搜档网
当前位置:搜档网 › 荧光标记技术在蛋白质定位及功能研究中的应用

荧光标记技术在蛋白质定位及功能研究中的应用

荧光标记技术在蛋白质定位及功能研究中的应用
荧光标记技术在蛋白质定位及功能研究中的应用

荧光标记技术在蛋白质定位及功能研究中的应用

Feb 20, 2010No Comments

随着分子生物学、有机化学以及材料科学等学科的进展,最近我们又获得了好几种新型的荧光蛋白标签,这些标签可以用于细胞生物学成像研究。本文将对荧光标志物在蛋白质研究中的优势及劣势进行一番详细的介绍,文章中将重点介绍如何使用荧光标志物研究活体细胞(而不是固定细胞)中的靶蛋白。使用该方法可以对靶蛋白的表达情况、细胞中的定位情况、活性状态等指标进行研究,还将介绍将荧光显微镜与电子显微镜技术相结合的可行性问题。小分子荧光标志物染料、纳米晶体材料,即所谓的“量子点(quantum dots)”材料、自发荧光蛋白、小分子蛋白质标签等等这些材料都可以作为荧光标志物,而且将这几种材料“混合”起来是一种非常有前途的荧光标志物研究新思路。

我们使用荧光技术来研究细胞生物学已经好多年了,而且在从微小的分子层面到完整的有机体层面等各个层面都可以使用荧光技术进行研究。最开始使用的方法是将小分子有机染料与各种抗体相连接,来研究各种目的蛋白。不过这种使用抗体的方法如果需要对细胞内的蛋白质进行研究时,还需要对细胞进行固定和透化操作。因此后来又发展出可以直接在活体细胞内标记某种细胞器、核酸分子或某些离子的荧光标志物。在最近这10年里,荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid

photoinactivation)还可以对蛋白质的定位情况进行研究。与此同时,半导体纳米晶体材料技术也得到了高度的发展,现在,这种新型的材料在亮度和光稳定性方面都要比传统的荧光标志物好得多,只不过现在这种材料的靶向性还不是很好。本文中我们将对目前荧光标志物及其相关技术的发展进行介绍,同时还将介绍荧光标志物在蛋白质表达、蛋白质活性以及蛋白质功能研究工作中的作用进行介绍。

?0?2

荧光标志物

小分子有机染料

小分子有机染料是指分子量小于1KD的小分子物质,这种小分子有机染料可以通过与生物大分子共价连接的方式对其进行标记,我们现在对这种染料的最佳检测波长范围、亮度,即吸光系数、光稳定性和自我淬灭特性都有了比较详尽的了解。利用荧光染料的分子策略包括扩展共轭双键、额外添加环状结构增强其刚性、用氟或磺酸盐这类吸电子性的或带电荷的物质进行修饰等。现在市面上已经有数百种这类荧光染料的商业化产品可供选择,而且还在不断增加之中。不过由于这类染料对蛋白质缺乏特异性,因此多与抗体联用(图1A~C)。?0?2

荧光蛋白

第一批用于细胞生物学的荧光蛋白包括藻胆蛋白(phycobiliproteins)和从蓝藻

(cyanobacteria)中提取的触角光合色素(photosynthetic antenna pigments)。这些生物大分子都含有多种胆汁三烯生色基团(bilin chromophores)。这些生色基团都包裹在一种基质结构中,这样就能将它们的淬灭作用降至最小,因此这些藻胆蛋白的荧光亮度要比小分子荧光染料的亮度高出两个数量级。不过这些藻胆蛋白的“个头(分子量高达200KD)”也限制了它们在细胞内的扩散,因此,它们也只能与抗体联用,在流式细胞术试验或ELISA试

验中用来检测细胞表面的蛋白质分子。不过如果能将这些藻胆蛋白在细胞中原位表达,那么它们的用途就会大为扩展,但问题在于胆汁三烯生色基团必须依赖脱辅基蛋白(apoproteins)的作用。不过令人高兴的是,我们已经在这方面取得了一些成绩。

自从科学家从维多利亚发光水母(jellyfish Aequorea victoria)中发现了绿色荧光蛋白(GFP)之后,生物成像领域就发生了革命性的改变。单独表达绿色荧光蛋白或与其它蛋白融合表达就可以在细胞内发出绿色荧光了,使用这种方法除了需要氧气O2之外,不再需要任何其它的试剂参与,因为生色基团是通过自发环化作用形成的,需要对深埋在直径约2.4纳米至4纳米的β桶(beta barrel)核心里的三个氨基酸(丝氨酸-酪氨酸-氨基乙酸)进行氧化才能发出荧光。绿色荧光蛋白只是荧光蛋白大家族中的一员,这些荧光蛋白大部分都来自海洋腔肠动物,因为各自含有共价结构不同以及非共价环境不同的生色基团,所以可以发出不同颜色的荧光。在实验室中对这些荧光蛋白进行遗传修饰之后可以进一步的丰富它们的特性,比如增加亮度和折叠效率、减少寡聚体形成等。突变既可以增加荧光蛋白的光稳定性,还可以赋予荧光蛋白光操控性,比如控制荧光发射与否,或者发出哪种荧光。这种光操控性既可以是可逆的也可以是不可逆的,可以用于监测蛋白的弥散过程、运输过程和老化过程等。虽然荧光蛋白在生色基团形成的过程中会生成H2O2,但似乎没有产生太多的活性氧簇(ROS),这一点也并不奇怪,因为荧光蛋白在进化过程中都是暴露在阳光下的。不过我们也可以对荧光蛋白进行改造使其能够形成ROS。荧光蛋白发出的荧光一般对它们所处的生化环境都不

太敏感,但是酸性环境或变性剂的存在可以淬灭荧光。不过现在我们已经有了经过改造的、能耐受酸性环境或者能对金属离子、卤化物离子和巯基二硫化物氧化还原剂起反应的荧光蛋白。

?0?2

量子点(QD)

量子点是一种无机纳米结晶体,它可以根据其大小发出特定波长的荧光,它具有非常高的消光系数,其消光系数要比小分子荧光基团和荧光蛋白高出10倍至100倍,同时量子点的量子产率也非常好。典型的量子点都含有一个硒化镉(CdSe)或碲化镉(CdTe)核心,外面包裹一硫化锌(ZnS)外壳(图1C)。量子点的吸收波长范围覆盖从非常短的波长至略低

于其发射波长的广阔范围,因此一束单波长激发光就可以让量子点达到多重发射。对于生物学研究领域来说最重大的一项突破是研究出了能让量子点溶于水的包被材料,该材料能避免量子点被水淬灭,同时也能让量子点可以与抗体、抗生物素蛋白链菌素(streptavidin)等

分子相连接(图1B)。不过这种结合了生物大分子的量子点体积过大(直径约10纳米至

30纳米),从而阻碍了它通过细胞膜结构,这种量子点也就只能用于经透化处理的细胞,

或者只能对胞外蛋白和可以被细胞内吞的蛋白进行研究。量子点的光稳定性使其能够反复成像,而其大小和电子密度特性又使得它适合用于电镜研究。

在亲水的树枝状高分子聚合物(hydrophilic dendrimers)中形成的金或银纳米点材料也能发出荧光,同时也具有波长可调性。这种新型材料在细胞生物学领域的应用前景也是不可估量的。

?0?2

标记蛋白技术

免疫标记法

表1中列举了几种免疫标记法以及其它标记蛋白的技术。在用荧光技术检测内源性蛋白质时最常用的方法就是免疫学方法,即先用特异性抗体(一抗)识别靶蛋白,再用标记有小分子有机染料、藻胆蛋白或量子点的二抗显色(图1A至C)。或者,也可以直接将荧光标志物或者生物素连接在一抗上,然后再用抗生物素蛋白链菌素检测。当把抗体直接注入细胞时或者为了对多个蛋白进行检测而使用了多种颜色的荧光时采用这种直接将标志物连接在抗体上的方法非常有效。但是如果没有高质量的抗体时最好就是将荧光标志物与靶蛋白一起融合表达来检测,尽管这种融合蛋白不能算真正意义上的“内源性蛋白”。对靶蛋白检测的精确程度取决于一抗的特异性,因此还需要用其它的方法进行佐证。使用免疫荧光标记法的劣势在于前面所述的,该方法只能用于经透化处理的细胞、胞外蛋白和可以被细胞内吞的蛋白,而且这些抗体标志物的多价性(multivalency)还可能会导致靶蛋白形成寡聚体。在标准的免疫标记法中,荧光标记的复合体通常来说分子量都会超过200KD,这有可能会影响到蛋白间的相互识别过程。

?0?2

表1 荧光基团在蛋白质检测中的应用

++、+/-、-分别表示“应用范围较广”,“在某些领域内有所应用”,“较少应用”

?0?2

遗传标记法

将荧光蛋白与靶蛋白融合在一起的遗传标记法最大的优势就是可以对靶蛋白进行精确的标记(图1C和D)。用转染技术和转基因技术进行荧光标记要比用荧光染料方便得多。遗传标记法的缺点在于表达的蛋白不是“内源性”蛋白,荧光蛋白的分子大小会带来影响,融合蛋白可能会影响到目的蛋白的功能,以及荧光蛋白的限制性问题等。因此,又发展出了好几种“混合系统”,在活细胞内或细胞表面将小分子荧光标志物与目的蛋白进行共价连接,或者通过酶的作用进行连接,甚至于可以自动连接。不过这些技术中的大部分都太新了,还没有得到足够的实用检验。这些混合系统中最好的系统应该算四半胱氨酸序列(tetracysteine)

-biarsenical染料系统。该系统用一段由12个氨基酸残基组成的肽段对目的蛋白进行修饰,这段短肽内包含有4个半胱氨酸,这些半胱氨酸能够与可以透过细胞膜的biarsenical染料分子相结合,形成FlAsH或ReAsH,发出绿色或红色荧光,这种结合过程是高亲和力的过程,只需要皮摩尔级的分子就足够了(图1C和E)。同时使用小分子二巯基化合物解毒剂(dithiol antidotes)可以降低靶蛋白与染料之间的亲和力,同时减少毒性反应。Tetracysteine 基序已经经过了好几轮改良以提高它与biarsenical染料之间的亲和力,这样只需使用很低浓度的biarsenical染料就可以达到目的,而且可以降低背景。这种小分子Tetracysteine基序对目的蛋白的影响要比荧光蛋白小得多,有人用酵母微管蛋白(tubulin)、G蛋白和细菌致病蛋白等已经证实了这一点。这种tetracysteine-biarsenical系统还具有其它荧光蛋白不具有的优势,比如可以用于亲和纯化(affinity purification)、荧光蛋白辅助的光灭活作用(fluorophore-assisted light inactivation)、检测蛋白质合成过程、进行脉冲追踪标记(pulse-chase labeling)以及电镜下定位等等。不过,biarsenical染料会造成背景荧光偏高,因此在这一点上(荧光高对比度)相比荧光蛋白并不具备优势,因此还没有用于转基因动物,而且还不能同时对不同的蛋白标记上不同的颜色。Tetracysteine序列有时也可以提供一个十六烷酰化位点(palmitoylation site),虽然这种修饰作用有时会被已经存在的原位标签(epitope tag)所阻碍。这种遗传标记法具有其独特的优势,但是还是需要用其它方法验证标记物蛋白或融合蛋白是否会影响到目的蛋白的功能及定位。

?0?2

?0?2

荧光标记技术在原代细胞和固定组织中研究蛋白质表达情况和蛋白质定位情况时的应用

用流式细胞术研究蛋白质表达情况和蛋白质活性

免疫荧光技术是最适合研究内源性蛋白质的一种方法。能够特异性结合磷酸化蛋白的被荧光标记的抗体可以帮助我们清楚地观察到内源性蛋白质的活化状态,这一点对于用荧光流式细胞仪(fluorescent flow cytometry)对单细胞内的多种胞质蛋白的活性进行研究非常重要。单细胞内研究资料可以用于构建细胞信号网络,并且有可能用于在体外对病人的血细胞进行临床药物试验。目前对于胞质蛋白来说,小分子染料要比量子点更实用,因为小分子染料对于细胞的穿透性更好(表1)。不过量子点的高亮度特性有助于提高检测的极限,而且量子

点的多色特性也有助于进行多色标记。使用小分子染料、藻胆蛋白和量子点,我们可以在流式细胞仪中同时对17种荧光进行检测。

?0?2

?0?2

图1 蛋白检测中各类荧光基团的特点及应用。本组图片展示了采用不同标记方法及不同类型的荧光基团在蛋白检测中的具体应用:A、B图中展示的是成纤维细胞中的α-微管蛋白(α-tubulin,红色)。D、E图中展示的则为HeLa细胞中的间隙连接蛋白43(connexin43,绿色)。不同类型的目的蛋白及标记荧光基团(图C)的结构均按比例显示(比例尺为2nm)。内源性蛋白质先经一抗标记后,再用与小分子有机染料(A图)共轭相连的二抗或与QDs 相连的Fab片段(B图)进行标记,此种标记法同样也适用于在电镜下进行观察;B图右侧所示为用QD565标记间隙连接蛋白43后显示的间隙连接蛋白接口处情况。D图和E图分别采用的是融合表达荧光蛋白标签和tetracysteine标签标记方法。E图中先后分别采用FlAsH (绿色) 及ReAsH (红色)进行标记,从而对新旧蛋白进行区分。经光氧化作用处理后,ReAsH也可在电镜下观察到,如图E右侧图所示。比例尺:图A、B及D:20 μm(光镜);B图:50nm(电镜);C图:2nm;E图:2μm。

?0?2

在光学显微镜和电子显微镜下进行蛋白质定位研究

要想获得蛋白质在细胞器和其它亚细胞结构中最准确的定位信息,这莫过于使用电子显微镜了。大部分单独的荧光基团在光照下都会产生单线态氧(singlet oxygen),这些单线态氧不仅容易对荧光基团自身起到漂白作用,而且可以将局部的二氨基联苯胺(diaminobenzidine,DAB)氧化形成电镜下的嗜锇小体(osmiophilic polymer)。这种“光转化(photo-conversion)”过程最初是在荧光黄(Lucifer Yellow)里发现的,后来又在四

溴荧光素免疫荧光染色(eosin immunostaining)中发现了。最近发现,用tetracysteine序列标记的蛋白经biarsenical染色后形成的ReAsH对DAB也具有光转化作用,这提示我们需要在试验操作中更加仔细进行固定操作,已达到对细胞超微结构最佳的保存效果(图1E 和图2H)。而且用tetracysteine序列标记方法还可以进行脉冲追踪标记,以此在电镜下区别出“新的”蛋白质和“老的”蛋白质(图1E)。据报道绿色荧光蛋白对于DAB也有光转化作用,不过转化效率要比ReAsH低很多。

光转化作用对于聚集在亚细胞结构中的蛋白质的作用最大。量子点在发现更多的蛋白质和在细胞内分布范围更广的蛋白质这一方面非常具有优势,它可以同时用于光镜和电镜(图1B)。量子点的高电子密度核心和其大小特性使得它可以在电镜下被发现,而且还可以借助银染的手段对量子点进行染色,进一步方便我们观察。有人用切片后标记的方法(postsectioning labeling)用量子点对核内蛋白(nuclear protein)进行了标记,证明了量子点在电镜下和光镜下的应用价值。最近有报道称有人用免疫标记方法将量子点直接对细胞和组织内的多种内源性蛋白质进行了标记,标记后可在光镜和电镜下进行观察。量子点标记后可以现在光镜下进行预筛,以检测标记效率,并划定目标区域,以方便后续的电镜检查。因为量子点的大小有差异,所以我们可以轻易的分辨出3种不同的蛋白质。又因为每一个量子点都可以发出荧光,可以在电镜下被检测到,因此从原理上来说可以用电镜进行所有的荧光观察研究,比如可以不用抗体而用生物素标记细胞表面蛋白,然后用标记有抗生物素蛋白链菌素的量子点进行检测等。不过因为在免疫标记法中需要对细胞进行透化处理,而且不能对细胞进行直接的、比较严苛的固定操作,因此细胞的超微结构不能得到很好的保存,这一点不如使用tetracysteine序列标记技术。

?0?2

荧光标记技术在研究活体细胞内的蛋白质动力学时的应用

研究蛋白质在细胞内的弥散过程和运输过程

当被标记的蛋白质在细胞内运动、重新分布时,我们可以通过直接成像技术观察到这一动态变化的过程。通过检测蛋白质在胞内的这种运动过程,我们可以对蛋白质的活化、信号传递通路,第二信使等过程进行研究。比如有人就曾经用荧光蛋白标记了血小板同源结构域(pleckstrin homology domains)观察了它们在细胞内的转运情况,用这种方法监测了多磷酸肌醇(polyphosphoinositides)在胞膜上的聚集过程。即使到了稳定阶段,蛋白质也仍然是处于不断运动、不断在各个细胞器间交换的过程中。目前有三种主要的方法可以对蛋白质这种看不见的“流动状态”进行观察,这三种方法分别是单粒子示踪技术(single-particle tracking)、相关光谱学技术(correlation spectroscopy)和光标记技术(photomarking methods)。单粒子示踪技术是对单个的分子(molecules)、聚合物(aggregates)或细胞器(organelles)等进行观察的技术,这些被观测的粒子必须足够亮,并且彼此之间的间隔要足够大,这样才能很好地对它们进行“跟踪”。比如低浓度的(<0.5%)荧光标记肌动蛋白或微管蛋白会分别在纤维状肌动蛋白(filamentous actin)或微管(microtubules)中形成一块荧光斑点(fluorescent speckles)。生物大分子结构的形成、变化和解散过程都可以由这种荧光斑点的动态变化过程来反映。荧光相关光谱学技术可以对荧光标记蛋白进入或

离开某一激光焦点区域导致的荧光强度的改变情况进行统计学分析,以此来分析蛋白质的运动情况。荧光相关光谱学技术可以衍生出其它一系列的方法,比如影像相关光谱学技术(image correlation spectroscopy),该技术可以对荧光图像进行测量,发现不同图像间的变化情况,可以对细胞内蛋白间相互作用和蛋白动力学的总体情况进行了解。不过在上述这些方法中存在一个问题,那就是荧光基团的光化学敏感问题(Photochemical sensitivity),但这恰好是光标记技术所需要的。光标记技术也是一种图像化研究蛋白质动力学的方法。各种荧光蛋白都可以被破坏(图2F)、被去淬灭(dequenched),或者被光活化作用改变颜色(图2E)。经过上述处理的这些荧光标记分子就可以直接用来进行成像研究了。对主动转运过程来说,荧光标志物的大小不会是问题,但是在被动转运过程中,小分子标志物的效果要好得多。

单个的量子点可以用来反复成像,因为它们的亮度和光稳定性都非常高,但是很难在活体细胞内对量子点标记的胞质蛋白质进行观测,这成了困扰量子点应用的瓶颈问题。不过在对细胞表面蛋白质进行研究时,量子点方法要比单分子活体细胞成像方法好得多。

我们可以用免疫靶向的抗生物素蛋白链菌素标记的量子点(immunotargeted

streptavidin-QDs)来研究甘氨酸受体的运动情况。我们已经获得了一千多张高质量的神经元细胞内源性受体的荧光图像,这些图像向我们展示了甘氨酸受体在突触外(extrasynaptic)、突触旁(perisynaptic)和突触内(synaptic)以不同速度运动的情况。Lidke等人最近将好几种上述研究方法和荧光标记物联用,获得了有关表皮生长因子(epidermal growth factor, EGF)信号通路的新发现。他们发现用量子点标记的表皮生长因子能够特异性地与

ErbB1-GFP受体复合体共定位,并且用特异性靶向活化的ErbB1蛋白的Cy5标记的抗体发现,表皮生长因子能够激活ErbB1-GFP受体复合体。Lidke等人还用阿糖胞苷(Alexa)标记的转铁蛋白(transferrin)发现,EGF-ErbB1-GFP受体复合体是通过依赖笼形蛋白(clathrin)的细胞内吞途径(internalized)进入细胞的。此外,他们还发现EGF-QD分子的逆向转运过程是依赖受体的寡聚化过程。对光漂白的GFP-actin分子进行荧光恢复之后发现受体逆向转运过程的速度是与actin分子转运速度相同的。用不可进入细胞内的biotin-Alexa特异性

地淬灭胞外的EGF-QDs-streptavidin分子,结果发现受体不会进入丝状伪足,但是可以进

入胞体,因此丝状伪足可能起到了触角的作用,能够调节活化的受体进入细胞。

?0?2

荧光标记技术在蛋白质构象改变研究中的应用

在研究蛋白质随时间、空间改变而发生构象动力学改变的时候,最为常用的一个方法就是将某一蛋白质结构域与两个荧光基团结合,形成一三明治样结构,然后对该结构的萤光共振能量转移现象(FRET)进行检测。最为常用的荧光基团有蓝绿色荧光蛋白(cyan FPs, CFP)和黄色荧光蛋白(yellow FPs, YFP)(图2A至C)。图2B给出了一个最为典型的FRET 试验。FRET的效率取决于供体与受体间的距离和方向。FRET可以反映出蛋白分子内部因为方向而不是距离改变所造成的构象改变,因为荧光蛋白分子中有一个发生交替排列或者接头长度发生微小的改变都会给FRET带来很大的影响,这要比两个荧光蛋白分子间的距离

改变对FRET造成的影响大得多。连接两个荧光蛋白的蛋白质本身也可以在生化信号的影

响下改变构象。如果与定位信号序列融合,这种三明治结构可以用于对胞内特定的亚细胞结构进行研究。我们已经用这种方法研究出了可用于对某些离子、环核甙酸(cyclic nucleotides)、代谢产物和神经递质等物质进行检测的指示剂,还研究出了可用于检测蛋白激酶与磷酸酶活性、蛋白酶活性、小G蛋白(small G proteins)活性和组蛋白乙酰基转移酶(histone acetylases)活性的指示剂。

?0?2

荧光标记技术在蛋白与蛋白间相互作用研究中的应用

FRET还可以用于在活体细胞内研究蛋白间的相互作用(图2C)。此处应用的荧光蛋白长度在6纳米至8纳米之间。最近更有报道称可以在上述CFP和YFP的基础上再加上一种红色荧光蛋白(RFP),即利用三种荧光蛋白来研究高度复杂的蛋白复合体。在这种

CFP-YFP-RFP复合体中,CFP是YFP的供体,而YFP又是RFP的供体(图2C)。这种三联体研究方法已经用于多蛋白复合体以及三聚体蛋白的研究当中。如果对FRET供体和受体波长或光谱重叠范围进行进一步的优化将可以进一步的改进这种三联体研究方法。

荧光蛋白在某些位点断裂之后,生成的两个片段可以重新结合再形成生色基团,这就是图2D所示的名为生物分子荧光互补技术(bimolecular fluorescence complementation,BiFC)的原理。有报道称绿色荧光蛋白的裂解片段就具有不需要借助其它蛋白间相互作用的自我重组功能,不过只有当两个片段同处于一个结构之内才能发出荧光。BiFC技术可以用于研究至少在两个启动子调控之下的蛋白质的表达情况,已经有人在秀丽隐杆线虫(Caenorhabditis elegans)中进行了类似的试验。BiFC技术具有很高的信噪比,因为它可以形成新的荧光,而不是只对已有的荧光进行调控。可以同时用好几对不同荧光蛋白的裂解片段对多个蛋白间的相互作用进行研究。不过BiFC试验花费的时间比较长,长达数小时甚至数天,而且试验是不可逆的,同时我们现在也不清楚蛋白间相互作用试验中所需要的空间几何学参数和亲和力参数。

在某些情况下,只需要简单的共定位试验就足以说明蛋白间的相互作用情况。比如,如果蛋白激酶A的调节亚单位是特异性靶向细胞膜结构的,同时在细胞内共表达荧光标记的催化亚单位,那么该催化亚单位就应该共定位在细胞膜结构上,同时当胞内cAMP浓度升高时,它会与调节亚单位解离。使用两种荧光颜色的荧光相关光谱学方法也可以用来进行蛋白间的相互作用研究。

?0?2

荧光标记技术在蛋白质合成和降解过程研究中的应用

要研究蛋白质的降解过程首先就需要能分辨“陈旧的”蛋白质和“新生的”蛋白质。常用的方法是用不可逆的标记方法对某一时刻合成的所有蛋白质进行标记。然后再用另一种颜色的荧光对迟些时候新生成的蛋白质进行标记。可以用高亲和力的配体或标记有荧光基团的抗体对内源性蛋白和胞外蛋白,例如受体或表位等进行标记。也可以先用一种biarsenical染料标记Tetracysteine序列,然后再用另一种biarsenical染料进行标记的方法来研究蛋白复合体的合成过程以及蛋白在胞内的亚细胞定位情况(图1E和图2G)。用各种光标记荧光蛋白进行标记的融合蛋白是可以被光活化或光漂白的,因此也可以用于研究蛋白质的合成情况(图

2E和图2F)。有一些荧光蛋白突变体在某些温度之上就会发生不可逆的变性,因此也可以借助温度来进行光漂白试验。还有一些荧光蛋白在生色基团成熟的过程中会自发地改变颜色,比如从绿色变成红色,因此不需要外界的作用也可以用来指示蛋白的“新旧”程度。不过在这种情况下时间分辨率并不是显得那么重要,因为通常来说,这种自发性的颜色改变过程会持续好几个小时。

?0?2

利用依赖生色基团的光灭活作用来控制蛋白质的活性

正如前文所述,我们知道荧光基团受光照活化后会生成ROS,尤其是生成单线态氧,利用

这种特性我们可以将目的蛋白灭活(图2I)。这种灭活蛋白的方法在时空分辨率的控制方

面要比基因敲除方法或RNA干扰方法好得多。这种依赖生色基团的光灭活作用(chromophore-activated light inactivation, CALI)最开始使用的是孔雀绿(malachite green)染料,借助免疫染色方法对目的蛋白进行标记。为了避免孔雀绿标记的抗体难以进入细胞这一技术上的障碍,我们开发出了用于CALI技术的标签蛋白。GFP、FlAsH、ReAsH和特异性结合FKBP12蛋白的荧光素标记抗体都可以被用于“摧毁”胞内的靶蛋白。上面所述这几

种荧光标志物的摧毁效率按从大到小排列顺序是ReAsH > FlAsH>荧光素>> 孔雀绿>GFP。如果用对细胞伤害更小的波长更长的多光子激活方法(multiphoton excitation),还可以进一步减少CALI方法对细胞产生的非特异性杀伤作用。最近在检测不同荧光蛋白光毒性作用时发现了一种名为“KillerRed”的荧光蛋白。该蛋白非常适合作为CALI试验和光转换试验(photoconversion)的标签蛋白,不过该蛋白是以二聚体的形式存在,就目前的试验数据

来看,它在CALI试验中的效率远不如ReAsH。

?0?2

荧光标记技术在酶活性检测方面的应用

抗体识别方法或者遗传融合方法实际上都是遵循化学配比原则的,即每一个目的分子都只可能与一个或几个荧光标志物结合。而细胞内源性酶的荧光底物则为我们提供了一个绝好的机会,可以据此检测这些酶是处于活化状态、潜伏状态还是受抑状态。这对于蛋白酶的研究工作来说尤其重要,因为在大量的蛋白酶中只有一小部分是处于活化状态的。蛋白酶在感染性疾病、细胞凋亡、炎症性疾病以及肿瘤等疾病中都起到了重要作用,现在已经有了好几种方法可以研究活体动物体内的蛋白酶活性,比如FRET中断法(disruption of FRET)、荧光标记底物淬灭法或者激活能将荧光基团带入细胞上(内)的阳离子细胞穿膜肽(cationic cell penetrating peptides)方法等。

?0?2

图2 图中A至I展示的是荧光标签的各种应用方法以及技术原理。图中圆筒状结构代表蓝绿色、绿色、黄色和红色的荧光蛋白。X、Y、Z分别代表目的蛋白。光强度以波形的粗细程度表示,参见文中相应文字获取更多详细信息。

A:FRET报告系统(reporter)(直接作用方式)。受体蛋白(图中灰色曲线)与配体(图中三角形所示)结合之后(即步骤1)会导致受体蛋白构象发生改变(即步骤2),通过

FRET的作用将发蓝绿色荧光的CFP荧光蛋白变成了发绿色荧光的FIAsH荧光蛋白;B:FRET 传感器(sensor)(间接作用方式)。底物经过修饰(如图中橙色所示的磷酸化修饰作用)之后会导致构象改变,通过FRET作用使得发蓝绿色荧光的CFP荧光蛋白变成了发黄色荧光的YFP荧光蛋白;C:三分子FRET作用。蛋白X和蛋白Y结合之后会使得发蓝绿色荧光的CFP荧光蛋白变成了发黄色荧光的YFP荧光蛋白。如果再与蛋白Z结合则会发中红色荧光;D:BiFC技术。蛋白X与蛋白Y结合的同时也导致绿色荧光蛋白的两个裂解片段结合在一起,这两个裂解片段结合之后又会形成生色基团,发出绿色荧光;E:光活化作用。强烈的光刺激会改变局部荧光蛋白的发射光谱,这样就可以发现蛋白质的运动情况;F:FRAP作用。强烈的光刺激可以让局部的荧光被漂白。但是新合成的蛋白或从别处运动过来的蛋白仍然会发出荧光;G:脉冲追踪技术(pulse-chase)。用Tetracysteine 序列标记的蛋白质被绿色染料标记后形成能发出绿色荧光的FIAsH,如图中绿色小点所示。在去掉绿色染料之后再用红色染料标记新生的蛋白质,就会形成能发出绿色荧光的ReAsH,如图中红色小点所示;H:电镜下光氧化作用。对ReAsH(图中红色小点所示)进行强烈的光刺激之后可以形成ROS。ROS可以让DAB发生多聚化反应沉淀下来(如图中棕色所示)。这种DAB沉淀可以被黑色的锇染料(Osmium)着色,在电镜下被观察到;I:CALI 作用。对ReAsH(图中红色小点所示)进行强烈的光刺激之后会生成ROS,这些ROS可以氧化并灭活目的蛋白。

?0?2

增加荧光标记技术的空间分辨率和对于细胞的穿透力

因为有很多分子间相互作用和细胞生物学现象都是在“远隔”好几百纳米的距离范围内发生的,因此我们还需要努力提高荧光显微镜的空间分辨力。目前使用的传统衍射技术的荧光显微镜的分辨率只有200纳米。当荧光发射光源只是一个点时,如果我们能收集到它所发射出来的足够光子,就能在亚纳米级精度对它进行准确的定位。这种测量方法在体外检测运动蛋白和持续性酶的步长时特别有用。最近还有人用该方法对活体细胞进行了实验,结果发现用绿色荧光蛋白标记的过氧化物酶体沿细胞微管运动时的步长大约是8纳米。对于更加复杂的,不知道其大小与形状的复合体来说,我们也可以用诸如结构照明技术(structured illumination)、相互比对技术(coherent observation)以及受激发射减损技术(stimulated emission depletion)等经改良的光学实验方法进行研究。

在研究散射深度超过1毫米的组织时要获得高质量的图像就需要用到红外线脉冲多光子激发技术(multiphoton excitation with pulsed infrared),因为在使用红外线时发生的散射现象最弱,而且试验中所收集到的光子都必须来自同一发射源,哪怕这些光子已经发生了散射。对于固定组织使用新的连续重建技术(serial reconstruction)或者对于活体组织使用断层摄影术(tomography)都有望提高荧光成像的深度,只不过会牺牲部分分辨率。

?0?2

图3 不同的标记方法和荧光基团的应用。将GFP标记的α微管蛋白和ReAsH β-actin蛋白转染HeLa细胞。细胞固定后用量子点对高尔基体基质蛋白giantin进行免疫标记,用Cy5对线粒体酶细胞色素C进行标记,用Hoechst 33342对DNA进行标记。按下表中激发波长和发射波长获得图中图像。上面的小图是伪色图(false-colored),下面的大图是合成图。图中比例尺为20微米。

?0?2

总结与展望

荧光成像技术正在各个领域里大显身手,而且应用范围也在不断扩大。荧光探针、标记技术、

实验设备以及数据分析方法等各个相关领域都取得了非常大的进步,现在荧光成像技术已经可以进行高通量筛选、单分子检测、多蛋白乃至活体细胞成像等领域了。我们在各种各样天然荧光蛋白的基础上又进一步的进行了各种人工改造,获得了一大批优良的人工荧光蛋白,不过还没有一种荧光蛋白能够满足我们的所有需要。我们还开发出了很多关键代谢产物、关键调节酶和生化反应的指示剂,这些指示剂基本还没有发现有任何不足之处。虽然荧光标签蛋白在活体细胞成像中还是一个无法替代的方法,但我们还是需要用其它方法来验证荧光标签蛋白是否影响了目的蛋白的功能(图1和图3)。这些验证方法包括用标记了荧光基团的针对蛋白翻译后修饰情况的抗体检测目的蛋白的修饰情况,用knock-in实验检测细胞内外

源性目的蛋白的量是否超过了内源性目的蛋白等。反过来,也可以用荧光蛋白进行免疫荧光标记的目的蛋白来验证抗体的质量(即特异性)。使用明亮、稳定的量子点可以降级免疫检测方法的检测极限,增强对多种蛋白进行检测的能力,同时也可以用于相关的电镜研究和Western blots以及ELISA一类的体外实验(表1)。但是为了让量子点能达到最佳的应用效能,我们还需要进一步提高它的靶向性与对细胞的穿透力。

荧光检测技术也可以应用于临床,比如可以检测患者细胞或活检组织里蛋白的活性,研究药物对患者体内信号通路的影响等等。荧光检测技术还非常适合用于进行高通量药物筛选工作,既可以用于生化方面的筛选工作,比如蛋白质芯片筛选,也可以用于功能方面的筛选工作,比如对活体细胞和动物进行筛选。由于荧光检测技术将高时空分辨率、对活体细胞或组织无伤害性和分子特异性等优势集于一身,因此我们可以相信,荧光检测技术必将在蛋白质网络分析和系统生物学研究领域占有重要的一席之地。

?0?2

原文检索:

Ben N. G. Giepmans,Stephen R. Adams,Mark H. Ellisman,Roger Y.

Tsien.(2006) The FluorescentToolbox for Assessing Protein Location and Function. Science, 312:217-224.

荧光素标记抗体方法

荧光素标记抗体技术 (一) 原理 目前用于抗体标记的荧光素主要有异硫氰酸荧光素(Fluorescein isothiocy nate,FITC)或罗达明(Lissamine rhodamine B200, RB200)。在硷性条件下FITC 的碳酰胺键可与抗体赖氨酸的ε氨基共价结合,标记后的抗体仍保持与相应抗原结合的能力。在荧光灯源紫外线或兰紫光激发下产生黄绿色荧光,通过在荧光显微镜下观察或流式细胞仪分析可对相应抗原进行定性、定位或定量的检测。 (二) 操作步骤 将纯化的IgG抗体对PH9~9.5碳酸盐缓冲液透析过夜, 透析后抗体液移入小烧杯中 ↓ 称取适量IFTC,加入二甲亚砜(DMSO)(FITC~1mg/1ml DMSO) 使终浓度为1mgFITC/1mlDMSO FITC/IgG比例:如IgG浓度为1mg/ml,FITC/IgG比例约为50μgFI TC/mgIgG; 如IgG为5~10mg/ml,则比例为25μgFITC/ml IgG 在10ml小烧杯中先放入抗体 ↓ 按上述比例将FITC-DMSO溶液逐滴加入透析后的抗体溶液中 ↓ 将标记物用PBS加至2.5ml,磁力搅拌器室温下避光搅拌2h ↓ 用PD10柱(Sephadex G25柱)除去游离荧光素,先用25ml PBS淋洗G2 5柱 ↓

收集PBS洗脱第一个荧光素结合蛋白峰,测定F/P 比值。第二个荧光素峰为游离荧光素 计算: 2.87×A495 F/P=──────── A280-0.35×A495 合适的F/P值为2~4。 (三) 试剂器材 1. 纯化的多克隆抗体或单克隆抗体。 2. FITC(Fluorescein-5-Lsothiocyanalte)或其它荧光色素。 3. PBS、DMSO 4. PH9~9.5碳酸盐缓冲液: Na 2CO 3 4.3g,NaHCO 3 8.6g加蒸馏水至500ml。 5. PD10柱(Sephadex G25柱) 6.磁力搅拌器,紫外分光光度计等 (四) 注意事项 1. FITC保存于4℃暗处,使用前待试剂瓶升至室温时开盖称取,以避免潮解。 2. FITC-DMSO液要临用时配制。 3. 碳酸盐缓冲液要新鲜配制。 如有侵权请联系告知删除,感谢你们的配合!

免疫标记技术讲解

课程名称:临床免疫学检验技术课题名称:免疫标记技术 组员:朱恩鹏拉巴卓嘎 张燕培汪婷婷

免疫标记技术 免疫标记技术指用荧光素、放射性同位素、酶、铁蛋白、胶体金及化学(或生物)发光剂等作为追踪物,标记抗体或抗原进行的抗原抗体反应。藉助于荧光显微镜、射线测量仪、酶标检测仪、和发光免疫测定仪等精密仪器,对实验结果直接镜检观察或进行自动化测定,可以在细胞、亚细胞、超微结构及分子水平上,对抗原抗体反应进行定性和定位研究;或应用各种液相和固相免疫分析方法,对体液中的半抗原、抗原或抗体进行定性和定量测定。因此,免疫标记技术在敏感性、特异性、精确性及应用范围等方面远远超过一般免疫血清学方法。近年来,随着分子生物学、细胞生物学、基础免疫学和免疫化学等学科的发展以及现代高新技术建立的仪器分析的应用,免疫标记技术也不断完善和更新。各种新技术和新方法不断涌现,至今已成为一类检测微量和超微量生物活性物质的免疫生物化学分析技术,在医学和其他生物学科的研究领域及临床检验中应用十分广泛。 根据试验中所用标记物的种类和检测方法不同,免疫标记技术分为免疫荧光技术、放射免疫技术、免疫酶技术、免疫电镜技术、免疫胶体金技术和发光免疫测定等。 第一节放射免疫技术 放射免疫标记技术是将同位素分析的高灵敏度与抗原抗体反应的特异性相结合,以放射性同位素作为示踪物的标记免疫测定方法,由于此项技术具有灵敏度高(可检测出毫微克(ng)至微微克(pg),甚至毫微微克(fg)的超微量物质,特异性强(可分辨结构类似的抗原)、重复性强、样品及试剂用量少、测定方法易规范化和自动化等多个优点。因此,在医学及其他生物学科的研究领域和临床实验诊断中广泛应用于各种微量蛋白质、激素、小分子药物及肿瘤标志物等的分析与定量测定。 (一)放射免疫测定(RIA) 放射免疫测定(Radio immunoassay , RIA)是1959 年Yalow 和Berson 首先创建的经典放射免疫分析技术,用于血清中胰岛素含量的测定。30 多年来,由于此项技术灵敏、特异、并已制成多种标准试剂盒,使用方便,应用范围十分广泛。目前国外已成功地应用RIA检测的物质多达300余种,国内研究的被测物质也达百余种,试制的RIA试剂盒已有60余种,是测定各种微量物质不可缺少的手段。 (二)免疫放射测定(IRMA)

荧光蛋白(整理)

荧光 一、定义 荧光(fluorescence )又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。 二、原理 光照射到某些原子时,光的能量使原子核周围的一些电子由原来的轨道跃迁到了能量更高的轨道,即从基态跃迁到第一激发单线态或第二激发单线态等。第一激发单线态或第二激发单线态等是不稳定的,所以会恢复基态,当电子由第一激发单线态恢复到基态时,能量会以光的形式释放,所以产生荧光。 荧光是物质吸收光照或者其他电磁辐射后发出的光。大多数情况下,发光波长比吸收波长较长,能量更低。但是,当吸收强度较大时,可能发生双光子吸收现象,导致辐射波长短于吸收波长的情况发射。当辐射波长与吸收波长相等时,既是共 荧光强度:荧光强度与该种物质的荧光量子产率、消光系数以及含量等因素有关。荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。荧光蛋白分子的亮度由其量子产率与消光系数的乘积决定,与成像检测灵敏度密切相关。 三、荧光蛋白 1、绿色荧光蛋白(green fluorescent protein,GFP )

在光谱的绿光区(500nm-525nm)已经发现了多种荧光蛋白,而且来源广泛,包括不同种属的Aequorea 、桡足类动物、文昌鱼以及珊瑚。然而多数有齐聚反应,即使最好的荧光蛋白与EGFP相比,也没有明显的优点。或许目前活细胞成像最好的选择是GFP 衍生的Emerald(祖母绿),它与EGFP的特性相似。Emerald包含F64L 和S65T突变,另外还有四个点突变从而改进了折叠、37℃时的突变率以及亮度。虽然Emerald比EGFP更有效,但含有快速光漂白成分,可能在某些环境下其定量成像会受到影响。 下面主要介绍GFP及其衍生型荧光蛋白: (1)来源绿色荧光蛋白最早由美籍日裔科学家下村修于1962年在水母中发现。这种蛋白质在蓝色波长范围的光照激发下发出绿色荧光,其发光过程需要冷光蛋白质 Aequorin 的帮助,而且,这个冷光蛋白质可与钙离子(Ca2+)相互作用。在水母中发现的野生型绿色荧光蛋白的分子量较小,仅为27~30kDa,而编码GFP的基因序列也很短,为2.6kb 。 (2)性质 GFP由238个氨基酸残基组成。GFP序列中的65-67 位残基(Ser65-Tyr66-Gly67 )可自发形成荧光发色基团——对羟基苯咪唑啉酮GFP的激发光谱在400nm附近有一个主激发峰,在470nm附近有一个次激发峰。发射光谱在505nm附近有一尖锐的主发射峰,在540nm附近有一肩峰GFP的化学性质相当稳定,无光漂白现象(Photobleaching ),用甲醛固定和石蜡包埋亦不影响其荧光性质。在细胞生物学与分子生物学领域中,绿色荧光蛋白基因常被用作报告基因。 (3)野生型 野生型GFP(wild type GFP, wtGFP )从一开始就引起了人们极大的兴趣,而且被用作新型的简单报告基因及体内标记,但GFP在异源生物体中的表达并非那么简单。例如,研究人员很早就发现需要在较高的温度下孵育才能在细胞或生物体中表达GFP,并且wtGFP在37℃的热稳定性差。这些都阻碍了它在转基因中的应用。这些难题促使人们进一步筛选分离wtGFP的变体。现在,人们已经找到了荧光强度更强且更耐热的变体。 这些变体多数为经突变的脱辅基蛋白,它们可防止高温导致的错误折叠。近年来出现的新型wtGFP基因突变体的激发和发射谱发生了改变,热稳定性和荧光强度得到了提高,GFP报告基因在小鼠中的应用就是以这些变体作为基础的。 (4)增强型绿色荧光蛋白(EGFP)现在,应用最为广泛的是红移变体增强型GFP (EGFP)。诸如EGFP这些红移变体的最大激发峰发生红向移动,大约为490nm,这一波长也恰好是多数分光设备、流式细胞仪及共聚焦显微镜的常用波长。EGFP有两个氨基酸突变,当被蓝光激发时,它发出的荧光要比wtGFP亮30-40 倍。wtGFP和包括EGFP在内的多数变体半衰期长,所以不适合精确追踪表达的减少或损耗。 (5)不稳定增强型绿色荧光蛋白(dEGFP) 为克服这一问题,人们在1998年构建了不稳定增强型绿色荧光蛋白(dEGFP)。原理就是将EGFP的cDNA融合到小鼠鸟氨酸脱羧酶(Ornithine decarboxylase, ODC)基因的C-末端。ODC含有一个PEST序列,这个序列可促进该蛋白在细胞内的降解。虽然,目前这些不稳定变体还没有在小鼠中应用,但这些变体有利于实时追踪基因表达动力学的研究。 (6)增强型黄色荧光蛋白(EYFP)另一种红移变体是增强型黄色荧光蛋白(EYFP),该变体有四个氨基酸突变。在527nm时,EYFP的发射光从绿色变为黄绿色。EYFP荧光的亮度水平与EGFP相当。EYFP 抗酸性差、对卤化物敏感,使它的应用受到限制。在EYFP 基础上改进的突变体mCitrine[21] 和mVenus[22]是目前应用

同位素示踪与荧光标记技术

同位素示踪与荧光标记技术 [热考解读] 1.同位素示踪法 (1)同位素示踪法:用示踪元素标记的化合物,可以根据这种化合物的放射性,对有关的一系列化学反应进行追踪。这种科学的研究方法叫做同位素示踪法,也叫同位素标记法。(2)应用:可用于研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。还可用于疾病的诊断和治疗,如碘的放射性同位素可以用来治疗甲状腺肿大。 (3)使用注意事项:一次只能使用一种同位素标记 2.荧光标记法 荧光标记法(Fluorescent Labeling)是利用荧光蛋白或荧光蛋白基因作为标志物对研究对象进行标记的分析方法。 (1)常用的荧光蛋白为绿色和红色两种 ①绿色荧光蛋白(GFP)常用的是来源于发光水母的一种功能独特的蛋白质,分子量为27 kD,具有238个氨基酸,蓝光或近紫外光照射,发射绿色荧光。 ②红色荧光蛋白来源于珊瑚虫,是一种与绿色荧光蛋白同源的荧光蛋白,在紫外光的照射下可发射红色荧光,有着广泛的应用前景。 (2)人教版教材中用到荧光标记法的地方 ①《必修1》P66“细胞融合实验”:这一实验很有力地证明了细胞膜的结构特点是具有一定的流动性。 ②《必修2》P30“基因在染色体上的实验证据”:通过现代分子生物学技术,运用荧光标记的手段,可以很直观地观察到某一基因在染色体上的位置。 (3)荧光标记法特别是在免疫学研究中也有重要的作用,例如免疫荧光抗体标记法。将已知的抗体或抗原分子标记上荧光素,当与其相对应的抗原或抗体起反应时,在形成的复合物上就带有一定量的荧光素,在荧光显微镜下就可以看见发出荧光的抗原抗体结合部位,检测出抗原或抗体。 [命题设计] 1.(2018·山东青岛一模)同位素标记法常用于追踪物质运行和变化规律的研究,下列相关叙述不正确的是() A.给小鼠供应18O2,其呼出气体中可能含有C18O2 B.用含3H标记的尿嘧啶核糖核苷酸的营养液培养洋葱根尖,只能在分生区细胞中检测到放射性 C.用15N标记DNA分子,可用于研究DNA分子的半保留复制 D.用32P标记的噬菌体侵染大肠杆菌,保温、搅拌、离心后可检测到沉淀物中放射性很高

荧光标记技术在蛋白质定位及功能研究中的应用

荧光标记技术在蛋白质定位及功能研究中的应用 Feb 20, 2010No Comments 随着分子生物学、有机化学以及材料科学等学科的进展,最近我们又获得了好几种新型的荧光蛋白标签,这些标签可以用于细胞生物学成像研究。本文将对荧光标志物在蛋白质研究中的优势及劣势进行一番详细的介绍,文章中将重点介绍如何使用荧光标志物研究活体细胞(而不是固定细胞)中的靶蛋白。使用该方法可以对靶蛋白的表达情况、细胞中的定位情况、活性状态等指标进行研究,还将介绍将荧光显微镜与电子显微镜技术相结合的可行性问题。小分子荧光标志物染料、纳米晶体材料,即所谓的“量子点(quantum dots)”材料、自发荧光蛋白、小分子蛋白质标签等等这些材料都可以作为荧光标志物,而且将这几种材料“混合”起来是一种非常有前途的荧光标志物研究新思路。 我们使用荧光技术来研究细胞生物学已经好多年了,而且在从微小的分子层面到完整的有机体层面等各个层面都可以使用荧光技术进行研究。最开始使用的方法是将小分子有机染料与各种抗体相连接,来研究各种目的蛋白。不过这种使用抗体的方法如果需要对细胞内的蛋白质进行研究时,还需要对细胞进行固定和透化操作。因此后来又发展出可以直接在活体细胞内标记某种细胞器、核酸分子或某些离子的荧光标志物。在最近这10年里,荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid photoinactivation)还可以对蛋白质的定位情况进行研究。与此同时,半导体纳米晶体材料技术也得到了高度的发展,现在,这种新型的材料在亮度和光稳定性方面都要比传统的荧光标志物好得多,只不过现在这种材料的靶向性还不是很好。本文中我们将对目前荧光标志物及其相关技术的发展进行介绍,同时还将介绍荧光标志物在蛋白质表达、蛋白质活性以及蛋白质功能研究工作中的作用进行介绍。 ?0?2 荧光标志物 小分子有机染料 小分子有机染料是指分子量小于1KD的小分子物质,这种小分子有机染料可以通过与生物大分子共价连接的方式对其进行标记,我们现在对这种染料的最佳检测波长范围、亮度,即吸光系数、光稳定性和自我淬灭特性都有了比较详尽的了解。利用荧光染料的分子策略包括扩展共轭双键、额外添加环状结构增强其刚性、用氟或磺酸盐这类吸电子性的或带电荷的物质进行修饰等。现在市面上已经有数百种这类荧光染料的商业化产品可供选择,而且还在不断增加之中。不过由于这类染料对蛋白质缺乏特异性,因此多与抗体联用(图1A~C)。?0?2 荧光蛋白 第一批用于细胞生物学的荧光蛋白包括藻胆蛋白(phycobiliproteins)和从蓝藻

绿色荧光蛋白

绿色荧光蛋白GFP的研究与应用 摘要:绿色荧光蛋白(GFP)是一种极具潜力的标记物,有着广泛的应用前景。通过阅读吴沛桥的《绿色荧光蛋白GFP的研究进展及应用》这篇文献,对GFP有了进一步了解。 关键词:绿色荧光蛋白(GFP);性质;原理;应用 1 引言 发光是海洋无脊椎动物中普遍存在的现象,一些腔肠动物包括水母、水螅和珊瑚等受到机械性干扰时都可发射绿色荧光,而栉水母类发射蓝色荧光。绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于这些腔肠动物体内的生物发光蛋白。1962 年,Shimomura 等从维多利亚多管水母(Aequoria victoria)中分离纯化生物发光蛋白质——水母蛋白, 并观察到一个在紫外光下发出“非常明亮, 浅绿色荧光”的副产物。1974 年,Shimomura等纯化得到了这种自发荧光的蛋白(即GFP)。 2008年10月8日,瑞典皇家科学院诺贝尔奖委员会将2008年度诺贝尔化学奖授予日裔美国科学家下村修(Osamu Shimomura)、美国科学家马丁·查尔非(Mratin Chalfie)以及美国华裔科学家钱永健(Rorge Y.Tsien),他们三人因为在绿色荧光蛋白的发现以及改造方面做出了突出成就。 2 GFP的理化性质 从水母体内分离到的GFP基因,长达2.6kD,由3个外显子组成,分别编码69、98和71个氨基酸。GFP本身是一种酸性,球状,可溶性天然荧光蛋白。 GFP性质极其稳定,耐高温,甲醛固定和石蜡包埋不影响其荧光性质。其变性需在90℃或pH<4.0或pH>12.0的条件下用6mol/L盐酸胍处理,一旦恢复中性环境或去除变性剂,虽然变性的蛋白质并不能完全复性,但是复性蛋白质同天然蛋白质对温度、pH变化的耐受性、抗胰蛋白酶消解的能力是相同的。更重要的是,它们在pH7.0~pH12.2的范围内的吸收、发射光谱也是相同的。 3 GFP的荧光原理

第八章荧光免疫技术

第八章荧光免疫技术 FluoreSCenCe ImmunoaSsay 第一部分目的要求和教学内容 一、目的要求 掌握:荧光免疫技术原理、类型及临床应用,常用的荧光物质;熟悉:荧光免疫技术 的技术要点;了解:荧光标记物的制备与保存,镧系稀土元素标记物的制备,荧光免疫技术主要类型的技术要点。 二、教学内容 1.荧光标记物的制备:荧光和荧光物质,荧光标记物的制备。 2.荧光免疫显微技术:基本原理,技术类型,技术要点,方法评价,临床应用。 3.荧光免疫测定技术:时间分辨荧光免疫测定(基本原理,技术类型,技术要点,方法评价和临床应用);荧光偏振免疫测定(基本原理,技术类型,技术要点,方法评价和临床应用)。 第二部分测试题 一、选择题 (一)单项选择题(A型题) 1.如下有关荧光免疫技术正确的提法 A.直观性检测抗原和抗体 B.直观性检测抗原 C.直观性检测抗体 D.间接检测抗原或抗体 E.间接检测抗原和抗体 2.荧光素易受温度影响,操作时通常选择较佳的温度 A.10~15℃ B.15~20℃ C.20~25℃ D.25~30℃ E.30~35℃ 3.荧光抗体保存3~4年,应选择 A.小量分装、4℃ B.瓶分装、4℃ C.瓶分装、-10℃ D.瓶分装,-20℃ E.小量分装、-20℃ 4.下列组成荧光显微镜的结构中,与普通光学显微镜相同的是 A.光源 B.聚光器 C.目镜 D.物镜 E.滤光片

5.下列哪项方法不属于荧光免疫显微技术类型 A.直接法 B.夹心法 C.间接法 D.补体法 E.双标记法 6.荧光抗体染色标本的观察时间 A.当天 B.第二天 C.第三天 D.1周内 E.5天 7.荧光抗体闭接法应标记 A.抗原 B.抗体 C.补体 D.抗抗体 E.抗体及补体 8.荧光显微技术常用于检验血清中各种自身抗体和多种病原体抗体的方法是 A.直接法 B.间接法 C.双抗体夹心法 D.补体法 E.双标记法 9.荧光抗体间接法可检测 A.抗原 B.抗体 C.补体 D.蛋白质 E.抗原和抗体 lO.在荧光显微镜检查中直接影响检测结果的是 A.抗原荧光染色 B.抗体荧光染色 C.补体荧光染色 D.特异性荧光染色 E.非特异性荧光染色 11.主要用于测定各种激素、蛋白质、酶、药物及病毒抗原的技术 A.荧光偏振免疫测定 B.荧光免疫显微技术 C.时间分辨荧光免疫测定 D.底物标记荧光免疫测定 E.流式荧光免疫技术 12.临床药物浓度检测的首选方法

绿色萤光蛋白

绿色萤光蛋白(green fluorescent protein),简称GFP,这种蛋白质最早在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca+2)可产生交互作用。 由水母Aequorea victoria中发现的野生型绿色萤光蛋白,395nm和475nm分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。由海肾(sea pansy)所得的绿色萤光蛋白,仅有在498nm有一个较高的激发峰点。 在细胞生物学与分子生物学领域中,绿色萤光蛋白基因常被用作为一个报导基因(reporter gene)。一些经修饰过的型式可作为生物探针,绿色萤光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。 我们这边细胞组的基本上都在用这个东东。标记细胞 GFP的分子结构和发光机制 绿色荧光蛋白为一个由238个氨基酸残基组成的单链,GFP有两个吸收峰,主峰在395nm,次峰在470nm,其荧光发射峰在509nm。GFP 的化学性质相当稳定,其变性需要在90℃或pH<4或pH>12的条件下用6mollL盐酸胍处理,这一性质与GFP的结构特性相关。 Yang等的研究表明,GFP是由两个相当规则的内含一个α-螺旋和外面包围l1个β-折叠的β-桶状结构组成的二聚体,β-桶状结构直径约3nm,高约4nm。β折叠彼此紧密结合,象桶板一样形成桶状结构的外围,并且形成了一个规则的氢键带。桶状结构和位于其末端的短α螺旋以及环状结构一起组成一个单独的致密结构域,没有可供扩散的配体进入缝隙。这种坚实的结构保证了其稳定和抗热、抗变性的特点。 GFP的生色基团附着于α-螺旋上,几乎完美的包被于桶状结构中心。位于圆桶中央的α-螺旋含有一个由六肽组成的发光中心,而发光团是由其中的三肽Ser65-Tyr66-Gly67经过环化形成了对羟基苯咪唑啉酮。GFP的生色基团是蛋白质自身催化环化的结果,环化是一个有氧过程,在严格厌氧条件下GFP不能形成荧光,因为GFP的生色团形成需要O2使Tyr66脱氢氧化。生色基团通过Tyr66的脱质子(酚盐)和质子化状态(羟酚基)的转换决定荧光发射,此模型为Yang等的晶体学证据所支持。 GFP在生物技术中的应用研究 1.分子标记 作为一种新型的报告基因,GFP已在生物学的许多研究领域得到应用。利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染合适的细胞进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内活体观察。由于GFP相对较小,只有238个氨基酸,将其与其他蛋白融合后不影响自身的发光功能,利用GFP的这一特性已经加深了我们对细胞内一些过程的了解,如细胞分裂、染色体复制和分裂,发育和信号转导等。1996年,Ehrdardt等人首次报道了利用GFP的特性研究细胞分化蛋白FtsZ的定位。研究显示FtsZ在细胞分裂位点形成了一个环状物,且至少有9种蛋白在细胞分裂中起重要作用,尽管对这些蛋白功能仍然不是很清楚,但是利用GFP融合蛋白已经搞清楚了它们聚合的顺序以及在蛋白定位中的一些特征。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更详尽观察的新方法。 除用于特定蛋白的标记定位外,GFP亦大量用于各种细胞器的标记如细胞骨架、质膜、细胞核等等。Shi等人曾报道将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这一技术将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境检测以及探测信号转导过程等等。这些都为传统生物学研究提供了新思路和新方法,成为交叉学科研究的热点。 2.药物筛选 许多新发展的光学分析方法已经开始利用活体细胞来进行药物筛选,这一技术能从数量众多的化合物中快速筛选出我们所感兴趣的药物。基于细胞的荧光分析可分为三类:即根据荧光的密度变化、能量转移或荧光探针的分布来研究目标蛋白如受体、离子通道或酶的状态的变化。荧光探针分布是利用信号传导中信号分子的迁移功能,将一荧光蛋白与信号分子相偶联,根据荧光蛋白的分布情况即可推断信号分子的迁移状况,并推断该分子在迁移中的功能。由于GFP分子量小,在活细胞内可溶且对细胞毒性较小,因而常用作荧光探针。 在细胞体内分子之间的相互作用非常复杂,其中很多涉及到信号分子在细胞器之间的迁移。例如当信号分子和某一特殊受体结合后常会导致配体-受体复合物从某一细胞区域迁移到另一区域,而这一迁移过程通常会介导一重要的生理功能。因而,这些受体常常被用作药物筛选的目标,若某一药物具有与信号分子类似的功能,那么该药物即具有潜在的医药价值。利用GFP荧光探针,将很容易从数量众多的化合物中判断出那些化合物具有与信号分子相似的能引起配体一受体复合物迁移并介导生理反应的功能,且这一筛选过程简单方便,所需成本也很低。利用这一原理,已经成功构建了一个筛选模型用于研究药物介导的糖皮质激素受体(hGR)的迁移过程。在一96孔板中培养细胞,并以一编码hGR GFP蛋白的质粒转染该细胞。当细胞用待筛选的药物处理后,hGR-GFP从细胞质迁移人细胞核的过程可实时或在某一时段

荧光技术

https://www.sodocs.net/doc/1213405243.html,/?p=21977 首页专题译述会议展览技术方法教学视频热点话题生命百态研究前沿科研综述电子杂志RSS 订阅当前位置: 生命奥秘> 技术方法> 文章正文荧光标记技术在蛋白质定位及功能研究中的应用 cyq 发表于2010-02-20 14:48 | 来源:| 阅读 随着分子生物学、有机化学以及材料科学等学科的进展,最近我们又获得了好几种新型的荧光蛋白标签,这些标签可以用于细胞生物学成像研究。本文将对荧光标志物在蛋白质研究中的优势及劣势进行一番详细的介绍,文章中将重点介绍如何使用荧光标志物研究活体细胞(而不是固定细胞)中的靶蛋白。使用该方法可以对靶蛋白的表达情况、细胞中的定位情况、活性状态等指标进行研究,还将介绍将荧光显微镜与电子显微镜技术相结合的可行性问题。小分子荧光标志物染料、纳米晶体材料,即所谓的“量子点(quantum dots)”材料、自发荧光蛋白、小分子蛋白质标签等等这些材料都可以作为荧光标志物,而且将这几种材料“混合”起来是一种非常有前途的荧光标志物研究新思路。 我们使用荧光技术来研究细胞生物学已经好多年了,而且在从微小的分子层面到完整的有机体层面等各个层面都可以使用荧光技术进行研究。最开始使用的方法是将小分子有机染料与各种抗体相连接,来研究各种目的蛋白。不过这种使用抗体的方法如果需要对细胞内的蛋白质进行研究时,还需要对细胞进行固定和透化操作。因此后来又发展出可以直接在活体细胞内标记某种细胞器、核酸分子或某些离子的荧光标志物。在最近这10年里,荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid photoinactivation)还可以对蛋白质的定位情况进行研究。与此同时,半导体纳米晶体材料技术也得到了高度的发展,现在,这种新型的材料在亮度和光稳定性方面都要比传统的荧光标志物好得多,只不过现在这种材料的靶向性还不是很好。本文中我们将对目前荧光标志物及其相关技术的发展进行介绍,同时还将介绍荧光标志物在蛋白质表达、蛋白质活性以及蛋白质功能研究工作中的作用进行介绍。 荧光标志物 小分子有机染料 小分子有机染料是指分子量小于1KD的小分子物质,这种小分子有机染料可以通过与生物大分子共价连接的方式对其进行标记,我们现在对这种染料的最佳检测波长范围、亮度,即吸光系数、光稳定性和自我淬灭特性都有了比较详尽的了解。利用荧光染料的分子策略包括扩展共轭双键、额外添加环状结构增强其刚性、用氟或磺酸盐这类吸电子性的或带电荷的物质进行修饰等。现在市面上已经有数百种这类荧光染料的商业化产品可供选择,而且还在不

试验设计——绿色荧光蛋白的表达

分子生物学实验设计报告 绿色荧光蛋白的克隆表达 ——闵霞(2013141241165)李彩云(2013141241095) 一、引言 基因标记技术是近年来发展起来的分子生物学技术。荧光蛋白基因在标记基因方面由于具有独特的优点而广受科学家们的关注。荧光蛋白是海洋生物体内的一类发光蛋白,分为绿色荧光蛋白、蓝色荧光蛋白、黄色荧光蛋白和红色荧光蛋白。 绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。当受到紫外或蓝光激发时,GFP发射绿色荧光。它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的。 基因克隆技术包括把来自不同物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组DNA,然后送入受体生物中去表达,从而产生遗传物质和状态的转移和重新组合。采用重组DNA技术,将不同来源的DNA分子在体外进行特异性切割,重新连接,组装成一个新的杂合DNA 分子。在此基础上,这个杂合分子能够在一定的宿主细胞中进行扩增,形成大量的子代分子。 本次实验中,分子克隆质粒载体所携带的外源基因是EGFP绿色荧光蛋白,实验的最终目的是将EGFP基因插入表达载体pET-28a中,组成重组子,并导入到大肠杆菌细胞中并诱导其表达,培养出绿色的大肠杆菌菌落。为此,我们要利用碱变性法将大肠杆菌中的质粒DNA提取出来,并通过Bam HI和NotⅠ两种酶的双酶切作用,从而获得目的外源基因片段EGFP和表达载体pET-28a质粒的DNA,然后通过连接酶连接后形成重组子,并通过氯化钙法导入大肠杆菌感受态细胞中,让其在含有Amp和IPTG的LB琼脂平板上生长繁殖,最后通过观察大肠杆菌能否在含有Amp和IPTG的LB平板上长出绿色的菌落,来判断EGFP基因工程菌的构建效果 二、主要路线: 1、质粒DNA的提取 2、琼脂糖凝胶电泳检测质粒DNA 3、酶切连接重组质粒 4、重组质粒的扩增 5、菌落PCR法鉴定阳性克隆 6、目的荧光蛋白基因的表达 1、质粒DNA的提取 实验原理: 1)质粒是一种染色体外的遗传因子,大小在1kb~200kb之间,是具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制能力,,能使子代保持他们恒定的复制数,可表达它携带的遗传信息。它可以独立游离于细胞质内,也可以整合到细菌染色体中,它离开宿主细胞就不能复制,而它控制的许多生物学功能也是对宿主细胞

荧光素FITC标记抗体的方法

荧光素FITC标记抗体的方法 当FITC在碱性溶液中与抗体蛋白反应时,主要是蛋白质上赖氨酸的r氨基与荧光素的硫碳胺键(thiocarbmide)结合,形成FITC-蛋白质结合物,即荧光抗体或荧光结合物。一个IgG分子中有86个赖氨酸残基,一般最多能结合15~20个,一个IgG分子可结合2~8个分子的FITC,其反应式如下 FITC-N=C=S + N-H2-蛋白质→ FITC-NS-C-N-H2-蛋白质 常用Marsshall(1958)法标记荧光抗体,也可以根据条件采用Chadwick等标记法或Clark等(1963)的透析标记法。 1.Marsshall法 (1)材料抗体球蛋白溶液、0.5mol/L(pH9.0)碳酸盐缓冲液、无菌生理盐水、异硫氰酸荧光 素、1%硫柳汞水溶液、50ml小烧杯、4℃冰箱、电磁搅拌器、透析袋、玻棒、pH7.2或 3.0的0.01mol/LPBS等。 (2)方法及步骤①抗体的准备取适量已知浓度的球蛋白溶液于烧杯中,再加人生理盐水及碳酸盐缓冲液,使最后免疫球蛋白浓度为

20mg/ml,碳酸盐缓冲液容量为总量的1/10,混匀,将烧瓴置电磁搅拌器上(速度适当以不起泡沫为宜)5~10min。 ②荧光素的准备根据欲标记的蛋白质总量,按每毫克免疫球蛋白加0.01mg荧光色素,用分析天平准确称取所需的异硫氰酸荧光素粉末。也可用下述公式计算出免疫球蛋白、荧光素的量,还可以算出需加缓冲液的量。 a.蛋白溶液:含量Amg/m1;容积Bml。 b.总蛋白量(AXB)=Crag。 c.C/20~C/10=Dmg(如蛋白含量低于20mg/ml,用C/10;如高于20mg/ml,用C/20)。 d.荧光素FITC的量:(1/50~2/100)XC=Emg。 e.巳0.5mol/L(pH9.5)碳酸盐缓冲液D/10=Fml。 f.PBS量D-(B+F)=Gml。 注:A为蛋白含量,mg/ml;B为蛋白质溶液的容积;C为蛋白总量,mg;D为常数,mg;正为荧光素的量,mg;F为碳酸盐缓冲液的容积,ml;G为PBS的容积,ml。 ③结合(或标记) 边搅拌边将称取的荧光色素渐渐加入球蛋白溶液中,避免将荧光素粘于烧瓶壁(大约在5—10min内加完),加完后,

蛋白标记技术详解

蛋白标记技术详解 蛋白质标记的主要目的是监测生物过程、辅助检测(例如化合物的可靠定量、蛋白质修饰的特异性检测)或者纯化蛋白及其结合对象。蛋白质的标记能够提高检测灵敏度以及简化检测工作流程。 目前有多种蛋白质标记技术来帮助我们研究感兴趣的蛋白质的丰度、位置、相互作用、翻译后修饰、功能,乃至监测活细胞中的蛋白质运输等问题。目前有多种类型的标记物和标记方式可供选择,但是针对特定的应用应当选择适合的标记策略。 1.代谢标记策略 代谢标记策略是一种体内标记方法,在这种方法中,细胞被“喂养”了化学标记的营养物,然后这些标记物被掺入新合成的蛋白质、核酸或代谢物中。然后,我们可以收集细胞并分离这些分子以获得细胞生物过程的全局视图。 蛋白同位素标记 原理 蛋白同位素标记是一种经典的蛋白示踪和蛋白组学定量技术,用天然同位素(轻型)或稳定同位素(重型)标记的必需氨基酸取代细胞培养基中相应氨基酸,这样细胞新合成的蛋白质可以在细胞生长期间通过掺入含有不同同位素的氨基酸进行标记。 应用举例 蛋白质组学研究方向流行的代谢标记方法是SILAC(Stable Isotope Labeling with Amino acids in Cell culture),即细胞培养中氨基酸的稳定同位素标记。结合质谱技术,SILAC 通过使用重型氨基酸(例如,15N-或13C-赖氨酸)标记其中一组培养物或细胞系,而向另一组添加正常的轻型氨基酸,从而量化两种培养物或细胞系之间蛋白质丰度的差异。然后将在这两种条件下生长的细胞的裂解蛋白按细胞数或蛋白量等比例混合,经分离、纯化后进行质谱鉴定,根据一级质谱图中两个同位素型肽段的

第5章 常见免疫学检测技术-荧光、化学发光

第五章 常见免疫学检测技术

第二节 荧光免疫检测
l
用荧光素标记抗体或抗原,与相应的抗原或抗 体反应后,测定复合物中的荧光素,这种免疫 技术,称为荧光免疫技术
l
包括荧光抗体技术和荧光抗原技术,但在实际 工作中荧光抗原技术很少应用 荧光显微镜技术 常见技术 荧光免疫测定技术

一、荧光的基础知识
(一)荧光 (fluorescence)
?
某些物质能吸收外界能量进入激发状态,使处 于基态的电子被激发至激发态,当其再回到稳 定基态时,多余的能量会以电磁辐射的形式释 放,即发出荧光,这类物质被称为荧光素

?
由光激发所引起的荧光,为光致荧光 ------荧光免疫技术 由化学反应所引起的荧光,为化学荧光 ------化学发光技术
?
?
荧光免疫技术的标记物一般为光致荧光物质, 当受一定波长光激发后,在极短时间内发出长 于激发光波长的荧光,一旦停止供能,荧光即 消失(约持续10-7~10-8s)

?
荧光效率:指荧光物质分子将光能转变成荧光 的百分率 荧光效率= 发射荧光的光量子数/吸收光的光 量子数
?
?
发射光谱:是指固定激发波长,在不同波长下 记录的样品发射荧光的强度 激发光谱:是指固定检测发射波长,用不同波 长的激发光激发样品记录的相应的荧光强度
?

?
荧光寿命:指荧光物质被激发后所产生的荧光 衰减到一定程度时所用的时间 各种荧光物质的荧光寿命不同
?
?
荧光猝灭:荧光物质在某些理化因素作用下, 发射荧光减弱甚至消退称为荧光猝灭 荧光猝灭物质如亚甲基蓝、碱性复红、伊文思 蓝、碘溶液等
?

荧光标记PCR

主要需要考察的方面: ?加热方式 ?升降温速度 ?准确性 ?均一性 ?激发光源 ?检测元件 ?检测通路 ?监测系统 详情请参考全文…… 回顾分子生物学的发展历程,PCR技术的发明和普及无疑是最重要的篇章之一。而PCR技术在近20年的不断发展创新中,最受瞩目当属荧光实时定量PCR技术(real-time quantitative PCR, or qPCR)。定量PCR技术真正实现了PCR从定性到定量的飞跃,通过对PCR过程的实时监控,专一、灵敏快速、可重复地精确定量起始模版浓度,已经在科研和临床诊断领域得到了越来越广泛的应用。本文从荧光定量PCR的原理入手,详细介绍荧光定量PCR仪的类型和技术,为定量PCR仪的选择提供详细参考。 一、背景 本来,PCR是为了将样本中微量的DNA模版放大以便研究模版特性,随着研究的深入,要了解样本中基因的表达模式与疾病的关系,就需要了解标本中的DNA 原始拷贝数。理论上PCR过程中反应产物是以指数规模增长的,但实际的PCR 扩增曲线并不是标准的指数曲线,而是S形曲线——因为随着PCR循环数的增加,扩增规模迅速增大,Taq酶、dNTP、引物,甚至DNA模板等各种PCR要素逐渐不敷需求,PCR的效率降低,产物生成的速度逐渐减缓,最终进入平台期。由于各种环境因素的复杂相互作用,不同的PCR反应体系进入平台期的时间和平台期的高低都有很大变化,即使是重复实验,各种条件基本一致,最后得到的DNA拷贝数也往往不同。因此经过PCR扩增的DNA产物量不能反映起始模板量的真实情况。通过传统凝胶电泳EB染色或者同位素标记只能定量PCR的终产物量,而不能定量起始DNA模版的拷贝数。 荧光实时定量PCR技术是指在PCR反应体系中加入荧光基团,利用荧光信号累积实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。借助于荧光信号来检测PCR产物,一方面提高了灵敏度,另一方面可以在每次PCR 循环收集数据,建立实时扩增曲线,准确地确定域值循环数(CT值),计算起始DNA拷贝数,做到了真正意义上的DNA定量。根据最终得到的数据不同,定量PCR 可以分为相对定量和绝对定量两种。相对定量常见于比较两个样本中基因表达水平的高低变化,得到的结果是百分比;绝对定量则需要使用标准曲线确定样本中基因的拷贝数或浓度。

荧光标记技术在蛋白质定位及功能研究中的应用

荧光标记技术在蛋白质定位及功能研究 中的应用 随着分子生物学、有机化学以及材料科学等学科的进展,最近我们又获得了好几种新型的荧光蛋白标签,这些标签可以用于细胞生物学成像研究。本文将对荧光标志物在蛋白质研究中的优势及劣势进行一番详细的介绍,文章中将重点介绍如何使用荧光标志物研究活体细胞(而不是固定细胞)中的靶蛋白。使用该方法可以对靶蛋白的表达情况、细胞中的定位情况、活性状态等指标进行研究,还将介绍将荧光显微镜与电子显微镜技术相结合的可行性问题。小分子荧光标志物染料、纳米晶体材料,即所谓的“量子点(quantum dots)”材料、自发荧光蛋白、小分子蛋白质标签等等这些材料都可以作为荧光标志物,而且将这几种材料“混合”起来是一种非常有前途的荧光标志物研究新思路。 我们使用荧光技术来研究细胞生物学已经好多年了,而且在从微小的分子层面到完整的有机体层面等各个层面都可以使用荧光技术进行研究。最开始使用的方法是将小分子有机染料与各种抗体相连接,来研究各种目的蛋白。不过这种使用抗体的方法如果需要对细胞内的蛋白质进行研究时,还需要对细胞进行固定和透化操作。因此后来又发展出可以直接在活体细胞内标记某种细胞器、核酸分子或某些离子的荧光标志物。在最近这10年里,荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid photoinactivation)还可以对蛋白质的定位情况进行研究。与此同时,半导体纳米晶体材料技术也得到了高度的发展,现在,这种新型的材料在亮度和光稳定性方面都要比传统的荧光标志物好得多,只不过现在这种材料的靶向性还不是很好。本文中我们将对目前荧光标志物及其相关技术的发展进行介绍,同时还将介绍荧光标志物在蛋白质表达、蛋白质活性以及蛋白质功能研究工作中的作用进行介绍。 荧光标志物 小分子有机染料 小分子有机染料是指分子量小于1KD的小分子物质,这种小分子有机染料可以通过与生物

绿色荧光蛋白(GFP)标记亚细胞定位

绿色荧光蛋白(GFP)标记亚细胞定位 一、原理 利用绿色荧光蛋白(GFP)来示踪胞内蛋白的技术。利用GFP融合蛋白技术来进行活细胞定位研究是目前较为通行的一种方法,在光镜水平进行研究,不需要制样,没有非特异性标记的影响。并且GFP的分子量为27kD,经激光扫描共聚集显微镜激光照射后,可产生一种绿色荧光,从而对蛋白质进行精确定位。 激光扫描共聚焦显微镜(Laser Scanning Confocal Microscope, LSCM, 以下简称共聚焦显微镜)因其独特的设计原理,有效地排除了非焦平面信息,提高了分辨率及对比度,使图像更为精确清晰,因此极其适于进行活细胞内蛋白质、核酸等定位及活体动态研究。二、主要步骤 1.真核表达载体的构建 ①引物设计 利用引物设计软件,根据pEGFP-N1的酶切位点设计目的基因引物: ②载体构建 将PCR产物酶切后插入pEGFP-N1,得到表达目的基因与EGFP融合蛋白质的真核表达载体。 2.转染真核细胞 当细胞生长到对数生长期时,接种到共聚焦显微镜专用的玻璃底培养皿(35mm petri di sh,10 mm Microwell)中,培养过夜。当细胞贴壁率达到30%~50%时,将表达载体质粒2ug和脂质体(Lipofectamine2000) 2ml分别溶于100 ml无抗生素、无血清的DM EM培养基中,充分混匀后,室温放置15 min,再将两种溶液充分混匀,室温放置30 m in。同时用无血清、无抗生素的DMEM洗涤待转染的培养细胞2~3次,向DNA-脂质体混合物中加入800 ml无抗生素、无血清的DMEM培养基,混合后加入到培养细胞中。培养

几种常用的蛋白标签的功能和优点

几种常用的蛋白标签的功能和优点 重组蛋白表达技术现已经广泛应用于生物学各个具体领域。特别是体内功能研究和蛋白质的大规模生产都需要应用重组蛋白表达载体。 美国GeneCopoeia的蛋白表达载体按照表达宿主的不同新推出3类,分别为表达宿主为大肠杆菌,哺乳动物细胞的,以及慢病毒载体,宿主可以为哺乳动物细胞和原代细胞。 除了必要的复制和筛选的元件,协助表达和翻译的元件外,本文将各类载体分别按照功能标签的不同确定种类并将个标签的功能初步介绍如下: His6: His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。 使用His-tag有下面优点: 1.标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能; 2.His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; 3.His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; 4.His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫制备抗体; 5.可应用于多种表达系统,纯化的条件温和; 6.可以和其它的亲和标签一起构建双亲和标签。

Flag: Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak 序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。 FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点: 1.FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。 2.融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。 3.FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA 等方法对含有FLAG的融合蛋白进行检测、鉴定。 4.融合在N端的FLAG,其可以被肠激酶切除(DDDK),从而得到特异的目的蛋白。因此现FLAG标签已广泛的应用于蛋白表达、纯化、鉴定、功能研究及其蛋白相互作用等相关领域。MBP: MBP(麦芽糖结合蛋白)标签蛋白大小为40kDa,由大肠杆菌K12的malE基因编码。MBP可增加在细菌中过量表达的融合蛋白的溶解性,尤其是真核蛋白。MBP标签可通过免疫分析很方便地检测。有必要用位点专一的蛋白酶切割标签。如果蛋白在细菌中表达,MBP可以融合在蛋白的N端或C端。 纯化:融合蛋白可通过交联淀粉亲和层析一步纯化。结合的融合蛋白可用10mM麦芽糖在生理缓冲液中进行洗脱。结合亲和力在微摩尔范围。一些融合蛋白在0.2% Triton X-100或0.25% Tween 20存在下不能有效结合,而其他融合蛋白则不受影响。缓冲条件为pH7.0到8.5,盐浓度可高达1M,但不能使用变性剂。如果要去除MBP融合部分,可用位点特异

相关主题