搜档网
当前位置:搜档网 › 一元二次函数的图像和性质教学设计

一元二次函数的图像和性质教学设计

一元二次函数的图像和性质教学设计
一元二次函数的图像和性质教学设计

§ 3.4一元二次函数的图象和性质教学设计

1. 掌握一元二次函数图象的画法及图象的特征

2. 掌握一元二次函数的性质,能利用性质解决实际问题 3. 会求二次函数在指定区间上的最大(小)值 4. 掌握一元二次函数、一元二次方程的关系。

1.函数)0(2

≠++=a c bx ax y 叫做一元二次函数。 2. 一元二次函数的图象是一条抛物线。

3.任何一个二次函数)0(2

≠++=a c bx ax y 都可把它的解析式配方为顶点式:

a

b a

c a b x a y 44)2(2

2-++=,

性质如下:

(1)图象的顶点坐标为)44,2(2a b ac a b --,对称轴是直线a

b

x 2-=。 (2)最大(小)值

① 当0>a ,函数图象开口向上,y 有最小值,a b ac y 442

min

-=,无最大值。

② 当0>a ,函数图象开口向下,y 有最大值,a

b a

c y 442max -=,无最小值。

(3)当0>a ,函数在区间)2,(a b -

-∞上是减函数,在),2(+∞-a b

上是增函数。 当0

b

--∞上是增函数。

【说明】1.我们研究二次函数的性质常用的方法有两种:配方法和公式法。

2.无论是利用公式法还是配方法我们都可以直接得出二次函数的顶点坐标与对称轴;

但我们讨论函数的最值以及它的单调区间时一定要考虑它的开口方向。

一、一元二次函数的图象的画法

【例1】求作函数642

12

++=

x x y 的图象 【解】 )128(2

1

642122++=++=x x x x y

2-4)(2

1

4]-4)[(21 2222+=+=

x x

x 【例2】求作函数342

+--=x x y 的图象。 【解】)34(342

2-+-=+--=x x x x y 7)2[(]7)2[(2

2++-=-+-=x x

先画出图角在对称轴2-=x 的右边部分,列表

【点评】画二次函数图象步骤: (1)配方; (2)列表;

(3)描点成图; 也可利用图象的对称性,先画出函数的左(右)边部分图象,再利用对称性描出右(左)部分就可。

二、一元二次函数性质

【例3】求函数962

++=x x y 的最小值及图象的对称轴和顶点坐标,并求它的单调区间。 【解】 7)3(796262

22-+=-++=++=x x x x x y

由配方结果可知:顶点坐标为)73(--,,对称轴为3-=x ; 01>Θ ∴当3-=x 时, 7min -=y

函数在区间]3(--∞,上是减函数,在区间)3[∞+-,上是增函数。

【例4】求函数1352

++-=x x y 图象的顶点坐标、对称轴、最值及它的单调区间。

10

3

)5(232=-?-=-a b Θ,2029)5(431)5(44422=-

?-?-?=-a b ac ∴函数图象的顶点坐标为)2029,103(

,对称轴为2029=x 05<-Θ ∴当103=x 时,函数取得最大值20

29

=maz y

函数在区间]10

3

,(-∞上是增函数,在区间),3[+∞-上是减函数。

【点评】要研究二次函数顶点、对称轴、最值、单调区间等性质时,方法有两个:

(1) 配方法;如例3 (2) 公式法:适用于不容易配方题目(二次项系数为负数或分数)如例4,可避免出错。

任何一个函数都可配方成如下形式:)0(44)2(2

2≠-++=a a

b a

c a b x a y 三、二次函数性质的应用

【例5】(1)如果c bx x x f ++=2

)(对于任意实数t 都有)3()3(t f t f -=+,那么( )

(A ))4()1()3(f f f << (B ) )4()3()1(f f f << (C ))1()4()3(f f f <<

(D ))1()3()4(f f f <<

【解】 ∵)3()3(t f t f -=+对于一切的R t ∈均成立

∴ )(x f 的图像关于3=x 对称 又01>=a ∴ 抛物线开口向上。

∴ )3(f 是)(x f 的最小值。

3431->-Θ,

∴ )1()4()3(f f f <<

(2)如果c bx x x f ++-=2

)(对于任意实数t 都有)2()2(t f t f --=+-,则)1(-f

)1(f 。(用“>”或“<”填空)

【解】∵)2()2(t f t f --=+-对于一切的R t ∈均成立

∴ )(x f 的图像关于2-=x 对称 又01>-=a

∴ 抛物线开口向下。

)2(1)2(1--<---Θ,

∴ )1()1(f f >-

【点评】1.当0>a 时,对称轴通过它的最低点(此时函数有最小值),如果这时有一个点离

图象对称轴越远,则对应的函数值就越大。如例5(1)中当1=x 所对应的点比当4=x 所对应的点离对称轴远,所以1=x 时对应的函数值也比较大。

2.1.当0

--=x x y 在给定区间]5,1[-上的最值。

【解】(1)原函数化为()61522

2

--=--=x x x y

∵01>=a ∴ 当1=x 时,6min -=y

又∵1511+<+- ∴当5=x 时,106)15(2

max =--=y

(2)原函数可化为:910)31(2+

+-=x y ,图象的对称轴是直线3

1-=x 注意到当21≤≤x 时,函数为减函数 ∴3

13

134412322)2(2min -=+--=+?-

-==f y 【例7】已知函数1)2(2

-+-=nx x n y 是偶函数,试比较)2(f ,)2(f ,)5(-f 的大

小。

【解】解法一:∵1)2(2

-+-=nx x n y 是偶函数,

∴ 0=n , ∴122

--=x y

∴ 可知函数的对称轴为直线0=x 又∵02<-=a ,020205->->--

∴)5()2()2(->>f f f

解法二: ∵32)1(2

++-=mx x m y 是偶函数, ∴ 0=n , ∴122

--=x y

可知122

--=x y 在),0(+∞上单调递减

又∵1)2(2-+-=nx x n y 是偶函数, ∴)5()5(f f =-

而225>

>

∴)5()2()2(f f f >>

∴)5()2()2(->>f f f

三、一元二次函数、一元二次方程的关系。

【例8】求当k 为何值时,函数k x x y ++-=422

的图象与x 轴(1)只有一个公共点;(2)

有两个公共点;(3)没有公共点.

【解】令0422

=++-k x x ,则022

=++-k x x 的判别式k ac b 81642

+=-=?

(1)当0=?,即0816=+k ,2=k 时,方程有两个相等的实根,这时图象与x 轴只

有一个公共点;

(2) 当0>?,即0816>+k ,2>k 时,方程有两个不相等的实根,这时图象与x 轴

有两个公共点;

(3) 当0

无公共点;

一.选择题

1.二次函数522

+-=x x y 的值域是( )

A.)4∞+, [ B.),4(∞+ C.(4, ∞-] D.)4,( -∞

2.如果二次函数452

++=mx x y 在区间)1,(--∞上是减函数,在区间),1[+∞-上是增函数,则=m ( )

A.2 B.-2 C.10 D.-10

3.如果二次函数)3(2+++=m mx x y 有两个不相等的实数根,则m 的聚值范围是( ) A.),6()2,(+∞?--∞ B.)6,2(- C.)6,2[- 0 D.}6,2{- 4.函数32

12

-+=

x x y 的最小值是( ) A.-3. B..213- C.3 D..2

1

3

5.函数2422

---=x x y 具有性质( )

A.开口方向向上,对称轴为1-=x ,顶点坐标为(-1,0)

B.开口方向向上,对称轴为1=x ,顶点坐标为(1,0) C.开口方向向下,对称轴为1-=x ,顶点坐标为(-1,0) D.开口方向向下,对称轴为1=x ,顶点坐标为(1,0) 6.下列命题正确的是( ) A.函数3622

--=x x y 的最小值是

23 B.函数3622

---=x x y 的最小值是4

15 C.函数342

+--=x x y 的最小值为7 D.函数342

+--=x x y 的最大值为7 7.函数(1)3422

-+=x x y ;(2)3422

++=x x y ;(3)3632

---=x x y ;(4)

3632-+-=x x y 中,对称轴是直线1=x 的是( )

A.(1)与(2) B.(2)与(3) C.(1)与(3) D.(2)与(4) 8.对于二次函数x x y 822

+-=,下列结论正确的是( )

A.当2=x 时,y 有最大值8 B.当2-=x 时,y 有最大值8

C.当2=x 时,y 有最小值8 D.当2-=x 时,y 有最小值8 9.如果函数)0(2

≠++=a c bx ax y ,对于任意实数t 都有)2()2(t f t f -=+,那么下列选项中正确的是( )

A.)4()1()2(f f f <-< B.)4()2()1(f f f <<- C.)1()4()2(-<

2+-=x x a y 有最小值,则实数a =( ) A.2 B.2- C.2± D.2±

二.填空

1.若函数12)(2-+=x x x f ,则)(x f 的对称轴是直线

2.若函数322

++=bx x y 在区间]2,(-∞上是减函数,在区间],2(+∞是增函数,则=b 3.函数9322

--=x x y 的图象与y 轴的交点坐标是 ,与x 轴的交点坐标是 、 4.已知6692

+-=x x y ,则y 有最 值为 5.已知12842++-=x x y ,则y 有最 值为 三.解答题

1.已知二次函数342

-+-=x x y ,(1)指出函数图象的开口方向;(2)当x 为何值时0=y ;(3)求函数图象的顶点坐标、对称轴和最值。

2.如果二次函数)8()(2--+=k kx x x f 与x 轴至多有一个交点,求k 的值。

3.已知二次函数2

2

2)1(2)(m m m x x f -+-+-=, (1)如果它的图象经过原点,求m 的值。

(2)如果它的图象关于y 轴对称,写出函数的关系式。

(3)如果它的图象关于y 轴对称,试比较)2()3()2(f f f 、、--。

苏教版九年级下册6.1二次函数教案

6.1 二次函数 一.学习目标 1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。 2.了解二次函数关系式,会确定二次函数关系式中各项的系数。 二.知识导学 (一)情景导学 1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S 与半径r 之间的函 数关系式是 。 2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大? 设长方形的长为x 米,则宽为 米,如果将面积记为y 平方米,那么变量y 与x 之间的函数关系式为 . 3.要给边长为x 米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢 脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y 为多少元? 在这个问题中,地板的费用与 有关,为 元,踢脚线的费用与 有关,为 元;其他费用固定不变为 元,所以总费用y (元)与x (m ) 之间的函数关系式是 。 (二)归纳提高。 上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不 同? 。 一般地,我们称 表示的函数为二次函数。其中 是自变量, 函数。 一般地,二次函数c bx ax y ++=2中自变量x 的取值范围是 ,你能 说出上述三个问题中自变量的取值范围吗? (三)典例分析 例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c 的值. (1) y =1— 23x (2)y =x(x -5) (3)y = x 21-23x +1 (4) y =3x(2-x)+ 3x 2 (5)y = 12312++x x (6) y =652++x x (7)y = x 4+2x 2-1 (8)y =ax 2+bx +c 例2.当k 为何值时,函数1)1(2+-=+k k x k y 为二次函数? 例3.写出下列各函数关系,并判断它们是什么类型的函数. ⑴正方体的表面积S (cm 2)与棱长a (cm )之间的函数关系; ⑵圆的面积y (cm 2)与它的周长x (cm )之间的函数关系; ⑶某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y (元)与所

一元二次函数的图像和性质

§ 3.4一元二次函数的图象和性质 1. 掌握一元二次函数图象的画法及图象的特征 2. 掌握一元二次函数的性质,能利用性质解决实际问题 3. 会求二次函数在指定区间上的最大(小)值 4. 掌握一元二次函数、一元二次方程的关系。 1.函数)0(2 ≠++=a c bx ax y 叫做一元二次函数。 2. 一元二次函数的图象是一条抛物线。 3.任何一个二次函数)0(2 ≠++=a c bx ax y 都可把它的解析式配方为顶点 式:a b a c a b x a y 44)2(2 2-++=, 性质如下: (1)图象的顶点坐标为)44,2(2a b ac a b --,对称轴是直线a b x 2-=。 (2)最大(小)值 ① 当0>a ,函数图象开口向上,y 有最小值,a b ac y 442 min -=,无最大值。 ② 当0>a ,函数图象开口向下,y 有最大值,a b a c y 442max -=,无最小值。 (3)当0>a ,函数在区间)2,(a b - -∞上是减函数,在),2(+∞-a b 上是增函数。 当0

二次函数教案设计(全)

课题:1.1二次函数 教学目标: 1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。 2、理解二次函数的概念,掌握二次函数的形式。 3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。 4、会用待定系数法求二次函数的解析式。 教学重点:二次函数的概念和解析式 教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。 教学设计: 一、创设情境,导入新课 问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗? 问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度? 这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题) 二、 合作学习,探索新知 请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm ) (2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2) (一)教师组织合作学习活动: 1、先个体探求,尝试写出y 与x 之间的函数解析式。 2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。 (1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000 (3) y = (60-x-4)(x-2)=-x 2+58x-112 (二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。 x

二次函数图像及一元二次方程与二次函数关系

第十五讲 二次函数的图像与性质 二次函数2y ax bx c =++图象的画法 1、二次函数的表示方法: 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+, c bx ax y ++=2 =a b ac a b x a a c a b a b x a b x a a c x a b x a 44)2()2()2()(222222 -+ +=????? ?+-++=++ 由此可见函数c bx ax y ++=2的图像与函数2 ax y =的图像的形状、开口方向均相同, 只是位置不同,可以通过平移得到。 2、二次函数c bx ax y ++=2 的图像特征 (1)二次函数 c bx ax y ++=2( a ≠0)的图象是一条抛物线; 3、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而减小; 当2b x a >- 时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而增大; 当2b x a >- 时,y 随x 的增大而减小; 当2b x a =-时,y 有最大值244ac b a -. 3. 常数项c ⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;

二次函数教学设计

滨泉中学教学设计 课题22.1 二次函数(1)课时 1 设计教师李春丽备课组长 学科书写授课班级9.2 课型新授课审核领导 三维目标知识与技能 能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值 范围。 过程与方法通过实际问题的探究,认识二次函数,认识二次项、一次项、常数项。 情感态度与价 值观 注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯 教学 重点 能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围 教学 难点 能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围 教学 方法 自主学习辅导法 教学 资源 多媒体课件 教学 流程 教师活动学生活动设计意图 情境导入 一、试一试 1、设矩形花圃的垂直于墙的一边AB的长为 xm,先取x的一些值,算出矩形的另一边BC的长, 进而得出矩形的面积ym2.试将计算结果填写在下 表的空格中, AB长x(m) 1 2 3 4 5 6 7 8 9 BC长(m) 12 面积y(m2) 48 2、x的值是否可以任意取?有限定范围吗? 3、我们发现,当AB的长(x)确定后,矩形的面积 (y)也随之确定, y是x的函数,试写出这个函数 的关系式, 可让学生根据表中给出 的AB的长,填出相应的 BC的长和面积,然后引 导学生观察表格中数据 的变化情况,提出问题: (1)从所填表格中,你能 发现什么?(2)对前面提 出的问题的解答能作出 什么猜想?让学生思考、 交流、发表意见,达成共 识。 可让学生分组讨论、交 流,然后各组派代表发表 意见。形成共识,x的值 不可以任意取,有限定范 围,其范围是0 <x < 10。 实际问题导入, 体现新知识的产生 源于生活实际的需 要。

(完整版)一元二次函数的图像性质

星火教育讲义 教学步骤: 一、新授内容 1.函数)0(2 ≠++=a c bx ax y 叫做一元二次函数。 2. 一元二次函数的图象是一条抛物线。 3.任何一个二次函数)0(2 ≠++=a c bx ax y 都可把它的解析式配方为顶点式: a b a c a b x a y 44)2(2 2-++=, 性质如下: (1)图象的顶点坐标为)44,2(2a b ac a b --,对称轴是直线a b x 2-=。 (2)最大(小)值 ① 当0>a ,函数图象开口向上,y 有最小值,a b ac y 442 min -=,无最大值。 ② 当0>a ,函数图象开口向下,y 有最大值,a b a c y 442max -=,无最小值。 (3)当0>a ,函数在区间)2,(a b - -∞上是减函数,在),2(+∞-a b 上是增函数。 当0

例题精解 一、一元二次函数的图象的画法 【例1】求作函数642 12 ++= x x y 的图象 【解】 )128(21 642122++=++=x x x x y 2-4)(2 1 4]-4)[(21 2222+=+=x x x … -7 -6 -5 -4 -3 -2 -1 … y … 25 0 23- -2 2 3- 0 25 … 【例2】求作函数342 +--=x x y 的图象。 【解】)34(342 2-+-=+--=x x x x y 7)2[(]7)2[(2 2++-=-+-=x x 先画出图角在对称轴2-=x 的右边部分,列表 【点评】画二次函数图象步骤: (1)配方; (2)列表; (3)描点成图; 也可利用图象的对称性,先画出函数的左(右)边部分图象,再利用对称性描出右(左)部分就可。 二、一元二次函数性质 【例3】求函数962 ++=x x y 的最小值及图象的对称轴和顶点坐标,并求它的单调区间。 【解】 7)3(796262 22-+=-++=++=x x x x x y 由配方结果可知:顶点坐标为)73(--,,对称轴为3-=x ; 01>Θ ∴当3-=x 时, 7min -=y 函数在区间]3(--∞,上是减函数,在区间)3[∞+-,上是增函数。 【例4】求函数1352 ++-=x x y 图象的顶点坐标、对称轴、最值。 10 3 )5(232=-?-=-a b Θ,2029)5(431)5(44422=-?-?-?=-a b ac x -2 -1 0 1 2 y 7 6 5 4 3

二次函数的图像及性质

《二次函数的图像及性质》教学案例及反思 教师:同学们,我们上一节课一起研究了二次函数的表达式,那么我们一起来回忆一下表达式是什么? 学生齐答:y=ax2+bx+c(a,b,c是常数,a不为0) 教师:好,那么请同学们在黑板上写出一些常数较简单的二次函数表达式. (学生表现很踊跃,一下写出了十多个) 教师:黑板上这些二次函数大致有几个类型? 学生:(讨论了3分钟)四大类!有y=ax2+bx+c;y=ax2+bx;y=ax2+c;y=ax2! 教师:太棒了!同学们归纳的很好,今天我们就一起来研究比较简单的一种y=ax2的图像及性质! 教师在学生板书的函数中选了四个,并把复杂的系数换成简单的常数,找到如下函数:y=x2;y=-x2;y=2x2;y=-2x2.(教师在这里让学生自己准备素材!) 教师启发学生利用函数中的“列表,描点,连线”的方法,把画上述四个函数的任务分配给A,B,C,D小组,一组一个在已画好的坐标系的小黑板上动手操作.生在自己提供的素材上进行再“加工”,兴趣很大,合作交流充分,课堂气氛活跃.教师到每组巡视、指导,在确认画图全部正确的情况下,提出了要求,开始了探究之旅. 教师:请同学们小组之间比较一下,你们画的图象位置一样吗? 学生;不一样. 教师:有什么不一样?(开始聚焦矛盾) 学生:开口不一样. 学生A:走向不一样. 学生B:经过的象限不一样. 学生C:我们的图象在原点的上方,他们的图象在原点的下方. 教师:看来是有些不一样,那么它们位置的不一样是由什么要素决定的?(教师指明了探究方向,但未指明具体的探究之路,这是明智的) 学生:是由二次项系数的取值确定的. 教师:好了,根据同学们的回答,能得到图象或函数的那些结论?(顺水推舟,放手让学生一搏) 热烈讨论后,学生D回答并板书,当a>0时,图象在原点的上方,当a<0时,图象在原点的下方。 学生E:当a>0时,图象开口向上;当a<0时,图象开口向下. 学生A站起来补充:还有顶点,顶点坐标(0,0),对称轴为y轴! (这个过程约用了十多分时间,学生体会非常充分,从学生的神情看,绝大多数学生已接受了这几个学生的板书,但教师未对结论进行优化。怎么没有一个学生说出二次函数的性质呢?短暂停顿后,教师确定了思路) 教师:刚才你们是研究图象的性质,你们能否由图象性质得出相应的函数的性质? 看着学生茫然的目光,我在思考是不是我的问题---- 教师:请看同学们的板书,能揣摩图象“走向”的意思吗? 学生:(七嘴八舌)当a>0时,图象从左上向下走到原点后在向右上爬;当a<0时,图象从左下向上爬到原点后在向右下走(未出现教师所预期的结论) 教师:好,你们从图象的直观形象来理解的图象性质,很贴切,你们能从自变量与函数值之间的变化角度来说明“向上爬”和“向下走”吗?

专题08 一元二次函数的图像和性质(原卷版)

专题08 一元二次函数的图像和性质一、知识点精讲 【问题1】函数y=ax2与y=x2的图象之间存在怎样的关系? 为了研究这一问题,我们可以先画出y=2x2,y=1 2 x2,y=-2x2的图象,通过这些函数图象与函数y=x2 的图象之间的关系,推导出函数y=ax2与y=x2的图象之间所存在的关系. 先画出函数y=x2,y=2x2的图象. 先列表: x …-3 -2 -1 0 1 2 3 … x2…9 4 1 0 1 4 9 … 2x2…18 8 2 0 2 8 18 从表中不难看出,要得到2x2的值,只要把相应的x2的值扩大两倍就可以了. 再描点、连线,就分别得到了函数y=x2,y=2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y=2x2的图象可以由函数y=x2的图象各点的纵坐标变为原来的两倍得到. 同学们也可以用类似于上面的方法画出函数y=1 2 x2,y=-2x2的图象,并研究这两个函数图象与函数y= x2的图象之间的关系. 通过上面的研究,我们可以得到以下结论: 二次函数y=ax2(a≠0)的图象可以由y=x2的图象各点的纵坐标变为原来的a倍得到.在二次函数y=ax2(a≠0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小. 【问题2】函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?

同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点. 类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论: 二次函数y =a(x +h)2+k(a≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. 由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c(a≠0)的图象的方法: 由于y =ax 2 +bx +c =a(x 2 +b x a )+c =a(x 2 +b x a +224b a )+c - 24b a 2 24()24b ac b a x a a -=++ , 所以,y =ax 2+bx +c(a≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c(a≠0)具有下列性质: (1)当a >0时,函数y =ax 2 +bx +c 图象开口向上;顶点坐标为2 4(,)24b ac b a a --, 对称轴为直线x =-2b a ;当x <2b a - 时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b a -时,函数取最小值y =2 44ac b a -.

初三二次函数的图像与性质

龙文教育学科导学 教师:学生:年级:日期: 星期: 时段: 学情分析二次函数部分内容中考难度不大,所以本套教案注重于基础知识的准确掌握。 课题二次函数的图像与性质 学习目标与考点分析学习目标:1、理解二次函数的概念;会识别最基本的二次函数并利用二次函数的概念求解析式中的未知数; 2、熟练的画出各种抛物线的图像,根据解析式的变化判断图像的平移方法; 3、熟练的选用合适的解析式利用待定系数法求解析式。 学习重点图像的平移;待定系数法求解析式 学习方法讲练结合、师生讨论、启发引导 学习内容与过程 教学内容: 知识回顾 1.一般地,形如y=ax2 +bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。其中,x 是自变量, a,b,c分别是函数解析式的二次项系数,一次项系数和常数项. 2.二次函数的解析式及其对称轴 (1)二次函数解析式的一般式(通式):,它的顶点坐标为(,),对称轴为;(2)二次函数解析式的顶点式(通式):,顶点坐标为(,)对称轴是;(3)二次函数解析式的交 点式:。此时抛物线的对称轴为。其中,(x 1,0)(x 2 ,0)是抛 物线与X轴的交点坐标。显然,与X轴没有交点的抛物线不能用此解析式表示的 3.二次函数y=a(x-h) 2+k的图像和性质 4.二次函数的平移问题 5. 二次函数y=ax2 +bx+c中a,b,c的符号与图像性质的关系: 6.抛物线y=ax2+bx+c与X轴的交点个数与一元二次方程的根的判别式△的符号之间的的关系

二次函数的常规解法: 一、若已知二次函数图象上的三个点的坐标或是x、y的对应数值时,可选用y=ax2+bx+c(a≠0)求解。我们称y=ax2+bx+c(a≠0)为一般式(三点式)。 例:二次函数图象经过A(1,3)、B(-1,5)、C(2,-1)三点,求此二次函数的解析式。 说明:因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式。所以将已知三点的坐标分别代入y=ax2+bx+c (a≠0)构成三元一次方程组,解方程组得a、b、c的值,即可求二次函数解析式。 二、若已知二次函数的顶点坐标或对称轴或最值时,可选用y=a(x+m)2+k (a≠0)求解。我们称y =a(x+m)2+k (a≠0)为顶点式(配方式)。 例:若二次函数图像的顶点坐标为(-2,3),且过点(-3,5),求此二次函数的解析式。 说明:由于顶点式中要确定a、m、k的值,而已知顶点坐标即已知了-m、k的值。用顶点式只要确定a的值就可以求二次函数解析式。若已知这两点的坐标用一般式来解是不能确定a、b、c的值的,不妨让学生尝试一下加深印象。 三、若已知二次函数与X轴的交点坐标是A(x1,0) 、B(x2,0)时, 可选用y=a(x-x1)(x- x2 ) (a≠0)求解。我们称y=a(x-x1)(x- x2 ) (a≠0)为双根式(交点式)。 例:已知一个二次函数的图象经过点A(-1,0)、B(3,0)和C(0,-3)三点,求此二次函数的解析式。 说明:很多同学看到此例会想到使用一般式来解,将已知三点的坐标分别代入去求a、b、c的值来求此二次函数的解析式。往往忽略A、B两点的坐标就是二次函数图象与x轴的交点坐标,而用双根式来求解就相对比较简单容易。 四、若已知二次函数在X轴上截得的线段长为d时,可选用 或 例:抛物线y=2x2-mx-6在X轴截锝线段长为4,求此二次函数的解析式。 说明:对于此例主要让学生明白这两种二次函数解析式中线段长d的推导过程,记住公式套进去就行了。注意相互之间不要混淆。 总之,要求一个二次函数的解析式,可以根据不同的已知条件选择恰当的解题方法,使计算过程简单化,达到迅速解题的目的。当然,也只有在平时的练习中对基本解法的适用情况做到心中有数,才能在具体的问题中结合图形及二次函数的相关性质择优选取适当的解法,提高解题能力。 二次函数的概念 如果y=ax2+bx+c(a≠0,a,b,c为常数),那么y叫做x的二次函数 注意:二次函数的表达形式为整式,且二次项系数不为0,b ,c可分别为0,也可同时为0 自变量的取值范围是全体实数 练习:

(公开课一等奖)二次函数复习课教案

《二次函数复习》教学案 班级:初三18班年级:九设计者:李玲时间:2015年10月16日

关基础知识.同学们之间可以相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性. 基础知识之基础演练 二次函数是生活中最常见的一类函数,它有着自己固有的性质,反映的是轴对称性和增减性; 我们要突出反映二次函数的轴对称性、顶点坐标,我们就可以把一般式改写成顶点式;如果想知道抛物线与x轴两个交点的情况,我们可以把一般式写出交点式; 刚刚我们回顾了二次函数的性质,我们发现二次函数的图像能够直观地反映函数的特性,而数又能细致刻画函数图像的大小和位置,下面就让我们遵循着数形结合的线索,继续对二次函数进行深入的研究。

难点突破之思维激活1、如果把抛物线绕 ()4 12+ + - =x y顶点旋转 180°,则该抛物线对应的解析式是 . 若把新抛物线再向右平移2个单位,向下平 移3个单位,则得到的抛物线对应的解析式 是 . 抛物线的平移——点的平移 难点突破之聚焦中考2、问题①,结合图像思考: 方程 ()1 4 12= + + -x 有几个实数解? 问题②,结合图像思考: 当m为何值时,方程 ()m x= + + -4 12 1)有两个不相等的实数根; 2)有两个相等的实数根; 3)没有实数根? 问题③ 其实方程、不等式本身就 有一个代数的解法,我们现在 也用图像解法 我们通过三个题目把这 个知识的层次性展示出来,方 程、不等式都可以转化成函数 的图像来解

若直线 m kx y +=1与抛物线 c bx ax y ++=22交于A (1,0) 、B (-1,4) 两点,观察图像填空: 1)方 程 m kx c bx ax +=++2的解 为 ; 2)不等式 m kx c bx ax +>++2的解 为 ; 3)不等式 m kx c bx ax +<++2的解 为 ; 反思与 提高 1、本节课你印象最深的是什么? 2、通过本节课的函数学习,你认为自己 还有哪些地方是需要提高的? 3、在下面的函数学习中,我们还需要注意 哪些问题? 教者归纳本章知识网络图示 让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基础,由此达到数学教学的新境界——提升思维品质,形成数学素养.

高考数学一元二次函数性质综合考查

高考数学二轮复习一元二次函数性质及其综合考查 一、一元二次函数图象与性质:(学生画出函数图象,写出函数性质) 二.高考题热身 1.若不等式x2+ax+1≥0对于一切x∈(0,1 2 〕成立,则a的取值范围是() A.0 B. –2 C.-5 2 D.-3 2.已知函数f(x)=ax2+2ax+4(a>0),若x1f(x2) D.f(x1)与f(x2)的大小不能确定 3.过点(-1,0)作抛物线21 y x x =++的切线,则其中一条切线为 (A)220 x y ++=(B)330 x y -+=(C)10 x y ++=(D)10 x y -+= 3.设0 a>,2 () f x ax bx c =++,曲线() y f x =在点 00 (,()) P x f x处切线的倾斜角的取值范围为 0, 4 π ?? ?? ?? ,则点P到曲线() y f x =对称轴距离的取值范围是() 1 .0, 2 A ?? ?? ??B .] 2 1 ,0[ a .0, 2 b C a ?? ?? ?? 1 .0, 2 b D a ?-? ?? ?? 4.设0 > b,二次函数1 2 2- + + =a bx ax y的图像为下列之一() 则a的值为 (A)1(B)1 -(C) 2 5 1- -(D) 2 5 1+ - 5.不等式组? ? ? > - < - 1 )1 ( log 2 |2 | 2 2 x x 的解集为 ( ) (A) (0,3);(B) (3,2);(C) (3,4);(D) (2,4)。 6.一元二次方程2210,(0) ax x a ++=≠有一个正根和一个负根的充分不必要条件是:()A.0 aC.1 a<- D.1 a> 7. 已知方程22 (2)(2)0 x x m x x n -+-+=的四个根组成一个首项为1 4 的等差数列,则 m n -=( ) A 1 B 3 4 C 1 2 D 3 8 8.已知{}{} 2 ||21|3,|6, A x x B x x x =+>=+≤A B= I( )

二次函数图像与性质总结

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我 们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

一元二次函数的图像和性质教学设计

§ 3.4一元二次函数的图象和性质教学设计 1. 掌握一元二次函数图象的画法及图象的特征 2. 掌握一元二次函数的性质,能利用性质解决实际问题 3. 会求二次函数在指定区间上的最大(小)值 4. 掌握一元二次函数、一元二次方程的关系。 1.函数)0(2≠++=a c bx ax y 叫做一元二次函数。 2. 一元二次函数的图象是一条抛物线。 3.任何一个二次函数)0(2≠++=a c bx ax y 都可把它的解析式配方为顶点式: a b a c a b x a y 44)2(2 2-++=, 性质如下: (1)图象的顶点坐标为)44,2(2a b a c a b -- ,对称轴是直线a b x 2-=。 (2)最大(小)值 ① 当0>a ,函数图象开口向上,y 有最小值,a b ac y 442 min -=,无最大值。 ② 当0>a ,函数图象开口向下,y 有最大值,a b a c y 442max -=,无最小值。 (3)当0>a ,函数在区间)2,(a b - -∞上是减函数,在),2(+∞-a b 上是增函数。 当0

二次函数的图像和性质总结

二次函数的图像和性质 1.二次函数的图像与性质: 解析式 a 的取值 开口方向 函数值的增减 顶点坐标 对称轴 图像与y 轴的交点 时当0>a ;开口向上;在对称轴的左侧y 随x 的增大而减小,在对称轴的 右侧y 随x 的增大而增大。 时当0k 时向上平移;当0>k 时向下平移。 (2)抛物线2 )(h x a y +=的图像是由抛物线2 y ax =的图像平移h 个单位而得到 的。当0>h 时向左平移;当0k 时向上平移;当0>k 时向下平移;当0>h 时向左平移;当0

3.二次函数的最值公式: 形如 c bx ax y ++=2 的二次函数。时当0>a ,图像有最低点,函数有最小值 a b ac y 442-= 最小值 ;时当0?时抛物线与x 轴有两个交点;当0=?抛物线与x 轴有一个交点;当 0

实际问题与二次函数教学设计

实际问题与二次函数 【教学目标】 一、知识与技能: 能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。 二、过程与方法: 应用已有的知识,经过自主探索和合作交流尝试解决问题。 三、情感态度与价值观: 在经历和体验数学发现的过程中,提高思维品质,在勇于创新的过程中树立人生的自信心。【教学重难点】 1.探究利用二次函数的最大值(或最小值)解决实际问题的方法。 2.如何将实际问题转化为二次函数的问题。 【教学过程】 一、复习旧知、导入新课 1.写出下列抛物线的开口方向、对称轴和顶点坐标。 (1)y=6x2+12x;(2)y=-4x2+8x-10 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少? 有了前面所学的知识,现在就可以应用二次函数的知识去解决生活中的实际问题。 二、学习新知 1.应用二次函数的性质解决生活中的实际问题 出示例1.要用总长为60m的篱笆围成一个矩形的场地,矩形面积S随矩形一边长L的变化而变化,当L是多少时,围成的矩形面积S最大? 解:设矩形的一边为Lm,则矩形的另一边为(30-L)m,由于L>0,且30-L>O,所以O<L<30。围成的矩形面积S与L的函数关系式是 S=L(30-L) 即S=-L2+30L

(有学生自己完成,老师点评) 2.练一练: 某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件。将这种商品的售价降低多少时,能使销售利润最大? 请同学们完成解答;教师巡视、指导;师生共同完成解答过程: 解:设每件商品降价x元(0≤x≤2),该商品每天的利润为y元。 商品每天的利润y与x的函数关系式是: y=(10-x-8)(100+1OOx) 即y=-1OOx2+1OOx+200 配方得y=-100(x-12)2+225 因为x=12时,满足0≤x≤2,所以当x=12时,函数取得最大值,最大值y=225. 所以将这种商品的售价降低0.5元时,能使销售利润最大。 三、课堂小结 小结:让学生回顾解题过程,讨论、交流,归纳解题步骤: (1)先分析问题中的数量关系,列出函数关系式; (2)研究自变量的取值范围; (3)研究所得的函数; (4)检验x的取值是否在自变量的取值范围内,并求相关的值: (5)解决提出的实际问题。

二次函数的图像与性质知识点及练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2,y=a(x-h)2,y =a(x-h)2+k 和c bx ax y ++=2图象,能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口 方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 例1. 在同一平面坐标系中分别画出二次函数y =x 2 y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2的性质: 2. y =ax 2+k 的性质: (k 上加下减) 3. y =a (x -h )2的性质: (h 左加右减)

4. y =a (x -h)2+k 的性质: 5. y =ax 2+bx+c 的性质: 二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式() 2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如 下: 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”. 方法二:

二次函数的图像和性质知识点与练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2 ,y=a(x-h)2,y =a(x-h)2 +k 和c bx ax y ++=2 图象, 能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2 中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质: x y O

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式() 2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”. 方法二:

二次函数的性质教案教案

2.3二次函数的性质 教学目标:1.从具体函数的图象中认识二次函数的基本性质. 2.了解二次函数与二次方程的相互关系. 3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性 重点:二次函数的最大值,最小值及增减性的理解和求法. 难点:二次函数的性质的应用. 教学过程: 一. 复习引入 二次函数: y=ax2 +bx + c (a ≠ 0)的图象是一条抛物线,它的开口由什么决定呢? 补充: 当a 的绝对值相等时,其形状完全相同,当a 的绝对值越大,则开口越小,反之成立. 二,新课教学: 1.探索填空: 根据下边已画好抛物线y= -2x 2的顶点坐标是 , 对称轴是 , 在 侧,即x_____0时, y 随着x 的增大而增大;在 侧,即x_____0时, y 随着x 的增大而减小. 当x= 时,函数y 最大值是____. 当x____0时,y<0. 2. 探索填空:根据上边已画好的函数图象填空: 抛物线y= 2x2的顶点坐标是 , 对称轴是 ,在 侧,即x_____0时, y 随着x 的增大而减少;在 侧,即x_____0时, y 随着x 的增大而增大. 当x= 时,函数y 最小值是____. 当x____0时,y>0 3.归纳: 二次函数y=ax2+bx+c(a ≠0)的图象和性质 (1).顶点坐标与对称轴 (2).位置与开口方向 (3).增减性与最值 当a ﹥0时,在对称轴的左侧,y 随着x 的增大而减小;在对称轴的右侧,y 随着x 的增大 而增大;当 时,函数y 有最小值 。当a ﹤0时,在对称轴的 左侧,y 随着x 的增大而增大;在对称轴的右侧,y 随着x 的增大而减小。当 时,函数y 有最大值 4.探索二次函数与一元二次方程 a 2b x -=a 2b x -=a 4ac 4b 2-a 4ac 4b 2 -

相关主题