搜档网
当前位置:搜档网 › 动点问题中的最值、最短路径问题(解析版)

动点问题中的最值、最短路径问题(解析版)

动点问题中的最值、最短路径问题(解析版)
动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题

动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中.

其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.

一、基础知识点综述

1. 两点之间,线段最短;

2. 垂线段最短;

3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示);

(1)单动点模型

~

作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求PA+PB的最小值的作图.

P是∠AOB内一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值.

作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求.

O

5. 二次函数的最大(小)值

()2

y a x h k

=-+,当a>0时,y有最小值k;当a<0时,y有最大值k.

二、主要思想方法

利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析)

~

三、精品例题解析

例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为

例2. (2019·凉山州)如图,已知A 、B 两点的坐标分别为(8,0),(0,8). 点C 、F 分别是直线x =-5和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan ∠BAD =( ) x y

A B C

F

D E

O x=-5

A . 817

B . 717

C . 49

D . 59

例3. (2019·南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)26

26125,262625(,其中正确的结论是 (填写序号).

#

例4. (2019·天津)已知抛物线2

y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点,若点Q (1,2

Q b y +22AM QM +332时,求b 的值.

例5. (2019·舟山)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为 cm ;连接BD ,则△ABD 的面积最大值为 2

cm .

例6. (2019·巴中)如图,在菱形ABCD中,连接BD、AC交于点O,过点O作OH⊥BC于点H,以O 为圆心,OH为半径的半圆交AC于点M.

(1)求证:DC是圆O的切线;

(2)若AC=4MC,且AC=8,求图中阴影部分面积;

(3)在(2)的前提下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.

A

B

C

D

H

O

M

N

专题01 动点问题中的最值、最短路径问题(解析)|

例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为

【答案】4.

【解析】解:∵PQ⊥EP,

∴∠EPQ=90°,即∠EPB+∠QPC=90°,

∵四边形ABCD是正方形,

∴∠B=∠C=90°,∠EPB+∠BEP=90°,

∴∠BEP=∠QPC,

∴△BEP∽△CPQ,

∴BE BP CP CQ

=,

∵AB=12,AE=3,

∴BE=9,

设CQ=y,BP=x,CP=12-x,(0

9

12

x

x y

=

-

()

()2

121

64

99

x x

y x

-

==--+,

∴当x=6时,y有最大值为4,即CQ的最大值为4.

【点睛】此题为“一线三直角模型”,解题方法为相似三角形性质求解,综合利用二次函数的性质求解最值问题.

例2.(2019·自贡)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()

A.

8

17

B.

7

17

C.

4

9

D.

5

9

)

【答案】B.

【解析】解:S△ABE=1

4

2

BE OA BE ??=,

当BE取最小值时,△ABE面积为最小值.设x=-5与x轴交于点G,连接DG,

因为D为CF中点,△CFG为直角三角形,

所以DG=1

5 2

CD=,

∴D点的运动轨迹为以G为圆心,以5半径的圆上,如图所示

由图可知:当AD与圆G相切时,BE的长度最小,如下图,

过点E作EH⊥AB于H,

∵OG =5,OA =8,DG =5,

在Rt △ADG 中,由勾股定理得:AD =12,

△AOE ∽△ADG , ∴AO AD OE DG

=, 求得:OE =103

, 由OB =OA =8,得:BE =

143,∠B =45°,AB

=∴EH =BH

=23BE =,AH =AB -BH

=3

, ∴tan ∠BAD

=717

EH AH ==, 故答案为B .

$

【点睛】此题解题的关键是找到△ABE 面积最小时即是AD 与D 的远动轨迹圆相切的时刻. 进而构造以∠BAD 为内角的直角三角形,利用勾股定理求出边长,代入三角函数定义求解.

例3. (2019·南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)26

26125,262625(,其中正确的结论是 (填写序号).

【答案】②③.

【解析】解:根据题意可知:OE=1

2

AB=12,

即E的轨迹为以O为圆心以12为半径的四分之一圆(第一象限的部分),

根据弧长公式,得点E的路径长为:

90

12

180

π

??=6π,故①错误;

因为AB=24,

当斜边AB上的高取最大值时,△OAB的面积取最大值,

点O在以AB为直径的圆上(圆心为E),当OE⊥AB时,斜边AB上的高最大,!

所以△OAB的面积取最大值为:1

2412

2

??=144,故②正确;

连接OE、DE,

得:OD≤OE+DE,当O、E、D三点共线时取等号,

即OD的最大值为25,

如图,过点D作DF⊥y轴于F,过点E作EG⊥y轴于G,

可得:25

DF OD ==, 即:1225

EG DF =, 512

AF AD EG AE ==,

即:51125AF EG DF =

=, %

设DF =x ,在

Rt △ADF 中,由勾股定理得:

22

1255x x ??+= ???,解得:x 在Rt △ODF 中,由勾股定理得:OF 即点D 的坐标为)26

26125,262625(,故③正确. 综上所述,答案为:②③.

例4.

(2019·天津)已知抛物线2

y x bx c =-+(

b 、

c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点.若点Q (1,2

Q b y +2QM +的最小值为4时,求b 的值.

【答案】见解析.

【解析】解:∵2

y x bx c =-+经过点A (-1,0), ∴1+b +c =0,即2

1y x bx b =--- ∵点Q (1,2Q b y +)在抛物线2y x bx c =-+上, :

∴324

Q b y =--, 即13,224b Q b ?

?+-- ??

?, ∵b >0,∴Q 点在第四象限,

2222AM QM AM QM ??+=+ ???

所以只要构造出22AM QM ??+

???即可得到22AM QM +的最小值

取N (1,0),连接AN ,过M 作MG ⊥AN 于G ,连接QM ,如图所示,

△AGM 为等腰直角三角形,

GM =22

AM ,即当G 、M 、Q 三点共线时,GM +MQ 22AM QM +取最小值,

此时△MQH 为等腰直角三角形,

[

∴QM =2QH =3224b ??+ ???,GM =22AM =()212m + ∴()223332222=21222

244b AM QM AM QM m ??????+=++++= ??? ??????? ① ∵QH =MH ,∴324b +=12b m +-,解得:m =124

b - ② 联立①②得:m =74

,b =4. 即当22AM QM +的最小值为

3324时,b =4. 【点睛】此题需要利用等腰直角三角形将22AM QM +转化为22AM QM ??+ ???

,进而根据两点之间线段最短及等腰三角形性质求解.

例5. (2019·舟山)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为 cm ;连接BD ,则△ABD 的面积最大值为 2

cm .

【答案】2362243126-;

|

【解析】解:如图1所示,当E运动至E’,F滑动到F’时,

D'

图1

过D’作D’G⊥AC于G,D’H⊥BC交BC延长线于点H,

可得∠E’D’G=∠F’D’H,D’E’=D’F’,

∴Rt△E’D’G≌Rt△F’D’H,

∴D’G=G’H,

∴D’在∠ACH的角平分线上,

即C,D,D’三点共线.

通过分析可知,当D’E’⊥AC时,DD’的长度最大,随后返回初始D点,如图2

所示,D点的运动路径为

D→D’→D,行走路线长度为2DD’;

B

D'

图2

∵∠BAC =30°,AC =12,DE =CD

∴BC

=CD =DE

=

由图知:四边形E ’CF ’D ’为正方形,CD ’=EF =12,

∴DD ’=CD ’-CD

=12-D 点运动路程为2DD ’

=24-

D'

图3

如图3所示,当点D 运动至D ’时,△ABD ’

的面积最大,最大面积为:

'''

''''ABC

AE D BD F E CF D S

S S S ++

-△△△正方形

>

=(((211

1

12

222?+?--?? =【点睛】准确利用全等、角平分线判定得到D 点的运动轨迹是关键,利用三角函数及勾股定理求解,计算较为繁琐,尤其是利用割补法求解三角形的面积时对学生计算能力要求较高,此题难度较大,新颖不失难度.

例6. (2019·巴中)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .

(1)求证:DC 是圆O 的切线;

(2)若AC =4MC ,且AC =8,求图中阴影部分面积;

(3)在(2)的前提下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.

B D

【答案】见解析.

【解析】(1)证明:

$

过点O作ON⊥CD于N,

AC是菱形ABCD的对角线,

∴AC平分∠BCD,

∵OH⊥BC,ON⊥CD,

∴OH=ON,

又OH为圆O的半径,

∴ON为圆O的半径,

即CD是圆O的切线.

(2)由题意知:OC=2MC=4,MC=OM=2,

即OH=2,

在Rt △OHC 中,OC =2OH ,

可得:∠OCH =30°,∠COH =60°,

由勾股定理得:CH

=

=23OCH OMH

S S S π-=△阴影扇形

(3)作点M 关于直线BD 的对称点M ’,连接M ’H 交BD 于点P , 可知:PM =PM ’

即PH +PM =PH +PM ’=HM ’,由两点之间线段最短,知此时PH +PM 最小, ∵OM ’=OM =OH ,∠MOH =60°,

∴∠MM ’H =30°=∠HCM ,

∴HM ’=HC

=即PH +PM

的最小值为

在Rt △M ’PO 及Rt △COD 中,

OP =OM ’ tan 30°

,OD =OC tan 30°

, 即PD =OP +OD

=

B D

数据结构课程设计报告Dijkstra算法求最短路径

中南大学 《数据结构》课程设计 题目第9题 Dijkstra算法求最短路径 学生姓名 XXXX 指导教师 XXXX 学院信息科学与工程学院 专业班级 XXXXXXX 完成时间 XXXXXXX

目录 第一章问题分析与任务定义---------------------------------------------------------------------3 1.1 课程设计题目-----------------------------------------------------------------------------3 1.2 原始数据的输入格式--------------------------------------------------------------------3 1.3 实现功能-----------------------------------------------------------------------------------3 1.4 测试用例-----------------------------------------------------------------------------------3 1.5 问题分析-----------------------------------------------------------------------------------3 第二章数据结构的选择和概要设计------------------------------------------------------------4 2.1 数据结构的选择--------------------------------------------------------------------------4 2.2 概要设计-----------------------------------------------------------------------------------4 第三章详细设计与编码-----------------------------------------------------------------------------6 3.1 框架的建立---------------------------------------------------------------------------------6 3.2 点结构体的定义---------------------------------------------------------------------------7 3.3 创立带权值有向图------------------------------------------------------------------------8 3.4 邻接矩阵的显示---------------------------------------------------------------------------9 3.5 递归函数的应用---------------------------------------------------------------------------10 3.6 Dijkstra算法实现最短路径--------------------------------------------------------------10 第四章上机调试------------------------------------------------------------------------------------11 4.1 记录调试过程中错误和问题的处理---------------------------------------------------11 4.2 算法的时间课空间性能分析------------------------------------------------------------11 4.3 算法的设计、调试经验和体会---------------------------------------------------------11 第五章测试结果-----------------------------------------------------------------------------------12 第六章学习心得体会-----------------------------------------------------------------------------12 第七章参考文献-----------------------------------------------------------------------------------12 附录------------------------------------------------------------------------------------------------------12

二次函数动点面积最值问题

二次函数最大面积 例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间 练习 1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。 _ ___________________________________________ 2 (1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀 t的取值范围。 (2) t为何值时,S最小?并求岀这个最小值。 A开始沿 Q B B边向点B以 A 2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点 2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。 2 求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变 量x的取值范围。 C 3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。 (1)求点P在BC上的运动的过程中y的最大值。 1 (2 )当y= cm时,求x的值。 4 4如图所示,边长为 在线段 记CD (1) 过A D P B B 1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E, 连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为 t o 1 当t=丄时,求线段DE 3 如果梯形CDEB的面积为所在直线的函数表达式 S,那么S是否 以及此时 (2) 存在最大值?若存在,请求出最大值,t的值; 若不存在,请说明理由。 2 2 (3)当OD DE的算术平方根取最小值时, (4)求点E的坐标。 二次函数最大面积交AB D B E 能力提高 例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线 1cm/s的速度沿直线I向左匀速移动, (1) (2) t秒时梯形 I上,且C,Q两点重合,如果等腰△ PQR以 2 ABCD与等腰△ PQF重合部分的面积记为Scm 当t=4时,求S的值。 当4< t < 10时,求S与t的函数关系式, A 并求岀S的最大值。 D 1 / 2

初中数学动点最值基本模型

动点最值基本模型 一、最值类型 1.饮马型:即将军饮马型,通常为两条线段之和的最值问题,利用对称性质将其中一条线段进行转换,再利用两点之间线段最短(或三角形三边关系)得到结果。 2.小垂型:即小垂回家型,通常为一条线段的最值问题,即动点的轨迹为直线,利用垂线段最短的性质得到结果。 [ 3.穿心型:即一箭穿心型,通常为一条线段的最值问题,即动点的轨迹为圆或弧,利用点与圆的位置关系得到结果。 4.转换型:即一加半型,通常为一条线段与另一条线段一半的和的最值问题,即将那半条线段利用三角形中位线或30°的对边等知识进行转换,再利用饮马或小垂或穿心。 5.三边型:即三角形三边关系关系型,通常利用两边之和大于第三边、两边之差小于第三边求其最大(小)值。 6.结合型:即以上类型的综合运用,大多为饮马+小垂【如包河一模20题】【瑶海一模第10题】、小垂+穿心【如庐阳二模第10题】、饮马+穿心【如瑶海二模第10题】饮马+转换【如蜀山二模第10题】等 ` ※二、分类例析 一、饮马型 例1:如图,在正方形ABCD中,点E在CD上,CE=3, DE=1, 点P在AC上,则PE+PD 的最小值是_____ . 解析:如图 $

… 例2:如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为____. 解析:如下图 ) 二、小垂型 例3:如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为_________. / 解析:如下图 & 三、穿心型 ; 例4:如图,在边长为4的菱形ABCD中,∠ABC=120°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN翻折得到△A′MN,连接A’C,则A’C长度的最小值是____. 解析:如下图

数据结构最短路径

题目描述 一个图的存储矩阵如下所示(顶点分别是0、1、2、3、4、5): 0,12,18,∞,17,∞ 12, 0,10,3,∞,5 18,10,0,∞,21,11 ∞,3,∞,0,∞,8 17,∞,21,∞,0,16 ∞,5,11,8,16,0 试用邻接矩阵存储法和Floyd算法求解任意两个顶点的最短路径。 输入: 输入数据第一行为1个正整:顶点个数n(顶点将分别按0,1,…,n-1进行编号)。后面有n+1行,前n行都有n个整数(第i行第j个数表示顶点i-1和顶点j-1之间的边长,用10000来表示两个顶点之间无边);第n+1行输入一对顶点x和y 输出: x和y顶点的最短路径长度和最短路径(路径换行输出,只输出顶点编号序列)。 问题分析 题目要求图的存储类型为邻接矩阵,这种存储结构简单易懂,但存储占用较大;求最短路径的算法有Dijkstra算法和SPFA算法,三者相比,在代码的实现上,Floyd编写简单且容易理解,缺点是时间复杂度较高,不适合计算大量的数据。 数据结构及程序 #include #define inf 10000 #define maxn 11 int N,g[maxn][maxn]={0}; int path[maxn][maxn]={0}; void floyd() { for(int k=0;k

for(int i=0;i(g[i][k]+g[k][j])) { g[i][j]=g[i][k]+g[k][j]; path[i][j]=k; } } } int main() { scanf("%d",&N); for(int i=0;i",x); while(tmp!=y) { printf("%d->",tmp); tmp=path[tmp][y]; } printf("%d\n",y); } 运行结果

动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何 图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些 技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A 、B 是平面直角坐标系内两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示); (1)单动点模型 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位 置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.

(2)双动点模型 P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值. 作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交点 M 、N 即为所求. O B P P' P''M N 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k . 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 例2. (2019·凉山州)如图,已知A 、B 两点的坐标分别为(8,0),(0,8). 点C 、F 分别是直线x =-5 和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan ∠BAD =( )

动点最值问题欣赏课(精华版)

动点最值问题欣赏课 双线段最值、多线线段最值 1. 如图,正△ABC 的边长为2,过点B 的直线l ⊥AB ,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD+CD 的最小值是( ) 2.如图Rt △ABC 中,AB=BC=4,D 为BC 的中点,在AC 边上存在一点E ,连接ED ,EB ,则△BDE 周长的最小值为( ) A .52 B .32 C .252+ D .232+ 3.如图,菱形ABCD 的周长为16,∠ABC=60 °,E 是BC 的中点,F 是CD 上的点,CF=3FD,P 是对角线BD 上一个动点,则PE+PF 的最小值= 。 A .4 B .23 C .32 D .32+ A

6. 如图在锐角ABC △ 中,AB =45BAC ∠=,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是 。 7. 如图,已知等边△ABC 的边长为8,点D 为AC 的中点,点E 为BC 的中点,点P 为BD 上一动点,则PE+PC 的最小值为________ 单线段最值 1.如图,在△ABC 中,∠ACB =90°,AB =5,BC =3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B ′CP ,连接B ′A ,则B ′A 2. 如图,在边长为2的菱形ABCD 中,∠A =60°, M 是 AD 边的中点, N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△MN A ' ,连接C A ' ,则C A ' 长度的最小值是_______. 3.如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为_______ . 4、如图,∠MO N=90°,边长为4的等边△ABC 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,等边三角形的形状保持不变,运动过程中,点C 到点O 的最大距离为 . C D M

数据结构最短路径

数据结构 设计说明书 单源点最短路径算法的实现 学生姓名王文刚 学号1418064056 班级网络1402 成绩 指导教师 数学与计算机科学学院 年月日

课程设计任务书 20 —20 学年第学期 课程设计名称:数据结构课程设计 课程设计题目:单源点最短路径算法的实现 完成期限:自年月日至年月日共 2 周设计内容: 1.任务说明 2.要求 3.参考资料 指导教师:教研室负责人: 课程设计评阅

摘要 设计了一求解最短路径的方法,该方法具有在输入的途中查找两个顶点之间的最短路径的功能。本方法采用VC++作为软件开发环境,采用Dijkstar函数来求取顶点之间的最短路径。,用户可以自己输入各个地点及其之间的距离,便于用户在不同情况下均可使用。 关键词:最短路径;Dijkstar;无向图;

目录 目录 1课题描述 (2) 2 需求分析 (3) 3概要设计 (4) 3.1 存储结构 (4) 3.2 算法描述 (5) 4详细设计 (6) 4.1 功能模块图 (6) 4.2 主函数 (6) 4.3 pd函数 (7) 4.4 CreateMGraph函数 (8) 4.5Dijkstar函数 (9) 5程序编码 (11) 6程序的调试与测试 (15) 8总结 (16) 参考文献 (17) 1.目录中可以只有一级标题 2.页码右侧对齐页边距 3.本页不需要页码 4.以上内容仅作参考,具体章节由课程设计类型确定

1课题描述 随着交通的发展,人民生活水平的提高。出门旅行变的越来越频繁,而且供暖也成为冬天不可或缺的内容。为了节约时间和金钱,所以人们都希望找到旅行目的地的最短路径和架设暖气的最短路径。那么如何找到最短路径呢?由于路径较多,手工计算比较麻烦,而且容易出错,因此人们用计算机语言代替手工计算求最短路径。而在计算机语言中迪杰斯特拉算法比较常见,简洁,故人们常借助计算机程序迪杰斯特拉算法求最短路径。这样可以广泛提高效率,容易理解。

数据结构-第六章-图-练习题及答案详细解析(精华版)

图 1. 填空题 ⑴ 设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。 【解答】0,n(n-1)/2,0,n(n-1) 【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。 ⑵ 任何连通图的连通分量只有一个,即是()。 【解答】其自身 ⑶ 图的存储结构主要有两种,分别是()和()。 【解答】邻接矩阵,邻接表 【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。 ⑷ 已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。 【解答】O(n+e) 【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。 ⑸ 已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。 【解答】求第j列的所有元素之和 ⑹ 有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。 【解答】出度

⑺ 图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。 【解答】前序,栈,层序,队列 ⑻ 对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。 【解答】O(n2),O(elog2e) 【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。 ⑼ 如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。 【解答】回路 ⑽ 在一个有向图中,若存在弧、、,则在其拓扑序列中,顶点vi, vj, vk的相对次序为()。 【解答】vi, vj, vk 【分析】对由顶点vi, vj, vk组成的图进行拓扑排序。 2. 选择题 ⑴ 在一个无向图中,所有顶点的度数之和等于所有边数的()倍。 A 1/2 B 1 C 2 D 4 【解答】C 【分析】设无向图中含有n个顶点e条边,则。

中考数学例析直线上动点与两定点的距离和的最值问题

“将军饮马”老歌新唱 ——例析直线上动点与两定点的距离和的最值问题 王柏校 古希腊有位将军要从A地出发到河边去饮马,然后再到B地军营视察,问怎样选择饮马地点,才能使路程最短? 图1A地 B地 这是著名的“将军饮马”问题,在河边饮马的地点有很多处,怎样找出使两条线段之和最短的那个点来,我们只要设L为河(如图1),作AO⊥L交L于O点,延长AO至A',使A'O=AO;连结A'B,交L于C,则C点就是所要求的饮马地点。再连结AC,则 路程(AC+CB)为最短的路程。 为什么饮马地点选在C点能使路程最短?因为A'是A点关于L的对称点,AC与A'C 是相等的。而A'B是一条线段,所以A'B是连结A'、B这两点间的所有线中,最短的一条,所以AC+CB=A'C+CB=A'B也是最短的一条路了。这就是运用轴对称变换,找到的一种最巧妙的解题方法。 这一流传近2000年的名题至今还被命题者所喜爱,近年来许多省市中考中出现了以此故事为背景的试题,它们所考查的深度和广度也在不断演变、拓展,而且又常与其他的数学知识相联系,数形结合,突出了数学的思维价值和应用能力,能够有效地体现学生的数学学习能力,现从2009年中考试题中撷取与此相关的试题来分类说明,供广大读者参考。 一、演变成与正方形有关的试题 例1(2009年抚顺)如图2 所示,正方形ABCD的面积为12,ABE △是等边三角形, 点E在正方形ABCD内,在对角线AC上有一点P ,使PD PE +的和最小,则这个最小 值为() A. B.C.3 D

分析与解:正方形ABCD是轴对称图形,对角线AC所在直线是它的一条对称轴,相对的两个顶点B、D关于对角线AC对称,在这个问题中D和E是定点,P是动点。我们可以找到一个定点D的轴对称点B,连结BE,与对角线AC交点处P就是使距离和最小的点(如图3),而使PD+PE的和的最小值恰好等于BE,因为正方形ABCD的面积为12,所以它的边长为 23,即PD+PE的最小值为23。 二、演变成与梯形有关的试题 例2(2009鄂州)已知直角梯形ABCD中A D∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,⊿APD中边AP上的高为() A. 2 17 17 B. 4 17 17 C. 8 17 17 D.3 分析与解:如图,先作出A点关于BC的对称点E,连结DE交BC于P点,连结AP,再过点D作D F⊥BC于F,过点D作DG⊥AP于G.先可以根据梯形知识和勾股定理可以求得DF=4,从 而AB=4,再由AB=BE且AD∥BC,知道BP是⊿ABE的中位线,∴BP= 2 1 AD=1得AP=17.因为 ⊿ADP的面积= 2 1 AD?DF= 2 1 AP?DG,所以AP边上的高DG为 AP DF AD? = 17 8 17,即正确答案是C. 三、演变成与圆有关的试题 例3(2009龙岩)如图,AB、CD是半径为5的⊙O的两条弦,AB = 8,CD = 6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则P A+PC的最小值为. B C D A P 图4

《数据结构课程设计》最短路径问题实验报告

《数据结构课程设计》最短路径问题实验报告

目录 一、概述 0 二、系统分析 0 三、概要设计 (1) 四、详细设计 (5) 4.1建立图的存储结构 (5) 4.2单源最短路径 (6) 4.3任意一对顶点之间的最短路径 (7) 五、运行与测试 (8) 参考文献 (11) 附录 (12)

交通咨询系统设计(最短路径问题)一、概述 在交通网络日益发达的今天,针对人们关心的各种问题,利用计算机建立一个交通咨询系统。在系统中采用图来构造各个城市之间的联系,图中顶点表示城市,边表示各个城市之间的交通关系,所带权值为两个城市间的耗费。这个交通咨询系统可以回答旅客提出的各种问题,例如:如何选择一条路径使得从A城到B城途中中转次数最少;如何选择一条路径使得从A城到B城里程最短;如何选择一条路径使得从A城到B城花费最低等等的一系列问题。 二、系统分析 设计一个交通咨询系统,能咨询从任何一个城市顶点到另一城市顶点之间的最短路径(里程)、最低花费或是最少时间等问题。对于不同的咨询要求,可输入城市间的路程、所需时间或是所需费用等信息。 针对最短路径问题,在本系统中采用图的相关知识,以解决在实际情况中的最短路径问题,本系统中包括了建立图的存储结构、单源最短问题、对任意一对顶点间最短路径问题三个问题,这对以上几个问题采用了迪杰斯特拉算法和弗洛伊德算法。并未本系统设置一人性化的系统提示菜单,方便使用者的使用。

三、概要设计 可以将该系统大致分为三个部分: ①建立交通网络图的存储结构; ②解决单源最短路径问题; ③实现两个城市顶点之间的最短路径问题。

迪杰斯特拉算法流图:

动点最值问题

动点最值问题 问题分类: 1.双线段之和最短,单对称模型(将军饮马问题); 技巧:作定点关于动点所在直线对称点。 2.三线段之和最短,①双对称模型; ②费马点:技巧---绕任意顶点向外旋转60° 3.单线段最短(一动一定):①在直线上运动; ②在圆上动(“圆”形毕露) 4.单线段最大值:利用三角形三边关系。 例一、 1、如图,要在河边修建一个水泵站,分别向张村A和李庄B送水,已知张村A、李庄B到河边的距离分别为2km和7km,且张、李二村庄相距13km. (1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置; (2)如果铺设水管的工程费用为每千米1000元,为使铺设水管费用最节省,请求 出最节省的铺设水管的费用为多少元? 2. 点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得 |PA -PB|的值最大的点,Q是y轴上使得QA十QB的值最小的点,则P点的坐标为 Q 的坐标为.

1、如图所示的平面直角坐标系中,点P 是直线y=x 上的动点,A (1,0),B (2,0)是x 轴上的两点, 则PA+PB 的最小值为 2、如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线 MN 上运动,则PA PB 的最大值等于 3.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一 只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为 cm . 4.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(2 1,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为 . 1题 2题 3题 4题 5、如图,在矩形ABCD 中,AB =6,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时,则DF 的长为 6、如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 . 7、如图,已知点A(1,1)、B(3,2),且P 为x 轴上一动点,则△ABP 的周长的最小值为 . 5题 6题 7题

数据结构最短路径课设报告

数据结构与算法 课程设计报告书 题目:导航最短路径查询 班级:11101111 学号:1110111105 姓名: 教师 周期:2012.12.17-2012.12.21 (以下由验收教师填写) 成绩: 2012年12月21日

《导航最短路径查询》 一、课程设计的目的与要求 (一)课程设计目的与任务 通过学习,了解并初步掌握设计、实现较大系统的完整过程,包括系统分析、编码设计、编码集成以及调试分析,熟练掌握数据结构的选择、设计、实现、以及操作方法,为进一步的开发应用打好基础。 (二)题目要求 要求在数据结构的逻辑特性和物理表示、数据结构的选择和应用、算法的设计及其实现等方面,加深对课程基本内容的理解。同时,在程序设计方法以及上机操作等基本技能和科学作风方面受到比较系统和严格的训练。 二、设计正文 1、系统分析和开发背景 该程序所做的工作是给司机们提供最佳路线,来提高能源和时间的合理利用。 (1)把城市交通线路转化为图,从而对图进行相应的结构存储; (2)程序的输出信息主要为:起始城市到目的城市的最短路路径。 (3)程序的功能主要包括:城市之间路径的存储,最短路径的计算,以及最短路径和邻接矩阵的输出; 2 、功能详细描述 先假设有四个城市甲乙丙丁,甲乙相距2千米,且只有从乙到甲的单程线路。甲丙相距7千米,且只有从甲到丙的单程线路。甲丁相距4千米,且只有从甲到丁的单程线路。乙丙相距5千米,且只有从丙到乙的单程线路。乙丁相距3千米,且只有从丁到乙的单程线路。丙丁相距3千米,且只有从丁到丙的单程线路。戊甲相距6千米,且只有从戊到甲的单程线路。戊丁相距2千米,且只有从丁到戊的单程线路。乙己相距8千米,且只有从乙到己的单程线路。丙己相距6千米,且只有从己到丙单程线路。 编程出能求出个一点到任一点的最短路经。 3、数据结构设计 (1)typedef struct {int no; //顶点编号 InfoType info; //顶点其他信息,这里用于存放边的权值 }V ertexType; //顶点类型 typedef struct //图的定义 {int edges[MAXV][MAXV]; //邻接矩阵 int n,e; //顶点数,弧数 V ertexType vexs[MAXV]; //存放顶点信息 }MGraph; //图的邻接矩阵类型 //以下定义邻接表类型 typedef struct ANode //弧的结点结构类型

动点变化中的最值问题

线段的最值问题 类型一 1、(2015成都中考)如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A 1MN ,连接A 1C ,则A 1C 长度的最小值是 3、如图,菱形ABCD 的边AB =8,,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点。当 的长度最小时,CQ 的长为 N D B

5、如图,点E 、F 是边长为4的正方形边AD 上的两个动点,AH ⊥BE 于点H ,连接FC 、FH ,求FC+FH 的最小值 6、若0 60=∠MAN ,AN=6,等边△DEF 的顶点D 、E 分别在射线AM 、AN 上运动,0为△DEF 的重心,在运动过程中,ON 的最小值为 类型二 1、已知边长为a 的正三角形ABC ,两顶点A B 、分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的最大值 2、正方形ABCD 外有一点P ,若PB=4,PA=3,则PC 的最大值为 D P A E F

练习: 1、如图,在平面直角坐标中,已知OA=OB=4,△OCD 是等腰三角形,∠COD=90°,E 为OB 的中点,若点 2、如图,在Rt △ABC 中,∠A=90°,AB=3,AC=4,点D 为AC 的中点,P 为AB 上的动点,将点P 绕点D 3、如图,在平面直角坐标系中,已知矩形OABC 的顶点在坐标轴上,其中OA=4,OC=3,点D 为BC 边上一点,以AD 为边在点B 的同侧作正方形ADEF ,连接OE ,当点D 在BC 上运动时,OE 长的最小值为 4、(2014?达州)如图,折叠矩形纸片ABCD ,使点B 落在边AD 上,折痕EF 的两端分别在AB 、BC 上(含端点),且AB=6cm ,BC=10cm .则折痕EF 的最大值是 A B C 1 x

动点问题最值

G F D A B C E 动点问题最值 最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。 一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。 方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。 1.如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、 FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( ) A .32- B .13+ C .2 D .13- 提示:点M 在以AC 为直径的圆上 2.(2015?咸宁)如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动的路径长为π;④CG 的最小值为 ﹣1.其中正确的说法是 ②③ .(把你认为正确的说法的序号都填上) 提示:G 在以AB 为直径的圆上:正确答案是:②④ 3、如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm ,如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 4、如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是

数据结构最短路径

图的最短路径 一、实验目的 1.使学生熟悉最短路径的算法实现 二、掌握带权图的存储结构和处理方法 1.硬件:每个学生需配备计算机一台。操作系统:DOS或Windows 2.软件:DOS或Windows操作系统+Turbo C; 三、实验要求 1.能够独立完成带权图的存储和最短路径的生成 四、实验内容 1.现在假设我国铁路交通图如下(权值表示距离),请用合适的存储结构将下图存储到计算机中方便进行处理。 2.现在我想以最小的代价从徐州出发到达其他目的地,请用Dijkstra算法实现我的要求的路径。 #include"stdio.h" #include"malloc.h" typedef struct {int*vexs; int**arcs; int vexnum; }graph_hc; typedef struct {int adjvex; int lowcost; }markedg_hc; graph_hc*initgraph_hc() {int i,j;graph_hc*g; g=(graph_hc*)malloc(sizeof(graph_hc)); g->vexnum=25; g->vexs=(int*)malloc(g->vexnum*sizeof(int)); g->arcs=(int**)malloc(g->vexnum*sizeof(int*)); for(i=0;ivexnum;i++) g->arcs[i]=(int*)malloc(g->vexnum*sizeof(int)); for(i=0;ivexnum;i++) for(j=0;jvexnum;j++) {g->arcs[i][j]=0;} return g;} void creategraph_hc(graph_hc *g) {int i,j; for(i=0;ivexnum;i++)g->vexs[i]=i; g->arcs[0][9]=1892; g->arcs[1][3]=242;

二次函数动点与最值问题

一、二次函数中的最值问题: 例1:在平面直角坐标系中,全等的两个三角形Rt⊿AOB与Rt A’OC’如图放置,点B、C’的坐标分别为(1,3),(0,1),BO 与A’ C’相交于D,若⊿A’OC’绕点O旋转90°至⊿AOC,如图所示(1)若抛物线过C、A、A’,求此抛物线的解析式及对称轴;∴y=-x2+2x+3 (2)、若点P是第一象限抛物线线上的一动点,问P在何处时△AP A’的面积最大?最大面积是多少?并求出此时的点P的坐标。

(3)、设抛物线的顶点为N,在抛物线上是否存在点P,使△A’AN与△A’AP的面积相等?,若存 在,请求出此时点P的坐标,若不存在,请说明理由。 例2、(2012)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=. (1)求过A.C.D三点的抛物线的解析式; (2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值围; (3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值. 解答:解:(1)∵四边形ABCD是菱形, ∴AB=AD=CD=BC=5,sinB=sinD=; Rt△OCD中,OC=CD?sinD=4,OD=3; OA=AD﹣OD=2,即: A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0); 设抛物线的解析式为:y=a(x+2)(x﹣3),得:

2×(﹣3)a=4,a=﹣; ∴抛物线:y=﹣x2+x+4. (2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣; 由(1)得:y2=﹣x2+x+4,则: , 解得:,; 由图可知:当y1<y2时,﹣2<x<5. (3)∵S△APE=AE?h, ∴当P到直线AB的距离最远时,S△ABC最大; 若设直线L∥AB,则直线L与抛物线有且只有一个交点时,该交点为点P;设直线L:y=﹣x+b,当直线L与抛物线有且只有一个交点时, ﹣x+b=﹣x2+x+4,且△=0; 求得:b=,即直线L:y=﹣x+; 可得点P(,). 由(2)得:E(5,﹣),则直线PE:y=﹣x+9; 则点F(,0),AF=OA+OF=; ∴△PAE的最大值:S△PAE=S△PAF+S△AEF=××(+)=. 综上所述,当P(,)时,△PAE的面积最大,为.

初二数学动点问题-初二数学动点问题分析-初二数学动点问题总结

初二动点问题解题技巧 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查。 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握

方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 专题一:建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式。 二、应用比例式建立函数解析式。 三、应用求图形面积的方法建立函数关系式。 专题二:动态几何型压轴题 动态几何特点 --- 问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

最小生成树和最短路径数据结构实验

实验报告六月 18 2015 姓名:陈斌学号:E 专业:13计算机科学与技术数据结构第八次实验

学号E专业计算机科学与技术姓名陈斌 实验日期教师签字成绩 实验报告 【实验名称】最小生成树和最短路径 【实验目的】 (1)掌握最小生成树以及最短路径的相关概念; (2)掌握Prim算法和Kruskal算法; (3)掌握Dijkstra算法 【实验内容】 采用普里姆算法求最小生成树 (1)编写一个算法,对于教材图(a)所示的无向带权图G采用普里姆算法输出从顶点 V1出发的最小生成树。图的存储结构自选。 (2)对于上图,采用克鲁斯卡尔算法输出该图的最小生成树。(提示:a.先对边按 权值从小到大排序,得有序边集E;为所有顶点辅设一个数组Vset,标记各顶点所处的连通分量,初始时各不相同。b. 依次从E中取出一条边(i,j),检查顶点i和j是否属于同一连通分量,如是,则重取下一条边;否则,该边即为生成树的一条边,输出该边,同时将所有与j处于同一连通分量的顶点的Vset 值都修改为与i的相同。c.重复b步直至输出n-1条边。) 源代码: : #include<> #include<> #include<> dj=INFINITY; /* 网 */ }

printf("请输入%d条边的顶点1 顶点2 权值(用空格隔开): \n",; for(k=0;k<;++k) { scanf("%s%s%d%*c",va,vb,&w); /* %*c吃掉回车符 */ i=LocateVex(G,va); j=LocateVex(G,vb); [i][j].adj=[j][i].adj=w; /* 无向 */ } =AN; return OK; } typedef struct { /* 记录从顶点集U到V-U的代价最小的边的辅助数组定义 */ VertexType adjvex; VRType lowcost; }minside[MAX_VERTEX_NUM]; int minimum(minside SZ,MGraph G) { /* 求的最小正值 */ int i=0,j,k,min; while(!SZ[i].lowcost) i++; min=SZ[i].lowcost; /* 第一个不为0的值 */ k=i; for(j=i+1;j<;j++) if(SZ[j].lowcost>0)

相关主题