-=--+-,1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->-,*122311...().232 n n a a a n n n N a a a +∴-<+++<∈. 【点评】若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小.由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的.本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 【例2】函数x x x f 4 14)(+=,求证:2121)()2()1(1-+>++++n n n f f f (*∈N n ). 【解析】 由n n n n n f 2 21 14111414)(?->+-=+=得:n n f f f 221122112211)()2()1(21?-++?-+?- >+++ 2 1 21)21211(4111-+=+++-=+-n n n n (*∈N n ). 【点评】此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式.如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可. 3、先放缩,后裂项(或先裂项再放缩) 【例3】已知:n a n =,求证: 31 2 <∑=n k k a k .

相关主题