搜档网
当前位置:搜档网 › 冷水机组设计实例讲解学习

冷水机组设计实例讲解学习

冷水机组设计实例讲解学习
冷水机组设计实例讲解学习

冷水机组设计实例

冷水机组设计

储云霄 热能070221

设计任务:中央空调用制冷量为50kW 的水冷螺杆式冷水机组,制冷剂R410a ⑴工况确定

根据表4-7和表4-11等确定:

冷媒水进口温度112s t =℃,出口温度27s t =℃,蒸发温度02t =℃; 冷却水进口温度132w t =℃,出口温度237w t =℃,冷凝温度40k t =℃;

吸气温度7℃(采用热力膨胀阀时,蒸发器出口气体过热度3~5℃),过冷度

5℃(单级压缩系统中,节流前液体的过冷是在冷凝器中实现的,一般取过冷度为5℃)。 ⑵热力计算

制冷循环热力状态参数见表1,热力性能指标计算见表2。

表1 制冷循环的lgp-h 图及热力状态参数

表2 热力性能指标计算

⑶压缩机选择

在实际工况所需冷负荷已知的情况下,螺杆压缩机理论输气量为

244p V m h =。据此选择开利涡普单螺杆压缩机,型号×××,该压缩机理论排气量为2p V m h =???。

此压缩机在实际工况下的制冷剂流量为:m q kg s '=???,实际工况下的制冷量为×××kW.。相对误差为:?=×××。因此,此压缩机选择满足要求。 ⑷蒸发器的设计计算 ① 蒸发器机构的初步规划

本系统采用干式管壳蒸发器,结构初步规划如图1所示。传热管选取?12×1mm 铜管,管束按正三角形排列,管距取16mm ,壳体内径308i d mm =,流程数N=4,总管数Z=116,则每一流程平均管数Z m =29,管长L=1960mm ,折流板数N b =19,折流板间距S 1=130mm, S 2=85mm,管板厚32B mm δ=,折流板厚

5b mm δ=,折流板上缺口高H 1=64mm ,折流板下缺口高H 2=59mm ,上缺口内含管数116b n =,下缺口内含管数214b n =,壳体直径附近含管数38b n =。

蒸发器外侧总面积:

210(2) 3.14160.012429(1.9620.032)8.29m B A d NZ L m πδ=-=????-?=

有效传热面积:

2

10(2) 3.14160.012429(1.9620.032190.005)7.88c m B b b A d NZ L N m πδδ=--=????-?-?=

② 计算管外水的换热系数

用下标f 表示管外冷水的参数,首先计算平均水流速度u 1。 折流板平均间距S 为:12321820.13180.085

0.199181

b S S S m N +?+?=

==++

横向流通面积:3230()[(0.308190.012)0.199]15.910c i b A S d n d m -=-=-??=? 横向流速为:330,,1250

2.410/()1000 4.187(127)

v f f p f s s Q q m s c t t ρ-=

==??-??-

3

,3

2.4100.151/15.910

v f

c c q u m s A --?===?

图1 蒸发器初步规划图

折流板上下缺口面积为;22211101

0.00954

b b i b A K D n d m π=-=

22

2222010.00844b b i b A K D n d m π=-=

其中,K b 为折流板缺口面积系数,按表2选取。

表2 折流板缺口面积折合系数K b

上下缺口面积平均值:212()0.0092b b b A A A m =+=

纵向流速为:

,0.0024

0.27/0.009

v f b b

q u m s A =

=

= 横向截面上流速u c 与折流板缺口处的纵向流速u b 的几何平均值u 1为:

10.2/u m s =

冷冻水平均温度:

12()/29.5f s s t t t =+=℃

查表得,该温度下水的物性参数:

Pr 9.693f =;0.5729/()f W m K λ=?;621.3310/f m s υ-=?;4192/()p c J kg K =?,在定性温度下雷诺数为:0Re 1815.6f

f f

d u υ=

=,则管外冷

媒水侧表面传热系数为:

0.60.330.60.3320

0.5729

0.22

Re Pr 0.221815.69.6932005.7/()0.012

f

f f f W m K d λα==?

??=? ③ 计算管内沸腾表面传热系数

用下标w 表示管内制冷剂系数。假设按内侧传热表面A i 计算的热流密度q>4000W/m 2(该假设将在后面检验),则管内沸腾传热系数:

0.60.2

0.257.8i m

w i

q v a d α=

其中,a 是与制冷剂性质及蒸发温度有关的系数,见表3。

表3 系数a 值

查得,a =0.0189 因为,222

20.29

127/()3.14160.0129444

m ri m m i i

m

q q v kg m s d d Z ππ=

===??? 则:0.60.2

0.20.60.6

0.20.2

12757.857.80.01897.2340.01

i m w i q v a q q d α==??= w α由q 确定。 ④ 计算阻力及传热温差

制冷剂饱和蒸汽流速为:22

440.290.03178

4.05/29 3.14160.01m m i q u m s Z d ρπ??''===''??

饱和蒸汽雷诺数为:4Re 7.710i

u d υ''''=

=?''

摩擦阻力系数为:0.250.3164Re 0.0190f -''== 制冷剂饱和蒸汽沿程阻力为:

221196011

0.01904 4.0514637.920.0120.03178

r

i l p fN u Pa d ρ''''''?=-=??-??=

两相流动制冷剂沿程阻力:l R r

p p ε''?=? 式中,R ε为两相流动时的阻力换算系数,与制冷剂种类和质量流速有关,对R410a 可按表4查取。

表4 两相流动R410a R ε值

风冷模块式冷热水机组设计安装指引

风冷模块式冷热水机组设计安装指引 3.系统部件 a)化霜温控器 固定位置:感温包绑在蒸发器回气管上; 工作状态:a.感受-5℃时,且b.机组运行55分钟。 结束状态:a.感受+5 ℃时, 或b.除霜10分钟。 b)制热热水温控开关 固定位置:感温包绑在出水管下方; 工作状态:35.3 ℃ ~53.3 ℃可调(出厂设定为45 ℃),顺时针旋转,温度升高。 c)制冷冷水温控开关 固定位置:感温包绑在出水管下方; 工作状态:4 ℃ ~17.1 ℃可调(出厂设定为7 ℃)。 d)制冷防冻开关

设计、安装指引 水管连接 将水管接到机组一侧的进水、出水口。供水系统应注意以下事项: 1)循环水采用软化水。 2)水流量不能低于机组标称值。 3)需配备适当流量和压头的水循环泵。 4)建议安装有适当容量的绝热贮水箱,以免负荷太小,频繁启动机组而降低压缩机的使用寿命。5)必须有供水安全阀门。 6)必须配备膨胀水箱,以适应供水系统中因气温变化而造成的水体积的变动。 7)排气阀门必须设置在机组进出水管连接处。 8)将截止阀设在机组进出水连接管处。 9)在水系统最低点设定合适的排水塞或开关。 10)水管必须绝热,以防止热量散失和冷凝水凝固。 11)机组出厂时已配有水流开关,用户无需自行配备。 12)水系统安装请参考“水系统安装图”安装。(见下图)

13)随机多附带一个水过滤网,在调试完毕后,请更换水过滤网。 14)在注水前,应确保管道中不会有沙粒、石子、生锈的铁屑、脱落的锡焊渣或其它杂质,以免损坏热交换器。冲洗供水系统时,建议旁通该机。水过滤器应当安装在机组回水管上。 15)对水系统,要求客户每半个月检查一次。 1.多台25/30/35KW并联,同程式连接(推荐) 2.多台25/30/35KW并联,同程式连接(不推荐) 3.65KW总出水感温包安装位置说明: 1)<7个模块以内的连接方式,同程式连接(推荐): 2)<7个模块以内的连接方式,同程式连接(不推荐): 4.8-16个模块的连接方式,左右并行连接;同程式连接(推荐): 5.8-16个模块的连接方式,前后并行连接;同程式连接(推荐): 6.8-16个模块的连接方式,前后并行连接;同程式连接(推荐):建议使用两个线控器分别对两个水泵控制。 7.130KW同程式连接(推荐):130kW(壳管式)安装指引,单个线控器最多控制8台。 8.200KW(壳管式)安装指引,单个线控器最多控制5台。 1.65KW,8-16个模块的连接方式:左右并行连接;异程式连接(不推荐): 2.65KW,8-16个模块的连接方式:前后并行连接;异程式连接(不推荐): 3.65KW,8-16个模块的连接方式:前后并行连接;异程式连接(不推荐): 3.130KW,异程式连接(不推荐): 4.200KW,异程式连接(不推荐): 本段图文以某品牌为例,仅供参考。

制冷机房设计举例

第7章制冷机房设计 制冷机房是整个中央空调系统的冷(热)源中心,同时又是整个中央空调系统的控制调节中心。中央机房一般由冷水机组、冷水泵、冷却水泵、补水装置、集水缸、分水缸和控制屏、换热器等装置组成。 7.1 制冷机房的位置选择 制冷机房通常靠近空调机房,氟利昂制冷设备可以设置在空调机房内,规模小的制冷机房一般附设在其他建筑内,规模较大的制冷机房(特别是氨制冷机房)宜单独修建。制冷机房应设置在靠近空气调节负荷中心,一般应充分利用建筑物的地下室。对于超高层建筑,也可设在设备层或屋顶上。由于条件所限不宜设在地下室时,也可以设在裙房或与主建筑分开独立设置。 本建筑建有专门的制冷机房,故机组布置在专用机房内。 7.2 制冷方式确定 (1)电力等一次能源充足时应选择电力驱动蒸汽压缩式制冷机组(能耗低于吸收式制冷机组);当地电力供应紧张或有热源可以利用,应优先选择吸收式制冷机组(特别是有余热废热场合)。 (2)从能耗、单机容量和调节等方面考虑,对于相对较大负荷(如2000kW左右)的情况,宜采用溴化锂吸收式冷水机组;选择空调用蒸汽压缩式冷水机组时,单机名义工况制冷量大于1758kW时宜选用离心式;制冷量在1054~1758kW时宜选用螺杆式或离心式;制冷量在700~1054kW时宜选用螺杆式;制冷量在116~700kW时宜选用螺杆式或往复式;制冷量小于116kW活塞式或涡旋式。 本工程建筑地有充足的电力供应并且没有特别的余热废热利用场合所以不考虑采用蒸汽吸收式制冷机组,制冷量为510kW,故选用螺杆式制冷机组。 7.3 冷水机组的选择 冷水机组是整个空调系统的心脏,为整个系统提供冷水且关系到整个空调系统的日常运行情况。因此空调系统冷水机组的选择是一个很重要的过程。 一般在选择制冷机时应考虑以下几方面的因素。 机组性能、规格适合使用要求。如供冷温度、单机制冷量、设备承压能力等。

AHU空气处理机组选型手册

目录1.如何确定机组型号 2.AHU定义及常用场合功能排布 3.各种功能段使用介绍

第一部分 如何确定机组型号 1.箱体(客户有要求的除外) 2.机组高度2300mm及以下,整机运输;机组高度23mm以上,散件运输。 当机组总高模数大于等于25或宽度模数大于25时,底座槽钢采用100mm,其余均为80mm。 3.表冷器选型 表冷选型出水温度偏差±0.5℃范围内 水阻在110KPa以内(水阻太大时可将盘管前后分级,或左右分) 迎面风速>2.9m/s时,要加挡水板(在湿度较大的地区,如广州、深圳等地,建议冷盘管迎面风速高于2.8m/s 时,即加装挡水板) 选盘管时冷量需乘以1.06的安全系数 4.风机选型 机组全压>1200Pa时,选用后倾风机 风机出风口风速:直接出风风机,风口风速≤13m/s 不直接出风风机,风口风速≤15m/s 电机极数的选择:风机转速<600r/min,选用6极电机 风机转速600--3000r/min,选用4极电机 风机转速>3000r/min,选用2极电机 无蜗壳风机:必须找厂家选型,无涡壳风机功能段排布上均流在风机段之前。 对于风机电机直联的注意一般都要配变频电机。 5.机组带转轮除湿机的,一般转轮除湿段和机组前后功能段都是通过帆布软接,注意前后预留中间段,帆布软接一般是根据现场情况配,工厂不带。 6.所有的加湿器都要加接水盘,高压喷雾和喷淋还要加装挡水板和开门。喷淋前后都要预留中间段,并且开门。喷淋段本身也要开门。 7.没有特殊要求不允许机组配置外置板式加袋式共滑道。

8.如果要装压差计,初中效不能同框架或者滑道。 9.加湿出风段在一起时,出风段需要设置门。 10.机组配置紫外线灯的,注意机组的宽度是否大于紫外线灯的长度。不同规格紫外线灯的长度:20W——604mm 30W——908.8mm 40W——1213.6mm 11.湿膜加湿分直排水和循环水两种,我们通常采用的是直排水的。湿膜在功能段上作为加湿用还是作为挡水板是有区别的,所以报价及EOF中要明确。 12.在对噪音要求较高的场合,一般会配置900mm长的消声段,舒适性场合一般选用孔板+玻璃棉形式的消声器,净化场合采用微穿孔的消声器。 13.风阀执行器 开关量

冷水机组选型

冷水机组选型 冷水机组选型: 众所周知冷水机的应用行业是非常的广泛的,那么作为用户的我们完全不了解冷水机的专业知识,那么要怎么才能购买到适合自己的设备呢?下面请慢慢的跟着我的思路来: 问题1:工厂在购买工业冷水机之前,根本不清楚该选用用什么类型什么型号的冷水机设备 问题2:选购什么型号才能达到工厂要求的制冷效果 问题3:根本不知道什么类型什么型号的的设备更适合自己的生产车间。 首先,我们要弄明白冷水机有哪些类型: 一般的厂家,都会重点分:水冷和风冷两种。 风冷式冷水机的优缺点,在它机身内含有保温水箱和水泵,无需再另加冷却水塔来散热.安装和移动非常方便.但是它对工作环境要求较高!

深圳市凯德利冷机设备有限公司(以下简称凯德利)是以生产、设计、研发、经营“凯德利”牌冷水机、热回收机组、环保冷水机、激光冷水机、冷油机、模温冷水机、低温冷冻机等制冷设备及以及厂房舒适中央空调工程、无尘室车间、冷冻工程所需配套产品加工制造、制冷空调系统设计制造安装维修调试和技术服务等为主业的国家一级企业。改革开放以来,公司在体制、机制、技术和管理上不断创新达到走出一条通过合资、合作、壮大经济实力的成功之路,实现了公司的飞速发展 首先,因为它是以热风循环来制冷的,所以,如果安装车间的通风效果不好的话,会直接影响到冷水机的制冷效果. 如果您想把冷水机放在有湿度要求的无尘车间里的话,那么我劝您改装水冷的.因为风冷冷水机,会在机顶喷出水蒸气以散热。 如想通过计算来选择冷水机的话,可以参照下面的公式和计算指南: 通过冷却水(油)进、出口温差来计算发热量 Q = SH × De × F × DT / 60 Q: 发热量 KW(注明:瀚信德1P冷水机的发热量约为3KW) SH:比热水的比热为 4.2KJ/Kg*C (4.2千焦耳/千克*摄氏度) 油的比热 为 1.97KJ/Kg*C (1.97千焦耳/千克*摄氏度) De: 比重水的比重1Kg/L (1千克/升) 油的比重0.88Kg/L (0.88千克/升) F:流量 LPM (L/min 升/分钟)

程序设计典型例题解析(2)

程序设计典型例题解析(2)

典型例题解析(2) 一、填空题 1.以顺序输入模式打开“c:\source1.txt”文件的命令是(1);以输出方式打开“c:\source2.txt”文件的命令是(2)。 分析:Print # 语句用于将把数据写入文件中。Print语句格式为: Open 文件名 [For模式] As [#] 文件号 “For 模式”为指定打开文件的模式是数据的输入模式还是输出模式。 结论:答案应为:(1)Open "c:\source1.txt" For Input As #1 (2)Open "c:\source2.txt" For Output As #2 2.在Visual Basic中,文件系统控件包括(1)、(2)和文件列表框(FileListBox)。三者协同操作可以访问任意位置的目录和文件,可以进行文件系统的人机交互管理。 分析:在Visual Basic中,文件系统控件包括驱动器列表框(DriveListBox)、目录列表

框(DirListBox)和文件列表框(FileListBox)。驱动器列表框可以选择或设置一个驱动器,目录列表框可以查找或设置指定驱动器中的目录,文件列表框可以查找指定驱动器指定目录中文件信息,三者协同操作可以访问任意位置的目录和文件,可以进行文件系统的人机交互管理。 结论:答案应为:(1)驱动器列表框(DriveListBox)(2)目录列表框(DirListBox) 3.每次重新设置驱动器列表框的Drive属性时,都将引发(1)事件。可在该事件过程中编写代码修改目录列表框的路径,使目录列表框内容随之发生改变。 分析:在Visual Basic中,每次重新设置驱动器列表框的Drive属性时,都将引发Change事件。可在Change事件过程中编写代码修改目录列表框的路径,使目录列表框内容随之发生改变。驱动器列表框的默认名称为Drive1,其Change事件过程的开头为Drive1_Change()。 结论:答案应为:(1)Change 4.目录列表框用来显示当前驱动器下目录

冷水机组设计实例讲解学习

冷水机组设计实例

冷水机组设计 储云霄 热能070221 设计任务:中央空调用制冷量为50kW 的水冷螺杆式冷水机组,制冷剂R410a ⑴工况确定 根据表4-7和表4-11等确定: 冷媒水进口温度112s t =℃,出口温度27s t =℃,蒸发温度02t =℃; 冷却水进口温度132w t =℃,出口温度237w t =℃,冷凝温度40k t =℃; 吸气温度7℃(采用热力膨胀阀时,蒸发器出口气体过热度3~5℃),过冷度 5℃(单级压缩系统中,节流前液体的过冷是在冷凝器中实现的,一般取过冷度为5℃)。 ⑵热力计算 制冷循环热力状态参数见表1,热力性能指标计算见表2。 表1 制冷循环的lgp-h 图及热力状态参数 表2 热力性能指标计算

⑶压缩机选择 在实际工况所需冷负荷已知的情况下,螺杆压缩机理论输气量为 244p V m h =。据此选择开利涡普单螺杆压缩机,型号×××,该压缩机理论排气量为2p V m h =???。 此压缩机在实际工况下的制冷剂流量为:m q kg s '=???,实际工况下的制冷量为×××kW.。相对误差为:?=×××。因此,此压缩机选择满足要求。 ⑷蒸发器的设计计算 ① 蒸发器机构的初步规划 本系统采用干式管壳蒸发器,结构初步规划如图1所示。传热管选取?12×1mm 铜管,管束按正三角形排列,管距取16mm ,壳体内径308i d mm =,流程数N=4,总管数Z=116,则每一流程平均管数Z m =29,管长L=1960mm ,折流板数N b =19,折流板间距S 1=130mm, S 2=85mm,管板厚32B mm δ=,折流板厚

数控车床编程实例详解(30个例子)-数控代码编程实例

车床编程实例一 半径编程 图3.1.1 半径编程 %3110 (主程序程序名) N1 G92 X16 Z1 (设立坐标系,定义对刀点的位置) N2 G37 G00 Z0 M03 (移到子程序起点处、主轴正转) N3 M98 P0003 L6 (调用子程序,并循环6 次) N4 G00 X16 Z1 (返回对刀点) N5 G36 (取消半径编程) N6 M05 (主轴停) N7 M30 (主程序结束并复位) %0003 (子程序名) N1 G01 U-12 F100 (进刀到切削起点处,注意留下后面切削的余量)N2 G03 U7.385 W-4.923 R8(加工R8 园弧段)N3 U3.215 W-39.877 R60 (加工R60 园弧段) N4 G02 U1.4 W-28.636 R40(加工切R40 园弧段) N5 G00 U4 (离开已加工表面) N6 W73.436 (回到循环起点Z 轴处) N7 G01 U-4.8 F100 (调整每次循环的切削量) N8 M99 (子程序结束,并回到主程序)

1

直线插补指令编程%3305车床编程实例二图3.3.5 G01 编程实例 N1 G92 X100 Z10 (设立坐标系,定义对刀点的位置) N2 G00 X16 Z2 M03 (移到倒角延长线,Z 轴2mm 处) N3 G01 U10 W-5 F300 (倒3×45°角) N4 Z-48 (加工Φ26 外圆) N5 U34 W-10 (切第一段锥) N6 U20 Z-73 (切第二段锥) N7 X90 (退刀) N8 G00 X100 Z10 (回对刀点) N9 M05 (主轴停) N10 M30 (主程序结束并复位) 圆弧插补指令编程 车床编程实例三 %3308 N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min 旋转) N3 G00 X0 (到达工件中心) N4 G01 Z0 F60 (工进接触工件毛坯) N5 G03 U24 W-24 R15 (加工R15 圆弧段) N6 G02 X26 Z-31 R5 (加工R5 圆弧段) N7 G01 Z-40 (加工Φ26 外圆) N8 X40 Z5 (回对刀点) N9 M30 (主轴停、主程序结束并复位

螺杆式冷水机组的设计

第一章绪论 1.1 引言 空气调节(简称空调),就是把经过一定处理的空气,以一定的方式送入室内,使室内空气的温度,相对湿度,清洁度和流动速度等控制在适当的范围内以满足生活舒适和生产工艺需要的的一种专门技术。中央空调系统是由一台主机(或一套制冷系统或供风系统)通过风道送风或冷热水源带动多个末端的方式来达到室内空气调节的目的的系统。中央空调系统的工作过程是一个不断进行能量转换以及热交换的过程。按照主机的类型可以把空调分为压缩式和吸收式两大类。其中压缩式包括活塞式,螺杆式(分单螺杆和双螺杆两种),离心式和涡旋式。在中央空调系统中,使用各种形式的冷水机组。螺杆式冷水机组以其对变工况运行有较好适应性,对气体带液运行不敏感,转速高,体积小,重量轻,动力平衡性好,零部件少,尤其易损件少等特点优势广泛应用于商业和工业中央空调系统中,十几年来,国内企业不断从欧美等发达国家引进、消化、吸收冷水机组设计技术和制造工艺,使螺杆式冷水机组水平得到显著提高。在螺杆式冷水机组中,对系统性能影响最大的主要是螺杆式压缩机、蒸发器、凝冷器和节流装置等的性能,因此,要提高冷水机组性能,除了要提高各部件的性能,同时也要分析研究各种影响因素,并对其进行优化组合。 1.2 螺杆式冷水机组现状及性能特点 螺杆式制冷压缩机被广泛应用于空调、冷冻、化工、水利等各个工业领域,是制冷领域的最佳机型。螺杆式冷水机组应用于商场,写字楼,工厂,餐饮娱乐,宾馆,医院等,据资料显示,在空调领域,螺杆式冷水机组在中央空词系统主机中所占的份额逐年上升,而活塞式、演化锂式等空调主机所占份额则逐年下降。一方面,螺杆式冷水机组牢固地占据着中小型中央空调系统主机的主导地位,另一方面,它逐步蚕食着大型中央空调系统中离心式压缩机的份额。空调用螺杆式压缩机的市场潜力巨大,是单台制冷量100。3C00kW空调系统中的最佳机型。目前,螺杆式冷水机组应用广泛的主要原因是:a)螺杆式压缩机能量调节范围宽,负荷适应性强,对湿压缩不敏感.b)运转时力矩变化小,动力平衡性好,易损件少,振动小,运行可靠,寿命长;c)转速高,输气脉动小,零部件少,结构简单,紧凑,质量轻,体积小;d)无吸、排气阀,流动阻力小;余隙容积小;喷油运行,排气温度低,因而容积效率高;e)操作简便,易于实现自动化。螺杆

离心式冷水机组的结构及原理

离心式冷水机组的结构及原理 目前,用于中央空调的离心式冷水机组,主要由离心制冷压缩机、主电动机、蒸发器(满液式卧式壳管式)、冷凝器(水冷式满液式卧式壳管式)、节流装置、压缩机入口能量调节机构、抽气回收装置、润滑油系统、安全保护装置、主电动机喷液蒸发冷却系统、油回收装置及微电脑控制系统等组成,并共用底座。其外形和系统组成如图4.13及图4.14所示。

1.离心式冷水机组特点 离心式冷水机组属大冷量的冷水机组,它有以下主要优点: (1)压缩机输气量大,单机制冷量大,结构紧凑,重量轻,单位制冷量重量小,相同制冷量下比活塞式机组轻80%以上,占地面积小; (2)性能系数高; (3)叶轮作旋转运动,运转平稳,振动小,噪声较低; (4)调节方便,在较大的冷量范围内能较经济地实现无级调节; (5)无气阀、填料、活塞环等易损件,工作比较可靠。 离心式冷水机组的缺点主要是: (1)由于转速高,对材料强度、加工精度和制造质量要求严格; (2)单级压缩机在低负荷时易发生喘振; (3)当运行工况偏离设计工况时,效率下降较快; (4)制冷量随蒸发温度降低而减少的幅度比活塞式快,制冷量随转数降低而急剧下降。 2.离心式冷水机组的组成 构成离心式冷水机组的部件中,区别于活塞式、螺杆式冷水机组的主要部件是离心压缩机,此外,其他主要辅助设备比如换热设备、润滑油系统、抽气回收装置等均有自己特点,在这进行简单介绍。 1)压缩机 空调用离心式冷水机组,通常都采用单级压缩,除非单机制冷量特别大(例如4500kW以上),或者刻意追求压缩机的效率,才采用2级或3级压缩。单级离心制冷压缩机由进口调节装置、叶轮、扩压器、蜗室组成;多级离心制冷压缩机除了末级外,在每级的扩压器后面还有弯道和回流界,以引导气流进入下一级。图4.15示出了离心式制冷压缩机的典型结构。 图4.15 离心式制冷压缩机的典型结构 (a)单级离心式制冷压缩机;(b)多级离心制冷压缩机的中间级 1一齿轮箱体;2一机壳门;3一轮盖密封座;1一叶轮;2一扩压器; 4一叶轮;5一叶片调节机构;6—进口壳体;3一弯道;4一回流器; 7一轮盖密封;8一轮盘密封;9一右轴承;5一级内密封;6一中间加气孔 10一左轴承;11一推力盘;12—后壳体 由于离心式冷水机组在实际使用中的一些特殊要求,使得离心式制冷压缩机在结构上有其一些特点: ①离心式冷水机组采用的制冷剂的分子量都很大,音速低,在压缩机流道中的马赫数M比较高(特别是在叶轮进口的相对速度马赫数和叶轮出口的绝对速度马赫数一般都达到亚音速甚至跨音速),这就要求在叶轮构型时特别注意气流组织,避免或减少气流在叶轮流遭中产生激波损失,同时适应制冷剂气体的容积流量在叶轮内变化很大的特点。

空调设计设备选型指南

内容: 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等) 2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。 同一机房内可采用不同 类型、不同容量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性能价格比 进行选择。 2.3.2冷水机组机型选择

电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规 定。 2.3.3冷水机组的制冷量和耗功率 冷水机组铭牌上的制冷量和耗功率,或样本技术性能表中的制冷量和耗功率是机组名义工况下的制冷量和耗功率,只能作冷水机组初选时参考。冷水机组在设计工况或使用工况下的制冷量和耗功率应根据设计工况或使用工况(主要指冷水出水温度、冷却水进水温度)按机组变工况性能表、变工况性能曲线或变工况性能修正系数来确定。 2.4热源设备 2.4.1热源设备类型 提供空调热水的锅炉按其使用能源的不同,主要分为两大类:(1)电热水锅炉(2)燃气、燃油热水锅炉 电热水锅炉 电热水锅炉的优点是使用方便,清洁卫生,无排放物,安全,无燃烧爆炸危险,自动控制水温,可无人值守。 《公共建筑节能设计标准》(GB50189-2005)规定:除了符合下列情况之一外,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源:电力充足、供电政策支持和电价优惠地区的建筑; 以供冷为主,采暖负荷较小且无法利用热泵提供热源的建筑; 无集中供热与燃气源,用煤、油等燃料受到环保或消防严格限制的建筑; 夜间可利用低谷电进行蓄热、且蓄热电锅炉不在日间用电高峰和平段时间启用的建筑; 利用可再生能源发电地区的建筑; 内、外区合一的变风量系统中需要对局部外区进行加热的建筑.

c语言编程例题与答案解析

实验报告三 (四学时) 2.1 实验目的 (1)掌握函数的定义和调用; (2)了解函数间的参数传送; 2.2 基础实验 【题目3-1】编写函数实现将输入的字母转换成大写字母(若输入小写则转换,大写字母直接输出,其他字符请输出提示“请输入字母”)。 算法分析: 1、输入:通过键盘接收一个字符; 2、条件判断:调用判别函数 3、函数功能为:蒋所输入字符进行判别处理,若输入小写则转换,大写字母直接输出,其他字符请输出提示“请输入字母” 4、程序结束。 【实验3-1】代码及运行结果:

【题目3-2】从键盘输入若干个同学计算机课程期末考试成绩(学生人数可由用户输入),求该课程的期末成绩的平均分并输出。 函数功能要求:实现若干(例如5名)同学的的期末成绩输入,并统计出平均分。 算法分析: 1、输入:通过键盘接收同学个数; 2、调用求平均分函数 3、输出平均成绩 4、程序结束。

【实验3-2】代码及运行结果:

【题目3-3】请用函数编写程序实现:计算3 到100 之间所有素数的平方根之和,并输出。s=148.874270。 算法分析: 1、编写函素数判别函数,确定返回标记,如果是素数返回1,否则返回0 2、编写主函数,用一重循环遍历100以内所有数据 2.1、通过素数判别函数对循环的数据进行是否为素数的判别 2.2、返回判别为真的整数,并输出 3、程序结束。 【实验3-3】代码及运行结果: #include #include int Prime(int x) { int i ; if(x<=1) return 0; for(i=2;i<=x-1;i++) { if(x%i==0) { return 0;

制冷量的计算 及冷水机选型

制冷量的计算 一、各种制冷量单位的换算关系如下: 1,1 kcal/h (大卡/小时)=1.163W,1 W=0.8598 kcal/h; 2,1 Btu/h (英热单位/小时)=0.2931W,1 W=3.412 Btu/h; 3,1 USRT (美国冷吨)=3.517 kW,1 kW=0.28434 USRT; 4,1 kcal/h=3.968 Btu/h,1 Btu/h=0.252 kcal/h; 5,1 USRT=3024 kcal/h,10000 kcal/h=3.3069 USRT; 6,1匹=2.5 kW(用于风冷机组),1匹=3 kW(用于水冷机组) 二、制冷设备选型公式: 1、通过冷却水(油)进、出口温差来计算发热量 Q = SH * De * F * DT / 60 Q:发热量 KW SH:比热水的比热为 4.2KJ/Kg*C (4.2千焦耳/千克*摄氏度)。油的比热为 1.97KJ/Kg*C(1.97千焦耳/千克*摄氏度)。 De:比重水的比重1Kg/L (1千克/升) 油的比重0.88Kg/L (0.88千克/升) F:流量 LPM (L/min 升/分钟) DT:冷却水(油)进出口温差(出口温度-进口温度) 注: "/ 60" 是用于将流量升/分变为升/秒 ;1kW = 1kJ/s ; 例1:冷却水进水为20度,出水25度,流量10升/分钟 发热量 Q = 4.2 * 1 * 10 * (25-20) / 60 = 3.5KW 选择冷水机冷量时可适当加大 20%-50% 即可选用HK-02 HP 例2:冷却油进口为25度,出水32度,流量8升/分钟 发热量 Q = 1.97 * 0.88 * 8 * (32-25) / 60 = 1.62KW 选择冷油机冷量时可适当加大 20%-50% 即可选用HK-01 HP 2、通过水(油)箱的温升来计算发热量 Q = SH * De * V * DT / 60 Q:发热量 KW SH:比热水的比热为 4.2KJ/Kg*C (4.2千焦耳/千克*摄氏度)。油的比热为 1.97KJ/Kg*C(1.97千焦耳/千克*摄氏度) De:比重水的比重1Kg/L (1千克/升) 油的比重0.88Kg/L (0.88千克/升) V:水容量 L(升)包括水箱及管路中的总水容量 DT:水(油)在一分钟内的最大温升 注: "/ 60" 是用于将温升摄氏度/分变为摄氏度/秒 ; 1kW = 1kJ/s; 注意:测量时,水(油)箱的温度需略低于环境温度;并且设备处于最大的负荷下工作。 例:水箱容积 1000L 最大的水温 0.2度/分钟 发热量 Q = 4.2 * 1 * 1000 * 0.2 / 60 = 14KW 常州鸿康制冷

2000kW水冷型冷水机组的设计解析

本科毕业设计(论文)2000kW水冷型冷水机组的设计 学院材能与能源学院 专业热能与动力工程 (制冷空调方向) 年级班别 2011 年 6 月

2 0 0 0 k W 水冷型冷水机组设计 材料与能源学院

设计总说明 冷水机组是把整个制冷系统中的压缩机、冷凝器、蒸发器、节流阀等设备,以及电气控制设备组装在一起,为空调系统提供冷冻水的设备。冷水机组一般使用在空调机组和工业冷却。在空调系统,冷冻水通常是分配给换热器或空气处理机组终端设备;在工业应用,冷冻水分配到其它液体的冷却泵或实验室设备。它既能为宾馆、医院、药厂、影剧院、体育馆、娱乐中心、商业大厦、工矿企业等场所的中央空调系统提供冷水,也可为纺织、化工、食品、电子、科研等部门提供工艺冷冻水。本设计主要是2000kW 水冷型冷水机组的设计,设计首先介绍了水冷型冷水机组的概念、分类、主要型式、冷量范围和应用场合等等。接着由规定的制冷量,确定所要设计的机组型式为螺杆式水冷型冷水机组。然后查阅国标中关于水冷型冷水机组的设计工况,根据国标中规定的冷却水进出口温度,制冷量等条件再确定所确定的机组设计蒸发器为满液式蒸发器,冷凝器为卧式管壳式冷凝器。设计步骤按照相关换热器设计手册和国标的一些规定。由设计好的换热器来选择比泽尔CSH系列压缩机及其配件。接着设计机组主要管路及系统,最后设计机组的自动控制系统,主要包括压缩机自动控制和机组运行参数自动控制。最后再绘制设计的蒸发器、冷凝器和相关零件的图纸。 关键词:冷水机组,螺杆压缩机,水冷,R22

Design General Information Chillers are refrigeration systems which include compressor, condenser, evaporator, throttle and other equipments, providing chilled water for air conditioning systems. Usually chillers are used in air conditioning units and industrial cooling. In the air conditioning systems, chilled water heat exchanger is usually assigned to the terminal equipments or air handling terminal units; in industrial applications, chilled water is distributed to other liquid cooling pumps or laboratory equipments.It could not only provide cold water for the hotels, hospitals, pharmaceutical companies, commercial buildings, mining enterprises and other places of central air conditioning systems, but also provides process frozen water for the sections of textile, chemical, food, electronics, and scientific research. This design is mainly about 2000kW water-cooled chiller. The design first introduces the water-cooled chiller’s concept, classification, major types, scope and applications of cold etc. Then according to the stipulations of import and export cooling water temperature, cooling capacity and other conditions in the Chinese standard the design determines the evaporator unit shall be flooded evaporator and the condenser shall be a horizontal tube shell condenser. The design procedures are based on the stipulations in relevant heat exchanger design manuals and Chinese standard. The design selects a Bitzer CSH series compressors and accessories which are in accordance with the designed heat exchanger. Then design the main pipeline and system of the unit and the unit’s automatic control system which mainly includes automatic control and compressor control unit operating parameters. Finally, I draw the designs of evaporator, condenser and related parts. Key words: Chillers, Screw Compressor,Water-cooled,R22

冷水机如何选型

冷水机制冷量计算方式及冷水机选型计算汇总 冷水机制冷量计算方式及冷水机选型计算汇总 (一)如何选用最适合自己的工业冷水机和小型冷水机呢,其实很简单有一个选型公式:制冷量=冷冻水流量*4.187*温差*系数 1、冷冻水流量指机器的工作时所需冷水流量,单位需换算为升/秒; 2、温差指机器进出水之间的温差; 3、4.187为定量(水的比热容); 4、选择风冷式冷水机时需乘系数1.3,选择水冷式冷水机则乘系数1.1。 5、根据计算的制冷量选择相应的机器型号。 一般习惯对冷水机要配多大的习惯用P来计算,但最主要的是知道额定制冷量,一般风冷的9.07KW的样子的话选择用3P的机器.依此类推。所以工业冷水机的选用最重要的是求出额定制冷量 (二)冷水机制冷量的计算方式 冷水机制冷量的计算方式,冷水机制冷原理,20kw就可以勒计算方式: 1:体积(升)×升温度数÷升温时候(分)×60÷0.86(系数)=(w) 2:体积(吨或立方米)×升温度数÷升温时候(时)÷0.86(系数)=(kw)你的数据带冷水机制冷量的计算方式,冷水机制冷原理出来就可以勒4小时 深圳市凯德利冷机设备有限公司(以下简称凯德利)是以生产、设计、研发、经营“凯德利”牌冷水机、热回收机组、环保冷水机、激光冷水机、冷油机、模温冷水机、低温冷冻机等制冷设备及以及厂房舒适中央空调工程、无尘室车间、冷冻工程所需配套产品加工制造、制冷空调系统设计制造安装维修调试和技术服务等为主业的国家一级企业。改革开放以来,公司在体制、机制、技术和管理上不断创新达到走出一条通过合资、合作、壮大经济实力的成功之路,实现了公司的飞速发展

(三)冷水机选型方法 (三)能量守恒法 Q=W入-W出 Q:热负荷(KW) W入:输入功率(KW)例:8KW W出:输出功率(KW)例:3KW 例: Q=W入-W出 =8-3=5(kw) wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();}, function(){$('.ad-hidden').show();}); (二)时间温升法 Q= Cp.r.V.△T/H Q:热负荷(KW) Cp:定压比热(KJ/kg.℃)……4.1868 KJ/kg.℃ r:比重量(Kg/m3 )……1000 Kg/m3 V:总水量(m3 ) 例:0.5 m3 △T:水温差(℃)……△T=T2-T1 例:=5℃ H:时间(h) 例:1h 例: Q= Cp.r.V.△T/H=4.1868*1000*0.5*5/3600=2.908(kw) (一)温差流量法 Q=Cp.r.Vs.△T Q:热负荷(KW) Cp:定压比热(KJ/kg.℃)……4.1868 KJ/kg.℃r:比重量(Kg/m3

程序设计典型例题解析(2)

典型例题解析(2) 一、填空题 1.以顺序输入模式打开“c:\source1.txt”文件的命令是(1);以输出方式打开“c:\source2.txt”文件的命令是(2)。 分析:Print # 语句用于将把数据写入文件中。Print语句格式为: Open 文件名 [For模式] As [#] 文件号 “For 模式”为指定打开文件的模式是数据的输入模式还是输出模式。 结论:答案应为:(1)Open "c:\source1.txt" For Input As #1 (2)Open "c:\source2.txt" For Output As #2 2.在Visual Basic中,文件系统控件包括(1)、(2)和文件列表框()。三者协同操作可以访问任意位置的目录和文件,可以进行文件系统的人机交互管理。 分析:在Visual Basic中,文件系统控件包括驱动器列表框(DriveListBox)、目录列表框(DirListBox)和文件列表框()。驱动器列表框可以选择或设置一个驱动器,目录列表框可以查找或设置指定驱动器中的目录,文件列表框可以查找指定驱动器指定目录中文件信息,三者协同操作可以访问任意位置的目录和文件,可以进行文件系统的人机交互管理。 结论:答案应为:(1)驱动器列表框(DriveListBox)(2)目录列表框(DirListBox) 3.每次重新设置驱动器列表框的Drive属性时,都将引发(1)事件。可在该事件过程中编写代码修改目录列表框的路径,使目录列表框内容随之发生改变。 分析:在Visual Basic中,每次重新设置驱动器列表框的Drive属性时,都将引发Change 事件。可在Change事件过程中编写代码修改目录列表框的路径,使目录列表框内容随之发生改变。驱动器列表框的默认名称为Drive1,其Change事件过程的开头为Drive1_Change()。 结论:答案应为:(1)Change 4.目录列表框用来显示当前驱动器下目录结构。刚建立时显示(1)的顶层目录和当前目录,如果要显示其他驱动器上的目录信息,必须改变路径,即重新设置目录列表框的(2)属性。 分析:在Visual Basic中,目录列表框用来显示当前驱动器下目录结构。刚建立时显示当前驱动器的顶层目录和当前目录,如果要显示其他驱动器上的目录,必须改变路径,即重新设置目录列表框的Path属性。 结论:答案应为:(1)当前驱动器(2)Path 5.对驱动器列表框来说,每次重新设置驱动器列表框的(1)属性时,将引发Change 事件;对目录列表框来说,当(2)属性值改变时,将引发Change事件;对于文件列表框,重新设置的(3)属性,将引发Change事件。 分析:在Visual Basic中,对驱动器列表框来说,每次重新设置驱动器列表框的Drive属性时,将引发Change事件;对于目录列表框和文件列表框改变路径,即重新设置列表框的Path属性,将引发Change事件。 结论:答案应为:(1)Drive(2)Path(3)Path 6.以下程序段简要说明驱动器列表框、目录列表框及文件列表框三者协同工作的情况。将程序段补充完整。

涡旋式冷水机组选用指南

涡旋式冷水机组选用指南 一、适用范围 单机容量小,适用于小型空调系统。 二、产品选用要点 1. 1.涡旋式冷水机组的主要控制参数为能效比,额定制冷量,输入功率以及 制冷剂类型、电源电压等。 2. 2.冷水机组的选用应根据冷负荷及用途来考虑。 3. 3.选用冷水机组时,优先考虑性能系数值较高的机组。根据资料统计,一 般冷水机组全年在100% 负荷下运行时间约占总运行时间的1/4 以下。总运行时间内100%、75%、50%、25% 负荷的运行时间比例大致为2.3%、41.5%、 46.1%、10.1%。因此,在选用冷水机组时应优先考虑效率曲线比较平坦的机 型。同时,在设计选用时应考虑冷水机组负荷的调节范围。 4. 4.选用冷水机组时,应注意名义工况的条件。冷水机组的实际产冷量与下 列因素有关: a)a)冷水出水温度和流量; b)b)冷却水的进水温度、流量以及污垢系数。 5. 5.选用冷水机组时,应注意该型号机组的正常工作范围,主要是主电机的 电流限值是名义工况下的轴功率的电流值。 6. 6.在设计选用中应注意:在名义工况流量下,冷水的出口温度不应超过 15℃,风冷机组室外干球温度不应超过43℃。若必须超过上述范围时,应了解压缩机的使用范围是否允许,所配主电机的功率是否足够。 7.7.注:机组的节能评价值为表中能效等级2级。

三、施工安装要点 1. 1.冷水机组安装应考虑隔振消声措施。安装在室外时,电气控制设备和控 制柜应放置室内。控制柜的安装位置,应能有效避免柜内受潮甚至结露。 2. 2.冷水机组的混凝土基础应平整,在减振器上安装时,各减振器的预压缩 量应均匀一致,偏差量小于2mm。 3. 3.连接冷水机组的管道应设有柔性接头,系统管道的重量不应由冷水机组 支承。 4. 4.冷水机组的吊装应采用设备的吊装点,禁止在设备上随意捆吊绳。 四、执行标准 产品标准 GB19577-2004《冷水机组能效限定值及能源效率等级》 GB/T18430.1-2001《蒸气压缩循环冷水(热泵)机组工商业用或类似用途的冷水(热泵)机组》 GB9237-2001《制冷和供热用机械制冷系统安全要求》 工程标准 GB50189-2005《公共建筑节能设计标准》 GB50019-2003《采暖通风与空气调节设计规范》 GB50243-2002《通风与空调工程施工质量验收规范》 五、相关标准图集 07K304《空调机房设计与安装》

水冷活塞冷水机组制冷系统设计

毕业设计(论文)MLSC44水冷活塞冷水机组制冷系统设计

摘要 (1) Abstract (2) 1.1 流程的选择 (4) 1.2 换热器的选择 (5) 1.2.1 冷凝器的选择 (5) 1.2.2 蒸发器的选择 (6) 1.3 制冷剂的选择 (6) 1.4 节流装置的选择 (7) 1.5 压缩机的选择 (9) 2.1 已知参数 (11) 2.1.1 制冷循环的lgp-h 图 (11) 2.1.2 单供冷工况 (11) 2.2 制冷循环热力计算 (12) 2.2.1 单位质量制冷量 (12) 2.2.2 单位容量制冷量 (12) 2.2.3 单位绝热功 (12) 2.2.4 制冷系数 (12) 2.2.5 制冷剂质量流量 (13) 2.2.6 实际输气量 (13) 2.2.7 压缩机的理论功率 (13) 2.2.8 单位冷凝热 (13)

2.3 冷凝器的设计计算 (13) 2.3.1 冷凝器传热管的选择及参数计算 (13) 2.3.2 冷凝负荷与流量计算 (14) 2.3.3 冷凝机构的初步规划 (14) 2.3.4 管内水侧表面传热系数 (15) 2.3.5 计算管外R22蒸气冷凝表面传热系数 (16) 2.3.6 计算传热系数K和单位面积热流量 q (16) 0f 2.3.7 计算所需的传热面积 (17) 2.3.8 计算冷却水侧流动阻力 (17) 2.3.9 冷凝器的结构设计 (18) 2.4 蒸发器的设计计算 (18) 2.4.1 制冷剂流量的确定 (19) 2.4.2 初步结构设计 (19) 2.4.3 管内R22的表面传热系数 (20) 2.4.4 水侧表面传热系数的计算 (23) 2.4.5 传热系数的计算 (25) 2.4.6 管内流动阻力和平均传热温差的计算 (25) 2.4.7单位热流量及传热面积的计算 (26) 2.4.8水侧的流动阻力的计算 (26) 2.5 节流装置的选型 (28)

相关主题