搜档网
当前位置:搜档网 › 基于粒子群优化算法的多目标搜索算法

基于粒子群优化算法的多目标搜索算法

基于粒子群优化算法的多目标搜索算法
基于粒子群优化算法的多目标搜索算法

基于粒子群优化算法的图像分割

安康学院 学年论文(设计) 题目_____________________________________________ 学生姓名_______________ 学号_____________________________ 所在院(系)_______________________________________ 专业班级__________________________________________________ 指导教师_____________________________________________ 年月曰

基于粒子群优化算法的图像分割 (作者:) () 指导教师: 【摘要】本文通过对粒子群优化算法的研究,采用Java编程,设计出一套用于图像分割的系统。 基于粒子群优化算法的图像分割系统,可以将一幅给定的图像进行分割,然后将分割结果保存。图像分割的目的是将感兴趣的区域从图像中分割出来,从而为计算机视觉的后续处理提供依据。图像分割的方法有多种,阈值法因其实现简单而成为一种有效的图像分割方法。而粒子群优化(PSO)算法是一类随机全局优化技术,它通过粒子间的相互作用发现复杂搜索空间中的最优区域缩短寻找阈值的时间。因此,基于粒子群优化算法的图像分割以粒子群优化算法为寻优工具,建立具有自适应和鲁棒性的分割方法。从而可以在最短的时间内,准确地确定分割阈值。 关键词:粒子群优化(PSO,图像分割,阈值法,鲁棒性 Abstract T his paper based on the particle swarm optimizati on algorithm, desig ns a set of system for image segme ntati on using Java program min g. Image segme ntati on system based on particle swarm optimizati on algorithm, the image can be a given segmentation, and then the segmentation results would be saved. Image segmentation is the purpose of the interested area from the image, thus providing the basis for the subsequent processing of computer vision. There are many methods of image segmentation, threshold method since its simple realization, becomes a kind of effective method in image segmentation. Particle swarm optimization (PSO) algorithm is a stochastic global optimization technique; it finds optimal regions of complex search spaces for threshold time shorte ned through the in teractio n betwee n particles. Therefore, particle swarm optimization algorithm of image segmentation based on particle swarm optimization algorithm based on optimizati on tools; establish segme ntati on method with adaptive and robust. Therefore, it is possible for us in the shortest possible time to accurately determ ine the segme ntati on threshold. Key word s: PSO, image segmentation, threshold method, robust. 1引言 1.1研究的背景和意义 技术的不断向前发展,人们越来越多地利用计算机来获取和处理视觉图像信息。据统计,人类

matlab粒子群优化算法进行传感器优化配置程序

1.Pso算法 function [xm,fv] = SAPSO( fitness,N,c1,c2,wmax,wmin,M ) % fitness 适应度函数 % N 种群个数 % c1 % c2 % wmax 最大权重 % wmin 最小权重 % M 迭代次数 cg=32;%传感器个数 format long; %-----------------------初始化种群个体 ------------------------------------- for i=1:N %粒子个数为n a1=-17.5:10:12.5; a11=a1*(i+5)/10; [a2,a3]=meshgrid(a1,a11); a4=reshape(a2,1,16); a5=reshape(a3,1,16); b1=-12.5:10:17.5; b11=b1*(i+5)/10; [b2,b3]=meshgrid(b1,b11); b4=reshape(b2,1,16); b5=reshape(b3,1,16); x11=[a4,b4;a5,b5]+20;%ó|ó?μè±èàyà?é¢y1ì?¨ x(:,:,i)=x11';%初始化传感器个数为20 v(:,:,i)=10*rand(cg,2); end %----------------------计算各个粒子适应度------------------------------for i=1:N; p(i)=fitness(x(:,:,i)); y(:,:,i)=x(:,:,i); end pg=x(:,:,N); %pg为全局最优 for i=1:(N-1) if fitness(x(:,:,i))

(完整word版)基本粒子群算法的原理和matlab程序

基本粒子群算法的原理和matlab程序 作者——niewei120(nuaa) 一、粒子群算法的基本原理 粒子群优化算法源自对鸟群捕食行为的研究,最初由Kennedy和Eberhart提出,是一种通用的启发式搜索技术。一群鸟在区域中随机搜索食物,所有鸟知道自己当前位置离食物多远,那么搜索的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。PSO 算法利用这种模型得到启示并应用于解决优化问题。PSO 算法中,每个优化问题的解都是粒子在搜索 空间中的位置,所有的粒子都有一个被优化的目标函数所决定的适应值,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。 PSO 算法首先在给定的解空间中随机初始化粒子群,待优化问题的变量数决定了解空间的维数。每个粒子有了初始位置与初始速度。然后通过迭代寻优。在每一次迭代中,每个粒子通过跟踪两个“极值”来更新自己在解空间中的空间位置与飞翔速度。第一个极值就是单个粒子本身在迭代过程中找到的最优解粒子,这个粒子叫做个体极值。另一个极值是种群所有粒子在迭代过程中所找到的最优解粒子,这个粒子是全局极值。上述的方法叫全局粒子群算法。如果不用种群所有粒子而只用其中一部分作为该粒子的邻居粒子,那么在所有邻居粒子中的极值就是局部极值,该方法称为局部PSO 算法。 速度、位置的更新方程表示为: 每个粒子自身搜索到的历史最优值p i ,p i=(p i1,p i2,....,p iQ),i=1,2,3,....,n。所有粒子搜索到的最优值p g,p g=(p g1,p g2,....,p gQ),注意这里的p g只有一个。 是保持原来速度的系数,所以叫做惯性权重。 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。 是[0,1]区间内均匀分布的随机数。 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设 置为1 。

基本粒子群算法的matlab源程序

主函数源程序(main.m) %------基本粒子群优化算法(Particle Swarm Optimization)-----------%------名称:基本粒子群优化算法(PSO) %------作用:求解优化问题 %------说明:全局性,并行性,高效的群体智能算法 %------初始格式化--------------------------------------------------clear all; clc; format long; %------给定初始化条件---------------------------------------------- c1=1.4962;%学习因子1 c2=1.4962;%学习因子2 w=0.7298;%惯性权重 MaxDT=1000;%最大迭代次数 D=10;%搜索空间维数(未知数个数) N=40;%初始化群体个体数目 eps=10^(-6);%设置精度(在已知最小值时候用) %------初始化种群的个体(可以在这里限定位置和速度的范围)------------for i=1:N for j=1:D x(i,j)=randn;%随机初始化位置 v(i,j)=randn;%随机初始化速度 end end %------先计算各个粒子的适应度,并初始化Pi和Pg----------------------for i=1:N p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end pg=x(1,:);%Pg为全局最优 for i=2:N if fitness(x(i,:),D) pg=x(i,:); end end %------进入主要循环,按照公式依次迭代,直到满足精度要求------------for t=1:MaxDT for i=1:N v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:)); x(i,:)=x(i,:)+v(i,:); if fitness(x(i,:),D) p(i)=fitness(x(i,:),D); y(i,:)=x(i,:);

基于改进粒子群算法的优化策略

收稿日期:2009-12-13 基金项目:国家自然科学基金资助项目(60674021) 作者简介:卢 峰(1982-),男,辽宁抚顺人,东北大学博士研究生;高立群(1949-),男,辽宁沈阳人,东北大学教授,博士生导师 第32卷第9期2011年9月东北大学学报(自然科学版)Journal of Northeastern U niversity(Natural Science)Vol 32,No.9Sep.2011 基于改进粒子群算法的优化策略 卢 峰,高立群 (东北大学信息科学与工程学院,辽宁沈阳 110819) 摘 要:为提高传统粒子群算法的搜索速度和搜索精度,提出了一种改进的自适应粒子群优化算法 将正则变化函数和慢变函数引入传统位置更新和速度更新公式当中,形成两种新的更新机制:搜索算子和开发算子 在算法运行的初始阶段,种群中大部分个体将按照搜索算子进行更新,搜索算子将有助于种群遍历整个解空间;随着迭代次数的增加,按照搜索算子进行更新的个体将逐渐减少,而按照开发算子进行更新的个体将逐渐增多,开发算子将有效地克服陷入局部最优解的问题 通过典型测试函数的仿真实验,新算法在加快收敛速度同时,提高了算法的全局搜索能力 关 键 词:进化算法;粒子群算法;全局优化;慢变函数;自适应 中图分类号:T G 273 文献标志码:A 文章编号:1005 3026(2011)09 01221 04 Novel Optimization Mechanism Based on Improved Particle Swarm Optimization L U Feng ,GAO L i qun (School of Information Science &Engineering,Northeaster n U niv ersity,Shenyang 110819,China.Corresponding author :LU F eng,E mail:feng.lu.lf @g https://www.sodocs.net/doc/fb1723053.html,) Abstract :To accelerate searching speed and optimization accuracy of traditional PSO,an improved particle swarm optimization (PSO )algorithm w as presented.Regularly vary ing function and slow ly varying function were introduced in the position and velocity update formula.New mechanisms such as explorative operator and exploitative operator are formulated.At the beginning,most elements will be updated by explorative operator in the entire search space sufficiently.Within the iterations,more and more particles w ill be handled by ex ploitative operator,which are useful to overcome the deceptions of multiple local optima.It can be seen from the simulation results of the standard benchm ark test functions that the proposed algorithm not only accelerates the convergence process,but also improves g lobal optim ization ability. Key words:evolutionary algorithms;particle sw arm optimization;global optimization;slow ly v arying function;self adaptive 20世纪90年代初,产生了模拟自然生物群体行为的优化方法,被称为群智能优化方法 Dorigo 等人通过模拟蚂蚁的寻径行为,提出了蚁群优化算法(ant colony optimization)[1] ;Eberhart 等人基于对鸟群、鱼群的模拟,提出了粒子群优化算法(particle sw arm optim ization )[2] 作为一种群智能优化方法的代表,粒子群算法通过个体间的协作来寻找最优解,每个个体都被赋予一个随机速度并在整个解空间中搜索,通 过个体之间的合作与竞争来实现个体进化 由于粒子群优化算法运算简单,易于实现,具有良好的解决非线性、不可微和多峰值复杂优化问题的能力,已被广泛应用于科学和工程实际领域[3-5] 但是,粒子群优化算法是根据全体粒子和自身的搜索经验向着最优解的方向进化,在进化后期收敛速度将变得缓慢,同时算法在收敛到一定精度时,容易陷入停滞,无法继续进化更新,因此,存在早熟和陷入局部极值点的现象

用粒子群算法求解多目标优化问题的Pareto解

粒子群算法程序 tic D=10;%粒子群中粒子的个数 %w=0.729;%w为惯性因子 wmin=1.2; wmax=1.4; c1=1.49445;%正常数,成为加速因子 c2=1.49445;%正常数,成为加速因子 Loop_max=50;%最大迭代次数 %初始化粒子群 for i=1:D X(i)=rand(1)*(-5-7)+7; V(i)=1; f1(i)=X(i)^2; f2(i)=(X(i)-2)^2; end Loop=1;%迭代计数器 while Loop<=Loop_max%循环终止条件 %对粒子群中的每个粒子进行评价 for i=1:D k1=find(1==Xv(i,:));%找出第一辆车配送的城市编号 nb1=size(k1,2);%计算第一辆车配送城市的个数 if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则 a1=[Xr(i,k1(:))];%找出第一辆车配送城市顺序号 b1=sort(a1);%对找出第一辆车的顺序号进行排序 G1(i)=0;%初始化第一辆车的配送量 k51=[]; am=[]; for j1=1:nb1 am=find(b1(j1)==Xr(i,:)); k51(j1)=intersect(k1,am);%计算第一辆车配送城市的顺序号 G1(i)=G1(i)+g(k51(j1)+1);%计算第一辆车的配送量 end k61=[]; k61=[0,k51,0];%定义第一辆车的配送路径 L1(i)=0;%初始化第一辆车的配送路径长度 for k11=1:nb1+1 L1(i)=L1(i)+Distance(k61(k11)+1,k61(k11+1)+1);%计算第一辆车的配送路径长度end else%如果第一辆车配送的城市个数不大于0则 G1(i)=0;%第一辆车的配送量设为0 L1(i)=0;%第一辆车的配送路径长度设为0 end

基于MATLAB的粒子群优化算法的应用示例

对于函数f=x*sin(x)*cos(2*x)-2*x*sin(3*x),求其在区间[0,20]上该函数的最大值。 ?初始化种群 已知位置限制[0,20],由于一维问题较为简单,因此可以取初始种群N 为50,迭代次数为100,当然空间维数d 也就是1。 位置和速度的初始化即在位置和速度限制内随机生成一个N×d 的矩阵,对于此题,位置初始化也就是在0~20内随机生成一个50×1的数据矩阵,而对于速度则不用考虑约束,一般直接在0~1内随机生成一个50×1的数据矩阵。 此处的位置约束也可以理解为位置限制,而速度限制是保证粒子步长不超限制的,一般设置速度限制为[-1,1]。 粒子群的另一个特点就是记录每个个体的历史最优和种群的历史最优,因此而二者对应的最优位置和最优值也需要初始化。其中每个个体的历史最优位置可以先初始化为当前位置,而种群的历史最优位置则可初始化为原点。对于最优值,如果求最大值则初始化为负无穷,相反地初始化为正无穷。 每次搜寻都需要将当前的适应度和最优解同历史的记录值进行对比,如果超过历史最优值,则更新个体和种群的历史最优位置和最优解。 ?速度与位置的更新

速度和位置更新是粒子群算法的核心,其原理表达式和更新方式如下: 每次更新完速度和位置都需要考虑速度和位置的限制,需要将其限制在规定范围内,此处仅举出一个常规方法,即将超约束的数据约束到边界(当位置或者速度超出初始化限制时,将其拉回靠近的边界处)。当然,你不用担心他会停住不动,因为每个粒子还有惯性和其他两个参数的影响。 代码如下: clc;clear;close all; %% 初始化种群 f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式figure(1);ezplot(f,[0,0.01,20]); N = 50; % 初始种群个数 d = 1; % 空间维数 ger = 100; % 最大迭代次数 limit = [0, 20]; % 设置位置参数限制 vlimit = [-1, 1]; % 设置速度限制 w = 0.8; % 惯性权重 c1 = 0.5; % 自我学习因子 c2 = 0.5; % 群体学习因子 for i = 1:d

(完整word版)基本粒子群算法的原理和matlab程序.doc

基本粒子群算法的原理和matlab 程序 作者—— niewei120 (nuaa) 一、粒子群算法的基本原理 粒子群优化算法源自对鸟群捕食行为的研究,最初由Kennedy 和 Eberhart 提出,是一种通 用的启发式搜索技术。一群鸟在区域中随机搜索食物,所有鸟知道自己当前位置离食物多远, 那么搜索的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。PSO 算法利用这种模型得到启示并应用于解决优化问题。PSO 算法中,每个优化问题的解都是粒子在搜索 空间中的位置,所有的粒子都有一个被优化的目标函数所决定的适应值,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。 PSO 算法首先在给定的解空间中随机初始化粒子群,待优化问题的变量数决定了解空间的维数。每个粒子有了初始位置与初始速度。然后通过迭代寻优。在每一次迭代中,每个粒子通过跟踪两个“极值”来更新自己在解空间中的空间位置与飞翔速度。第一个极值就是单个粒子本身在迭代过程中找到的最优解粒子,这个粒子叫做个体极值。另一个极值是种群所有粒子在迭代过程中所找到的最优解粒子,这个粒子是全局极值。上述的方法叫全局粒子群算法。如果不用种群所有粒子而只用其中一部分作为该粒子的邻居粒子,那么在所有邻居粒子中的极值就是局部极值,该方法称为局部PSO 算法。 速度、位置的更新方程表示为: 每个粒子自身搜索到的历史最优值p i,p i=(p i1 ,p i2 ,....,p iQ ), i=1,2,3,....,n 。所有粒子搜索到的最优值p g, p g=(p g1 ,p g2,....,p gQ ),注意这里的p g只有一个。 是保持原来速度的系数,所以叫做惯性权重。 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为 2 。 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。 是[0,1] 区间内均匀分布的随机数。 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设 置为 1 。

粒子群优化算法介绍及matlab程序

粒子群优化算法(1)—粒子群优化算法简介 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物。 计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。 更新自己位置的公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化 第一次更新位置

第二次更新位置 第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。

粒子群优化算法(2)—标准粒子群优化算法 在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。这个公式就是粒子群算法中的位置速度更新公式。下面就介绍这个公式是什么。在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。这个时候我们的每个粒子均为二维,记粒子P1=(x11,x12),P2=(x21,x22),P3=(x31,x32),......Pn=(xn1,xn2)。这里n 为粒子群群体的规模,也就是这个群中粒子的个数,每个粒子的维数为2。更一般的是粒子的维数为q ,这样在这个种群中有n 个粒子,每个粒子为q 维。 由n 个粒子组成的群体对Q 维(就是每个粒子的维数)空间进行搜索。每个粒子表示为:x i =(x i1,x i2,x i3,...,x iQ ),每个粒子对应的速度可以表示为v i =(v i1,v i2,v i3,....,v iQ ),每个粒子在搜索时要考虑两个因素: 1. 自己搜索到的历史最优值 p i ,p i =(p i1,p i2,....,p iQ ),i=1,2,3,....,n ; 2. 全部粒子搜索到的最优值p g ,p g =(p g1,p g2,....,p gQ ),注意这里的p g 只有一个。 下面给出粒子群算法的位置速度更新公式: 112()()()()k k k k i i i i v v c rand pbest x c rand gbest x ω+=+??-+??-, 11k k k i i i x x av ++=+. 这里有几个重要的参数需要大家记忆,因为在以后的讲解中将会经常用到,它们是: ω是保持原来速度的系数,所以叫做惯性权重。1c 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。2c 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。()rand 是[0,1]区间内均匀分布的随机数。a 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设置为1。这样一个标准的粒子群算法就介绍结束了。下图是对整个基本的粒子群的过程给一个简单的图形表示。 判断终止条件可是设置适应值到达一定的数值或者循环一定的次数。 注意:这里的粒子是同时跟踪自己的历史最优值与全局(群体)最优值来改变自己的位置预速度的,所以又叫做全局版本的标准粒子群优化算法。

c语言实现的粒子群算法代码及解释

//粒子群PSO算法 #include #include #include #include #define PI 3.141592653589 /* */ #define P_num 200 //粒子数目 #define dim 50 #define low -100 //搜索域范围 #define high 100 #define iter_num 1000 #define V_max 20 //速度范围 #define c1 2 #define c2 2 #define w 0.5 #define alp 1 double particle[P_num][dim]; //个体集合 double particle_loc_best[P_num][dim]; //每个个体局部最优向量 double particle_loc_fit[P_num]; //个体的局部最优适应度,有局部最优向量计算而来double particle_glo_best[dim]; //全局最优向量 double gfit; //全局最优适应度,有全局最优向量计算而来double particle_v[P_num][dim]; //记录每个个体的当前代速度向量 double particle_fit[P_num]; //记录每个粒子的当前代适应度 double Sphere(double a[]) { int i; double sum=0.0; for(i=0; i

基于粒子群优化算法的神经网络在

基于粒子群优化算法的神经网络在农药定量构效关系建模中的应用 张丽平 俞欢军3 陈德钊 胡上序 (浙江大学化工系,杭州310027) 摘 要 神经网络模型能有效模拟非线性输入输出关系,但其常规训练算法为BP 或其它梯度算法,导致训练时间较长且易陷入局部极小点。本实验探讨用粒子群优化算法训练神经网络,并应用到苯乙酰胺类农药的定量构效关系建模中,对未知化合物的活性进行预测来指导新药的设计和合成。仿真结果表明,粒子群优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也得到了较大的提高。关键词 粒子群优化算法,神经网络,定量构效关系  2004201204收稿;2004207225接受 本文系国家自然科学基金资助项目(N o.20276063) 1 引 言 药物定量构效关系(QS AR )是研究药物生理活性和药物分子结构参数间的量变规律并建立相应的 数学模型,进而研究药物的作用机理,从而用于预测未知化合物的生物活性,探讨药物的作用机理,指导新药的设计和合成,在药物和农药的研究与设计中已经显示出广阔的应用前景1。以往QS AR 的建模方法大多基于统计原理,局限于线性模型,只进行简单的非线性处理,由此所建立的模型很难契合实际构效关系,并且其处理过程都比较繁琐2。神经网络通过学习将构效关系知识隐式分布在网络之中,适用于高度非线性体系。 在药物QS AR 中采用神经网络(NN )始于20世纪80年代末3,此后得到迅速的发展,目前已发展为除多重线性回归和多元数据分析之外的第3种方法4。通常多层前传网络采用BP 算法,通过误差反传,按梯度下降的方向调整权值。其缺点是可能陷入局部极小点,且对高维输入收敛速度非常缓慢。 粒子群优化算法(particle swarm optimization ,PS O )是K ennedy 等5源于对鸟群、鱼群和人类社会行为的研究而发展的一种新的进化型寻优技术。PS O 已成为进化寻优算法研究的热点,其最主要特点是简单、收敛速度快,且所需领域知识少。本实验拟将该方法初始化前传神经网络为苯乙酰胺类农药建立良好适用的QS AR 模型。 2 苯乙酰胺类农药的Q SAR 问题 苯乙酰胺类化合物是除草农药,其除草活性与其分子结构密切相关。所有的N 2(12甲基212苯乙基)苯乙酰胺都可用相应的羧酸酰胺通过霍夫曼反应生成。N 2(12甲基212苯乙基)苯乙酰胺的基本结构式为 : 其中X 为Me 、F 、Cl 、OMe 、CF 3和Br 等,Y 为Me 、Cl 、F 和Br 等,由不同的X 和Y 取代基可构成不同的化合物。常用以下7个理化参数描述化合物的分子组成和结构:log P 、log 2P (疏水性参数及其平方项)、 σ(电性效应参数)、E s (T aft 立体参数)、MR (摩尔折射度),1χ、2 χ(分子连接性指数)。于是这类化合物的QS AR 就转化为上述理化参数与除草活性间的关系。为研究这种关系,选用具有代表性的50个化合物, 他们的活性值取自文献1,见表1。 第32卷2004年12月分析化学(FE NXI H UAX UE ) 研究报告Chinese Journal of Analytical Chemistry 第12期1590~1594

6种粒子群算法程序

程序1 当22111==c c ,5.12212==c c ,2.1=w 。 a)%主函数源程序(main.m ) %------基本粒子群算法 (particle swarm optimization ) %------名称: 基本粒子群算法 %------初始格式化 clear all ; %清除所有变量 clc; %清屏 format long ; %将数据显示为长整形科学计数 %------给定初始条条件------------------ N=40; %3初始化群体个数 D=10; %初始化群体维数 T=100; %初始化群体最迭代次数 c11=2; %学习因子1 c21=2; %学习因子2 c12=1.5; c22=1.5; w=1.2; %惯性权重 eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------ x=zeros(N,D); v=zeros(N,D); for i=1:N for j=1:D x(i,j)=randn; %随机初始化位置 v(i,j)=randn; %随机初始化速度 end end %------显示群位置---------------------- figure(1) for j=1:D if (rem(D,2)>0)

subplot((D+1)/2,2,j) else subplot(D/2,2,j) end plot(x(:,j),'b*');grid on xlabel('粒子') ylabel('初始位置') tInfo=strcat('第',char(j+48),'维'); if(j>9) tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维'); end title(tInfo) end %------显示种群速度 figure(2) for j=1:D if(rem(D,2)>0) subplot((D+1)/2,2,j) else subplot(D/2,2,j) end plot(x(:,j),'b*');grid on xlabel('粒子') ylabel('初始速度') tInfo=strcat('第,char(j+48),'维'); if(j>9) tInfo=strcat('第',char(floor(j/10)+48), char(rem(j,10)+48),'维); end title(tInfo) end figure(3) %第一个图 subplot(1,2,1)

改进粒子群算法的目标函数变化分类动态优化

龙源期刊网 https://www.sodocs.net/doc/fb1723053.html, 改进粒子群算法的目标函数变化分类动态优化 作者:苏玉孔国利 来源:《现代电子技术》2017年第07期 摘要:由于优化问题的目标函数和约束条件都随着时间而改变导致其最优值也发生改变,提出一种基于改进粒子群算法的目标函数变化分类动态优化算法。首先对动态优化问题进行定义,明确问题的研究对象,提出对目标函数随时间变化程度分类的思想,通过对变化的函数进行监测的方法将其分为剧烈变化、中等程度变化和弱变化三种类型,并针对不同的强度变化对粒子群算法采用不同的改进策略,最后将不同的策略融入计算。通过采用移动多峰问题进行测试,结果表明,提出的改进粒子群优化算法能监测目标函数变化,并能随时跟踪到最优解,平均离线误差相对于标准粒子群算法更小,性能更稳定。 关键词:粒子群算法;动态优化;目标函数时变分类;移动峰问题 中图分类号: TN911.1?34; TP301.6 文献标识码: A 文章编号: 1004?373X(2017)07?0175?04 Dynamic optimization of objective function changing classification based on improved particle swarm optimization SU Yu, KONG Guoli (College of Information Engineering, Zhongzhou University, Zhengzhou 450001,China) Abstract: The objective function and constraint condition for the optimization problem are changed with time, and may change its optimal value. A dynamic optimization of the objective function changing classification based on improved particle swarm optimization is proposed. The dynamic optimization problem is defined to determine the study object of the problem. The classification thought that the objective function is changed with the time varying degree is put forward. The varying function is divided into the types of drastic change, medium grade change and weak change with the monitoring method. Different strategies are adopted for the particle swarm optimization according to the different intensity changes, and integrated for computation. The algorithm was tested with the moving multi?peak problem. The test results show that the improved particle swarm optimization can monitor the changes of the objective function, track the optimal solution momentarily, its average offline error is smaller than that of the standard particle swarm optimization algorithm, and the performance is more stable.

粒子群算法原理及在函数优化中的应用(附程序)

粒子群算法原理及其在函数优化中的应用 1粒子群优化(PSO)算法基本原理 1.1标准粒子群算法 假设在一个D 维的目标搜索空间中,有 m 个代表问题潜在解的粒子组成一 个种群x [X i ,X 2,...,X m ],第i 个粒子的信息可用D 维向量表示为 X i [X ii , X i2,..., X iD ]T ,其速度为V i [V ii ,V i2,...,V iD ]T 。算法首先初始化m 个随机粒 子,然后通过迭代找到最优解。每一次迭代中,粒子通过跟踪2个极值进行信息 交流,一个是第i 个粒子本身找到的最优解,称之为个体极值,即 P i [P il , P i2,...,厢]丁 ;另一个是所有粒子目前找到的最优解,称之为群体极值, 即P g [P gi ,P g2,..., P gD 「。粒子在更新上述2个极值后,根据式(1)和式(2)更新自 己的速度和位置。 t 1 t t t t t\ V i WV i C 1「1(P i X i ) C 2「2(P g X i ) 式中,t 代表当前迭代次数,「1,「2是在[0,1]之间服从均匀分布的随机数,C 1,C 2 称为学习因子,分别调节粒子向个体极值和群体极值方向飞行的步长, w 为惯性 权重,一般在0.1~0.9之间取值。在标准的PSO 算法中,惯性权重w 被设为常数, 通常取w 0.5。在实际应用中,x 需保证在一定的范围内,即x 的每一维的变化 范围均为[X min ,X max ],这在函数优化问题中相当丁自变量的定义域 1.2算法实现步骤 步骤1:表示出PSO 算法中的适应度函数fitness(x);(编程时最好以函数的 形式保存,便丁多次调用。) 步骤2:初始化PSO 算法中各个参数(如粒子个数,惯性权重,学习因子, 最大迭代次数等),在自变量x 定义域内随机初始化x ,代入fitness(x)求得适应 度值,通过比较确定起始个体极值P i 和全局极值P g 。 步骤3:通过循环迭代更新x 、p i 和p g : ① 确定惯性权重w 的取值(当w 不是常数时)。 ② 根据式(1)更新粒子的速度V :1,若速度中的某一维超过了 V max ,则取为 V max - ③ 根据式(2)更新自变量x ,若x 的取值超过其定义域,则在其定义域内重新 初t 1 X i t t 1 X i V i

粒子群算法通用matlab程序

% 优化函数以m文件的形式放在fitness.m里面,对不同的优化函数只要修改fitness.m 就可 %------基本粒子群优化算法(Particle Swarm Optimization, PSO)----------- %------初始格式化-------------------------------------------------- clear all; clc; format long; %------给定初始化条件---------------------------------------------- c1=1.4962; %学习因子1 c2=1.4962; %学习因子2 w=0.7298; %惯性权重 MaxDT=1000; %最大迭代次数 D=4; %搜索空间维数(未知数个数) N=10; %初始化群体个体数目 eps=10^(-6); %设置精度(在已知最小值时候用) %------初始化种群的个体(可以在这里限定位置和速度的范围)------------ x=0:0.1:1,y=[-.447,1.978,3.11,5.25,5.02,4.66,4.01,4.58,3.45,5.35,9.22] %------先计算各个粒子的适应度,并初始化Pi和Pg---------------------- for i=1:N p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end pg=x(1,:); %Pg为全局最优 for i=2:N if fitness(x(i,:),D)

相关主题