搜档网
当前位置:搜档网 › 点击化学的研究与应用

点击化学的研究与应用

点击化学的研究与应用
点击化学的研究与应用

点击化学的应用

摘要:“Click chemistry”[1],常译成“点击化学”,是2001年诺贝尔化学奖获得者美国化学家Sharpless提出的一种快速合成大量化合物的新方法,是继组合化学之后又一给传统有机合成化学带来重大革新的合成技术。

1.引言

2001年,笔者,Scripps研究所的化学家,给那些最佳的化学反应起了一个名字“点击化学”[2]。这些反应易于操作,并能高产率生成目标产物,很少甚至没有副产物,在许多条件下运作良好(通常在水中特别好),而且不会受相连在一起的其他官能团影响。“点击”这个绰号意味着用这些方法把分子片段拼接起来就像将搭扣两部分”喀哒”扣起来一样简单。无论搭扣自身接着什么,只要搭扣的两部分碰在一起,它们就能相互结合起来。而且搭扣的两部分结构决定了它们只能和对方相互结合起来。

2.点击化学反应

点击反应有着下列的共同特征:

(1)许多反应的组件是衍生于烯烃和炔烃,这些都是石油裂化的产物。从能量与机理的角度,碳-碳多重键都可以成为点击化学反应的活性组件。

(2)绝大部分反应涉及碳-杂原子(主要是氮,氧,硫)键的形成。这与近年来重视碳-碳键形成的有机化学方向不同。

(3)点击反应是很强的放热反应,通过高能的反应物或稳定的产物都可以实现。

(4)点击反应一般是融合(fusion)过程(没有副产物)或缩合过程(产生的副产物为水)。

(5)很多点击反应不受水的负面影响,水的存在反而常常起到加速反应的作用。这些特征可在环氧化物与多种不同亲核试剂的开环反应中展现出来。如图1,因

为环氧化物是一个张力很大的三元环,开环反应是一个非常有利的过程。然而开环需要在特定的条件下发生:亲核试剂仅能沿着C-O键的轴向进攻其中一个碳原子,这样的轨道排列不利于与开环反应竞争的消去反应,从而避免了副产物并得到高的产率。此外,环氧化物与水反应的活性不高,而水的形成氢键能力与极性本质都有利于环氧化物与其它亲核试剂进行开环反应。

3.点击化学的反应类型

点击反应主要有4种类型:环加成反应,特别是1,3-偶极环加成反应[3],也包括杂环Diels-Alder反应[4];亲核开环反应,特别是张力杂环的亲电试剂开环;非醇醛的羰基化学;碳碳多键的加成反应。叠氮化合物和乙炔的环加成反应早在20世纪早期就有报道,但反应生成1,4-和1,5-二取代三唑混合物。后来使用Cu(?)催化剂可得到区域选择性的1,4-三唑且产率高达91%,反应时间也由原来的18 h 缩短为8h[6]。Cu(?)盐催化的反应机理[7]见图2。

亲核开环反应

亲核开环反应主要是三元杂原子张力环的亲核开环以释放它们内在的张力能,如环氧衍生杂环丙烷、环状硫酸酯、环状硫酰胺、吖丙啶离子和环硫离子等。在这些三元杂环化合物中,环氧衍生物和吖丙啶离子是点击反应中最常用的底物,可以通过它们的开环形成各种高区域选择性的化合物。此类反应可在醇P水混合

溶剂或勿需溶剂下进行。以双环氧乙烷和苄胺反应为例[1](图3),在质子溶剂甲醇的存在下,得到90%收率的1,4-二醇;当无溶剂时,得到94%的1,3-二醇。

图2 端基炔和叠氮化合物反应机理[5]

Fig.1 Mechanism of Cu(?) catalysis for terninal azide-

alkyne coupling[5]

图3 环氧乙烷开环的区域选择性[1]

Fig.2 Regioselectivity of oxirane opening[1]

4.点击化学的应用

4.1在药物开发中的应用

Kappe等[6]采用Biginelli化合物二氢嘧啶酮(DHPMs)为模板多组分点击反应快速合成了包含27个化合物的4类6-(1,2,3-三唑-1-基)-二氢嘧啶酮库。Eichler等[9]利用点击反应生成1,2,3-三唑来形成组装的缩氨酸的分子架。通过交叉组合多组分的炔和叠氮化缩氨酸反应可以制得缩氨酸的组合化合物库(图4)。

图4 点击化学合成缩氨酸[9]

Fig.3 Generation of assembled peptides through click

chemistry[9]

Thorson等[7]使用叠氮化物和炔类化合物发生Huisgen 1,3-偶极环加成反应,生成含有50个可临床使用的抗生素类似物“万古霉素”。抗细菌扫描显示,许多万古霉素衍生物都具有类似天然产物的性能。

在过去几年中,美国Coelacanth公司所做的工作尤为引入注目。他们利用液相点击化学合成了各种扫描分子库,包括200 000个单体化合物,每个均可获得85%的纯度和25)50mg的量[8]。

4.2在聚合物中的应用

Baut等[10]利用点击反应生成1,2,3-三氮唑环的高稳定性和与金属表面的亲和力通过二叠氮化物与三、四炔基化合物反应制备新型热固性树脂用于金属防腐剂和粘接剂。他们考察了不同交联温度和交联时间对该树脂热性能的影响,发现材料的玻璃化转变温度比其交联温度高50-60o C。他们认为这可能是由于在玻璃态下铜离子迁移并促进反应发生。Durmaz等[11]通过点击反应与Diels-Alder反应相结合的方法/一锅0合成ABC型嵌段共聚物(图5),为制备ABC型嵌段聚合物和该类聚合物的拓扑学(topologies)研究提供了一种简单的方法。Parrish等[12]将点击反应用于开发新型抗癌聚合物药物。

他们将聚乙二醇和喜树碱通过点击反应修饰到聚酯分子链上,其优点为:一方面改善了聚酯分子链的水溶性,另一方面使多个喜树碱药物分子连接到一条分

子链上从而提高药效。Rive等[13]报道了采用点击反应对聚己内酯分子链进行修饰,成功地将羟基、双健、ATRP引发剂以及聚乙二醇修饰到分子链上,为脂肪族聚酯的功能化提供了简单可行的方法。Such等[14]则通过将炔基和叠氮基修饰的聚丙烯酸通过点击反应层层自组装在二氧化硅微球表面,然后移除微球,制备了具有pH敏感性的超薄聚合物微胶囊(图6)。微胶囊的尺寸随着外界pH值的变化发生可逆改变,有望应用于药物控释,传感器等领域。

图5一锅法0合成ABC型嵌段共聚物[11]

Fig.2 One-pot synthesis of ABC type copolymers[11]

图 6 超薄pH敏感聚合物微胶囊的制备[14]

Fig.3 Preparation of ultrathin pH-responsive polymer

capsules[14]

4.2.2超支化及树状聚合物

点击反应用来制备超支化及树状聚合物实质是对原有缩聚技术的革新。Finn 等[15]利用Cu(?)催化二叠氮化物和三炔反应制得了收率在80%)90%的超支化聚合

物。聚合物中的三唑连接体使其具有高的稳定性和膨胀收缩性(图7)。

Lee等[16-18]从丙炔溴和树枝状的苄醇制得相应的树枝状苄基丙炔基醚。这种含有3个反应点的叠氮化物和乙炔状树枝状物的三聚反应及含叠氮基树枝状物和含乙炔基树枝状物的偶合反应可以高效率地制备对称或不对称三唑树枝状聚合物(图8)。

Astruc等[19]利用Huisgen 1,3-偶极环加成反应合成了第一个点击金属树枝状聚合物。它可被用作选择性地识别含氧离子和过渡金属离子的传感器。Fokin 等[20,21]也用相似的方法合成了结构多样的含三唑的树枝状大分子及大分子库。

图7 超支化聚合物的合成[15]

Fig.8 Synthesis of hyperbranched polymer[15]

图8 点击合成树枝状聚合物[16]

Fig.9 Dendrimers through click chemistry[16]

4.3 在其它领域中的应用

近年来,点击化学在其它领域中的应用也逐渐崭露头角。如Adronov等[22]使用Cu(?)催化的[3+2]Huisgen环加成点击反应得到了聚苯乙烯修饰的单层碳纳米管。Hawker等[23]通过对聚合物表面进行叠氮化和炔化修饰后进行的点击反应合成了链端官能化的聚合物胶束和纳米粒子。Caruso等[24]使用点击化学制备了LbL (layer-by-layer)超薄片。Sharpless等[25]利用Cu(?)催化的叠氮化物-炔的环加成反应制备出高效的金属黏合剂材料。Fr chet等[26]则将铜催化的叠氮化物-炔环加成反应用于改性HPLC的固定相,当使用含大量水的流动相时可提供很好的色谱性质。

5 展望

自点击化学提出以来,由于其具备原料易得、反应条件温和、产物收率高、选择性好和易于分离提纯等特点,使其无论是在药物开发中,还是在高分子合成中均被证明是一种极其实用的合成方法。目前点击化学在药物开发和高分子中都已从最初的研究阶段进入实际应用阶段。但是,点击化学的研究和应用还都处在

发展阶段。将来发现更多快速、高效、可靠、高选择性的反应并将其应用从最初的药物开发拓展到高分子合成、超分子化学、纳米技术以及表面改性等领域将是点击化学的发展方向。

[ 1 ] Kolb HC, FinnMG, Sharpless K B. Angew. Chem. Int. Ed.,2001, 40: 2004-2021

[ 2] Kolb HC, FinnMG, Sharpless K B. Angew. Chem. Int. Ed.,2001,40: 2004-2021

[ 3 ] Huisgen R. Proc. Chem. Soc., 1961: 357-369

[ 4] Jorgensen K A. Angew. Chem. Int. Ed., 2000, 39: 3558-3558

[ 5] Patton G C. Development and Applications of Click Chemistry,[2006-12-11]. http:PPforum.e2002. comPread.php? tid=78386&fpage=0 &toread=&page=1

[ 6 ] Khanetskyy B, Dallinger D, Kappe C O. J. Comb. Chem.,2004, 6: 884-892

[7] Y ang J, Hoffmeister D, Thorson J S. Bioorganic & MedicinalChemistry, 2004, 12: 1577-1584

[8] Kolb HC. 21st Am. Chem. Soc. Meetting, Abstr. Pap., 2001orgn 434

[ 9 ] Franke R, Doll C, Eichler J. Tetrahedron Letters, 2005, 46:4479-4482

[10] Baut NL, Diaz D D, Brown H R, et al. Polymer, 2007, 48:239-244

[11] Durmaz H, Hizal G, TuncaU, et al. Macromolecules, 2007, 40:191-198

[12] Parrish B, EmrickT. Bioconjugate Chem., 2007, 18: 263-267

[13] Riva R, Schmeits S, J?réme R, et al. Macromolecules, 2007,40: 796-803

[14] Such K G, Tjipto E, Caruso F, et al. Nano Lett., 2007, 7:1706-1710

[15] Li C M, FinnMG. Journal of Polymer Science, Part A: PolymerChemistry, 2006, 44: 5513-5518

[16] Lee J W, Kim J H, Jin S H, et al. Tetrahedron, 2006, 62:894-900

[17] Lee JW, Kim JH, Jin SH, et al. Tetrahedron, 2006, 62: 9193-9200

[18] Lee J W, Kim J H, Kim B K. Tetrahedron Letters, 2006,47: 2683-2686

[19] Ornelas C, Aranzaes J R, Astruc D. Angew. Chem. Int. Ed.,2006, 45: 1-6

[20] Wu P, Feldman K A, Fokin V V. Angew. Chem. Int. Ed.,2004, 43: 3928-3941

[21] MalkochM, Schleicher K, Fokin V V, et al. Macromolecules,2005, 38: 3663-3678

[22] Li HM, Cheng F Y, Adronov A. J. Am. Chem. Soc., 2005,2005, 38: 3663-3678

[23] Oreilly R K, Joralemon M J, Hawker C J, et al. Journal ofPolymer Science, Part A: Polymer Chemistry, 2006, 44: 5203-5217

[24] Such G K, Quinn J F, Caruso F, et al. J. Am. Chem. Soc.,2006, 128: 9318-9319

[25] Diaz D D, Fokin V V, Sharpless K B, et al. J. Polym. Sci.,Part A: Polym. Chem., 2004, 42: 4392-4403

[26] SlaterM, SnaukoM, Fr?chet JMJ. Analytical Chemistry, 2006,78: 4969-4975

化学推进剂与高分子材料-2012年

化学推进剂与高分子材料-2012 年 目录· 2012 年 1 期
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
中国聚氨酯工业现状和“十二五”发展规划建议 翁汉元,朱长春,吕国会, 植物油多元醇的制备及其在聚氨酯硬泡中的应用进展 张俊良,赵巍,于剑昆, 中国汽车用聚氨酯材料发展方向 贾润萍,黄茂松, 聚氨酯反应注射成型在汽车玻璃包边中的应用 董火成,孙嘉鹏,朱小树,于文杰, HER 扩链剂的合成及其在聚氨酯弹性体中的应用 于剑昆,庄远,杨炜,梁敏, 缩短叠氮胺燃料作为双组元推进剂点火延迟的研究进展 池俊杰, 常伟林, 夏宇, 张晓勤, 线性二硝胺含能增塑剂的合成、性能及应用研究进展 王连心,刘飞,尚丙坤,薛金强, 纳米金属及其复合物在固体推进剂中的应用研究进展 齐晓飞, 张晓宏, 严启龙, 宋振伟, RDX 降感技术研究进展 刘波,刘少武,张远波,王琼林,王锋,李达,刘国涛, 卫星推进剂技术发展趋势概述 张广科,山世华,樊超, 采用叠氮基炔基点击化学方法提高 GAP 推进剂力学性能研究 关鑫,李建民, 复合改性双基推进剂燃烧性能研究 宋桂贤,吴雄岗, 降解偏二甲肼污水高效菌群的构建 范春华,夏本立,王煊军,王力, 蒽醌法生产过氧化氢工作液溶剂中重芳烃含量的分析方法研究 朱爱萍,申丽红, 火焰原子吸收分光光度法测定癸二酸二丁酯中钠含量的不确定度分析 王洋, 肖恒, 翁薇, 聚氨酯绝缘材料体积电阻率测量的不确定度评定 李杰妹,LI Jiemei 信息动态 Antaris 傅里叶近红外分析仪在高分子(多聚物)行业中的应用 赛默飞世尔科技 目录· 2012 年 2 期
? ? ? ? ? ?
用磷腈类催化剂合成的新型聚醚多元醇及其在聚氨酯泡沫制备中的应用新进展 于剑昆, 制备低不饱和度聚醚多元醇用 DMC 催化剂的研究进展 赵巍,ZHAO Wei 信息动态 端羟基聚丁二烯中羟基类型的 NMR 研究进展 郝利峰,孙庆锋,盛红亮, 低温固体推进剂的研究进展 赵庆华,李祎,王莉莉,崔玉春,常亮亮,Z 1,1-二氨基-2,2-二硝基乙烯的合成研究进展 冯晓晶,马会强,张寿忠,苗成才,马英华,

点击化学的进展及应用修订稿

点击化学的进展及应用 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

点击化学的进展及应用 点击化学(Click chemistry),又称“链接化学”、“动态组合化学”,意为通过小的化学单元的连接,以较高的产率快速地进行化学合成,得到目标产物。这一概念最早由Barry Sharpless于2001年提出,在化学合成领域引起极大的关注,点击化学的主要特征有产率高,无副产物或副产物无害,反应原料易得,条件简单,选择性强,需较高热力学驱动力等[1]。经过十余年的发展,点击化学在有机合成方面有着很大的贡献,更是在药物开发和生物医用材料合成等诸多领域中成为最为吸引人的合成理念。本文主要介绍了一些经典的点击化学反应体系,并且结合其在有机合成中的实际应用,着重探讨与其相关的一些科研成果,主要包括组织再生,靶向药物递送,纳米材料表面修饰等几个方面。 点击化学反应主要有4种类型,环加成反应、亲核开环反应、非醇醛的羰基化学以及碳碳多键的加成反应。 环加成反应中,Huisgen环加成(CuAAC)是点击化学反应最为经典的体系,即叠氮化物与末端或内部炔烃之间在一价铜催化下,进行1,3—偶极环加成,得到1,2,3—三唑。叠氮化物与末端炔基容易安装在分子中,且较为稳定,该反应速率快,副产物少,广泛应用于在聚合物偶联、后修饰中,但催化所需的一价铜的毒性限制了其应用。因此,环张力引发的叠氮—炔环加成(SPAAC)被提出,由环烯和叠氮化物进行反应。此反应最大的改善在于无铜点击化学反应,避免了一价铜的毒性,通过叁键的角应变以及存在于环烯中的环应变提高了反应速率。但上面两个反应中用到叠氮化物,在反应的过程中具有一定的危险性。另外,我们极为熟悉的Diels—Alder反应,即共轭双烯与取代烯烃反应生成取代环己烯,也属于点击化学的这一类型[1]。 图1 Huisgen环加成反应 图2 叠氮—炔环加成反应 图3 Diels—Alder反应 巯基—烯反应是碳碳多键加成类型的主要反应,具有立体选择性、高产率等点击化学的特性,可在光或热引发下进行,常用于树枝状聚合物的合成与材料表面修饰,在材料和生物医学科学中有很多应用。但巯基化合物常常气味难闻,有毒,且容易被氧化,自身并不稳定,所以一定程度上限制了该反应的应用[1]。 图4 巯基—烯反应 亲核开环反应主要是三元杂原子由于环张力进行亲核开环,以释放其内在的张力能,如环氧衍生杂环丙烷、环状硫酸酯、环状硫酰胺、吖丙啶离子和环硫离子等。在这些三元杂环化合物中,环氧衍生物和吖丙啶离子是点击化学反应中最常应用的底物,可以通过它们的开环形成各种高选择性的化合物。

点击化学——释义与目标

第l期点击化学——释义与目标 cvcloaddition)代表非催化的过程,用cuAAc代表铜催化的过程。 由于其反应基团的特殊性质,这些反应非常有用。叠氮化物和炔烃的化学势能都很高(热力学不稳定),它们融合成三唑环时放出大于188千焦/摩的热量。而另一方面,这一反应的速率很慢,对于非活化(不是非常缺电子,也没有张力)炔烃,一般需要长时间加热。叠氮化物和炔烃对亲核试剂、亲电试剂和一般的溶剂均表现出惰性,目前,叠氮化物是唯一有此性质的1,3一偶极试剂。更重要的是,叠氮化物和炔烃几乎完全不与生物分子发生反应。它们小,不能形成强氢键,极性相对弱,对连接在其上的其他结构的性质没有显著的影响。而且,它们都可以很容易地引入到有机化合物中。 由于叠氮化物和炔烃的特殊活性——对其它所有试剂的惰性及相互反应的缓慢——它们可被利用于在酶这一“反应容器”中来组装那些能与酶紧密结合的分子,如图4所示。这一技术,被称作“原位点击化学”(“clickchemistry讥si£u”),用叠氮化物和炔烃来标记那些能结合酶上相近位置的分子。如果这些被标记的分子能够同时与目标作用,而使得在某个合适的方向上叠氮化物和炔烃足够的靠近,三唑环就可以生成并把这两部分与酶结合的组件联结起来。因为双臂结合总是比单臂结合要强,于是就可以得到一个能结合得更紧密的分子。这一技术不需要事前了解目标酶的结构,也不需要对酶进行活性测试。因为在这些实验中,如果叠氮化物和炔烃标记的分子没有结合到酶模板的合适位置,溶液中叠氮化物和炔烃的浓度使之不足以发生反应,所以,这个可用质谱轻易探测的三唑环产物一旦生成,就证明一个极佳的酶抑制剂的诞生。 enzyme+m。n。valentreagenls temary∞mp瞅b鬻!嘉烹髦d图4“原位点击化学”(“clickchemigtry加si£“”)技术 Fig.4The“clickchemistryinsi£u”technique 原位点击化学(clickchemistry流sifM)已被用来 发现多种酶的高亲和力的抑制剂,包括重要的神经 递质酶(neurotransmitterenzyme),如乙酰胆碱酯酶 (acetvlcholinesterase)n’8o;新陈代谢酶(metabolic enzyme)¨1,如碳酸酐酶(carbonicaIlhydmse)旧1;和艾 滋病毒(HIV)蛋白酶(HIVpmtease)旧。。在这些和其 它的研究中,可以明显看到三唑环在药物开发中有 着优越的特性。它有着大的偶极距,可以形成强的 氢键,能够参与丌.堆积作用,三唑环可以多种形色 与蛋白发生作用。把两个“看不见的”组件在酶的空 腔中合成三唑环这一发现正影响着原位药物开发工 作中成键的选择性。原位点击化学技术,作为对传 统药物合成与筛选方法的补充,正被世界上很多实 验室和药物公司所采用。 由于铜的细胞毒性和伴随生理调节(attendant bioregulation),铜催化的反应还未能直接应用于活体 细胞中,然而铜催化反应已在有机和材料科学中得 到了格外广泛的应用。这些应用包括合成生物活性 化合物,制备蛋白和聚核苷酸的共轭体(conjugalestode{ecIiOnbyMS proteins andpolynucleotides),合成染料,对已知高分子的改进和合成新型高分子,创造响应材料(responsivematerials),以及在表面上以共价键连结目标结构。其在新药开发上的应用已有综述。‘91这个反应正被深入研究,新的应用正在加速出现。m3 3结论 点击化学是一种简单的合成方式,以实现和创造新功能物质和材料为目的。它在很大程度上已取得成功,并将得到持续的发展。然而,铜催化的三唑环合成只是目前最成功的例子,它远不是精华所在。不难理解,很多化学家认为点击化学仅仅是一个单一的反应。我们希望,随着时间的推移,学术和实践经验能打破这一视野的限制。 点击化学拓展着结构的领域,这些结构可以由专业化学家,也可以由非化学家合成出来。基本原理很简单:化合物片断的连结反应越能抵抗外界影响,就越会有多样的片断得以连结以解决各种问题。 化学家没有像活细胞那样控制反应的能力,也没有

点击化学的研究与应用

点击化学的应用 摘要:“Click chemistry”[1],常译成“点击化学”,是2001年诺贝尔化学奖获得者美国化学家Sharpless提出的一种快速合成大量化合物的新方法,是继组合化学之后又一给传统有机合成化学带来重大革新的合成技术。 1.引言 2001年,笔者,Scripps研究所的化学家,给那些最佳的化学反应起了一个名字“点击化学”[2]。这些反应易于操作,并能高产率生成目标产物,很少甚至没有副产物,在许多条件下运作良好(通常在水中特别好),而且不会受相连在一起的其他官能团影响。“点击”这个绰号意味着用这些方法把分子片段拼接起来就像将搭扣两部分”喀哒”扣起来一样简单。无论搭扣自身接着什么,只要搭扣的两部分碰在一起,它们就能相互结合起来。而且搭扣的两部分结构决定了它们只能和对方相互结合起来。 2.点击化学反应 点击反应有着下列的共同特征: (1)许多反应的组件是衍生于烯烃和炔烃,这些都是石油裂化的产物。从能量与机理的角度,碳-碳多重键都可以成为点击化学反应的活性组件。 (2)绝大部分反应涉及碳-杂原子(主要是氮,氧,硫)键的形成。这与近年来重视碳-碳键形成的有机化学方向不同。 (3)点击反应是很强的放热反应,通过高能的反应物或稳定的产物都可以实现。 (4)点击反应一般是融合(fusion)过程(没有副产物)或缩合过程(产生的副产物为水)。 (5)很多点击反应不受水的负面影响,水的存在反而常常起到加速反应的作用。这些特征可在环氧化物与多种不同亲核试剂的开环反应中展现出来。如图1,因

为环氧化物是一个张力很大的三元环,开环反应是一个非常有利的过程。然而开环需要在特定的条件下发生:亲核试剂仅能沿着C-O键的轴向进攻其中一个碳原子,这样的轨道排列不利于与开环反应竞争的消去反应,从而避免了副产物并得到高的产率。此外,环氧化物与水反应的活性不高,而水的形成氢键能力与极性本质都有利于环氧化物与其它亲核试剂进行开环反应。 3.点击化学的反应类型 点击反应主要有4种类型:环加成反应,特别是1,3-偶极环加成反应[3],也包括杂环Diels-Alder反应[4];亲核开环反应,特别是张力杂环的亲电试剂开环;非醇醛的羰基化学;碳碳多键的加成反应。叠氮化合物和乙炔的环加成反应早在20世纪早期就有报道,但反应生成1,4-和1,5-二取代三唑混合物。后来使用Cu(?)催化剂可得到区域选择性的1,4-三唑且产率高达91%,反应时间也由原来的18 h 缩短为8h[6]。Cu(?)盐催化的反应机理[7]见图2。 亲核开环反应 亲核开环反应主要是三元杂原子张力环的亲核开环以释放它们内在的张力能,如环氧衍生杂环丙烷、环状硫酸酯、环状硫酰胺、吖丙啶离子和环硫离子等。在这些三元杂环化合物中,环氧衍生物和吖丙啶离子是点击反应中最常用的底物,可以通过它们的开环形成各种高区域选择性的化合物。此类反应可在醇P水混合

点击化学在高分子研究中的进展

Chemical Propellants & Polymeric Materials 2010年第8卷第1期 · 17 · 点击化学在高分子研究中的进展 陈晓勇 (中北大学材料科学与工程学院,山西太原 030051;上海交通大学化学与化工学院,上海 200240) 摘 要:首先概括了点击化学的概念、特征和类型,然后对其在高分子研究中的进展进行了综述。详细地梳理了点击化学与新型聚合方法的联用以及点击化学在合成功能聚合物和控制聚合物拓扑结构方面的应用与研究。 关键词:点击化学;高分子;聚合物;进展 中图分类号: O6-1 文献标识码: A 文章编号: 1672-2191(2010)01-0017-03 收稿日期:2009-08-24 作者简介:陈晓勇(1980-),男,助教,主要从事薄膜加工成型、流变学和树脂改性研究。电子信箱:zweigxychen@https://www.sodocs.net/doc/4e3656812.html, 生命、医药和新材料等学科的高速发展要求化学学科能够快速、高效、多样、大规模地合成化合物以供选择,从而迅速满足生命、医药和新材料等学科的特别要求,如快速提高合成药物的质量和开发速度等。诺贝尔化学奖获得者Sharpless 提出点击化学概念[1],即希望化学反应像操作个人电脑一样(仅需点击鼠标)可控、简单、高效、快捷。该概念一经提出,便广受关注,现在更是国内外化学、生命、医药和材料学界共同关注的热点之一。它是一种基于高效、高选择性的C -X(X 为杂原子)成键反应来实现大量新化合物制备的一种可靠、实用的合成方法,是组合化学的简化与发展[2-4]。 点击化学应用最为成熟的是亚铜离子催化叠氮化物和端基炔生成1,4-二取代的1,2,3-三唑的Huisgen 偶极环加成反应(合成路线草图如下)[5]。 点击化学有如下特征:①原料来源广,反应适用范围广;②操作简单,条件温和,对氧、水不敏感;③产物收率高,选择性高;④易提纯产物,后处理简单;⑤快速、高通量合成;⑥反应需要高热力学驱动力(>83.7kJ/mol)。目前大概有如下4种类型的点击化学:①环加成,特别是在亚铜盐络合物催化下的炔基和有机叠氮或者叠氮和腈基之间的1,3-偶极环加成反应,也包括杂环Diels -Alder 反应;②亲核开环,特别是张力杂环的亲电试剂开环;③非醇醛的羰基化学反应;④碳碳多键的加成反应,特别是如环氧化的氧化反应[6]。 点击化学技术已渗透到诸多领域,如生命、高分子、超分子化学、功能材料、蛋白质组学、生物偶联技术和生物医药等[7]。文中仅对这几年点击化学在高分子学科中的应用、研究和发展方面进行综述。 1 在高分子研究中的进展 高分子科学由于其本身结构、合成过程和后处理工艺的复杂性与难度,点击化学在其中应用特别广泛与深入。 1.1 点击化学与非传统聚合法联用 传统聚合方法之外的聚合在制备新型聚合物材料方面的巨大优势已得到高分子学界的广泛认可,点击化学与这些非传统聚合法联用更是有利于巩固这个优势并拓展这些聚合法的应用范围。点击化学与ATRP(原子转移活性自由基聚合)联用最多,因为A T R P 方法通常使用卤化物作引发

点击化学的进展及应用

点击化学的进展及应用 点击化学(Click chemistry),又称“链接化学”、“动态组合化学”,意为通过小的化学单元的连接,以较高的产率快速地进行化学合成,得到目标产物。这一概念最早由Barry Sharpless于2001年提出,在化学合成领域引起极大的关注,点击化学的主要特征有产率高,无副产物或副产物无害,反应原料易得,条件简单,选择性强,需较高热力学驱动力等[1]。经过十余年的发展,点击化学在有机合成方面有着很大的贡献,更是在药物开发和生物医用材料合成等诸多领域中成为最为吸引人的合成理念。本文主要介绍了一些经典的点击化学反应体系,并且结合其在有机合成中的实际应用,着重探讨与其相关的一些科研成果,主要包括组织再生,靶向药物递送,纳米材料表面修饰等几个方面。 点击化学反应主要有4种类型,环加成反应、亲核开环反应、非醇醛的羰基化学以及碳碳多键的加成反应。 环加成反应中,Huisgen环加成(CuAAC)是点击化学反应最为经典的体系,即叠氮化物与末端或内部炔烃之间在一价铜催化下,进行1,3—偶极环加成,得到1,2,3—三唑。叠氮化物与末端炔基容易安装在分子中,且较为稳定,该反应速率快,副产物少,广泛应用于在聚合物偶联、后修饰中,但催化所需的一价铜的毒性限制了其应用。因此,环张力引发的叠氮—炔环加成(SPAAC)被提出,由环烯和叠氮化物进行反应。此反应最大的改善在于无铜点击化学反应,避免了一价铜的毒性,通过叁键的角应变以及存在于环烯中的环应变提高了反应速率。但上面两个反应中用到叠氮化物,在反应的过程中具有一定的危险性。另外,我们极为熟悉的Diels—Alder反应,即共轭双烯与取代烯烃反应生成取代环己烯,也属于点击化学的这一类型[1]。 图1 Huisgen环加成反应 图2叠氮—炔环加成反应

点击化学简介

万方数据

万方数据

万方数据

点击化学简介 作者:罗璇, 林丹, 孙玉婷, LUO Xuan, LIN Dan, SUN Yuting 作者单位:罗璇,LUO Xuan(湖北武汉市七里中学,430050), 林丹,孙玉婷,LIN Dan,SUN Yuting(华中师范大学化学教育研究所,湖北武汉,430079) 刊名: 化学教育 英文刊名:CHINESE JOURNAL OF CHEMICAL EDUCATION 年,卷(期):2009,30(10) 参考文献(13条) 1.Kolb H C.Finn M G.Sharpless K B查看详情 2001 2.Bohacek R S.McMartin C.Guida W C查看详情 1996 3.Merrifield R B查看详情 1963 4.董卫莉.赵卫光查看详情 2006(03) 5.Rostovtsev V.Green L G.Fokin V V查看详情 2002 6.Pringle W.Sharpless K B查看详情 1999 7.Kolb H C查看详情 2001 8.李娟查看详情 2007(11) 9.Sharpless K B查看详情 2006 10.Collman J P.Devaraj N K.Chidsey C E D查看详情 2006 11.Punna S.Kaltgrad E.Finn M G查看详情 2005 12.Kacprza K M.Maier N M.Lindner W查看详情 2006 13.张涛.郑朝晖查看详情 2008(08) 本文链接:https://www.sodocs.net/doc/4e3656812.html,/Periodical_hxjy200910003.aspx

信息论在生物学和化学领域的应用

信息论在生物学和化学领域的应用 信息科学与技术学院** 指导教师** 摘要:信息论近年来迅速发展,已广泛渗入物理、化学、生物、医学、自动控制、计算机、人工智能、仿生学、经济和管理等不同领域。本文阐述信息论在现代生物学、化学等学科中的应用。 关键词:信息论;生物信息论;化学信息论;基因编码 一、概述 1948年,Claude E.Shannon在BSTJ发表题为“The Mathematical Theory of Communica-tion”的著名论文,创立了后人所称的“信息论”,揭开了人类认识史上的新纪元:由材料和能量的 时代开始走向自觉地认识和利用信息的时代。现在,人们越来越清楚地看到,Shannon信息论 的确是科学史上一座巍峨的里程碑,它把科学领进了信息世界的大门。但是,Shannon信息论 并没有穷尽信息问题的研究。正如Shannon本人所说:“企求一次就揭开自然的全部奥秘,这 种期望是不切实际的”。事实上,一个具有旺盛生命力的理论必然会不断地渗透到新的领域,不断地改变自己的面貌[1]。现如今,信息熵概念广泛渗入物理、化学、生物、医学、自动控制、计算机、人工智能、仿生学、经济和管理等不同领域。信息过程不仅是通讯研究的对象,而且被当作控制社会的手段来研究[2]。就正是由Shannon信息论经过不断的开拓、发展和升华的结果,它是信息理论发展的全新阶段。 二、信息论与生物学 (一)信息与遗传[2] 1944年细菌转化现象的发现,第一次证实了细胞核内DNA核酸是遗传的物质基础。1953 年沃森和克里克提出 DNA螺旋结构模型,认为是由两条多核苷酸链靠碱基间确定配对关系而 联系在一起,形成犹如螺旋状的长梯子,第一梯级相当一对碱基。梯级很多,若以500梯级的 大分子计,其结构可能取型的数目为10330信息量。历史上有过物种,最高估计是40亿种,其 信息量不过才是10g24*109=31.9比特,可见DNA结构可储存遗传信息量大得足以使每一物种 内各个个体间都可以有差别。

点击化学研究进展及其在药学领域的应用

点击化学研究进展及其在药学领域的应用 摘要:点击化学是利用一系列可靠的、高效的、选择性的而又具模块化的化学反应生成含杂原子的化合物,从而实现碳杂原子的连接(C-X-C) ,是用最佳的化学反应合成的分子来实现期望得到的功能,从而避免复杂的化学反应。此后,一价铜催化端炔和有机叠氮的环加成反应引起了人们极大的重视,并迅速在医药化学、生物和生物医学、组合化学和材料科学等领域得到广泛的应用。 关键字:点击化学叠氮 1,3-环加成反应三氮唑药物合成 叠氮化合物和乙炔的环加成反应早在20世纪早期就有报道,Huisgen[1]将1,3-偶极环加成反应用于氮杂三唑的合成。1,3-偶极环加成反应是一类非常有趣和与众不同的环化反应,属于周环反应的一种。在氮杂唑的合成中,炔基作为亲偶极体,而重氮或叠氮化合物的激发态具有1,3-偶极结构,作为l,3-偶极体参加反应。最初,反应需在甲苯回流的高温条件下进行。炔基上两个碳原子的电子云密度相差不大,而生成两种环化产物所需的活化能也十分接近,因此会有1,4-和l,5-两种位置异构体。考虑到实验安全性以及两个异构体分离的问题,这个反应并没有得到有机化学家足够的重视。传统的Huisgen反应因为如下的缺点:1)底物往往需要吸电子的基团活化,在炔基的两端有强的吸电子基团的化合物显示了最好的活性,在炔基的一端或叠氮上连有强吸电子的化合物也能发生Huisgen反应,没有活化基团的底物不能发生1,3-偶极反应;2)热Huisgen环加成反应速度慢、温度高,通常都需要在甲苯乙醇中回流,或再DMF、DMSO中加热数十小时,甚至数天,才能完成反应。此外,由于许多有机叠氮是不稳定的,在高温反应时通常面临着分解甚至爆炸的潜在危险;3)热Huisgen反应区域选择性差,产物为1,4-和1,5-二取代的混合物,对末端区来说,区域选择性的问题尤其突出,通常得到比值接近1:1的混合物。结果,发现更温和、更好选择性的条件来完成Huisgen环加成,一直是迫切的需要。 合成化学家一直试图改进反应的产率和区域选择性,进行了各种有益的尝试。Sharpless研究小组[2]长期从事碳与杂原子之间化学键的形成研究,并对氮杂三唑的合成反应进行了改进。Sharpless等发现,CuS04和抗坏血酸钠ⅣC)在室温下原位(in situ)产生的一价铜能够高效地催化末端炔和有机叠氮发生Huisgen环加成反应,可以在十分温和的条件下只生成l,4.二取代的氮杂三唑。此反应可以在水相中进行,不需要通过柱层析的方法就可以得到纯品,且可得到区域选择性的1,4-三唑,且产率高达91%,反应时间也由原来的18 h缩短为 8 h。Sharpless等在改进后的Huisgen 1,3-偶极环加成基础上提出了“Click Chemistry”的概念,以表明这是十分理想的有机化学反应。于是,它是一种新型、简单、快速并且是新世纪最引人注目之一的合成方法。其核心是利用一系列可靠的、高效的、选择性的而又具模块化的化学反应生成含杂原子的化合物,从而实现碳杂原子的连接(C-X-C) ,是用最佳的化学反应合成的分子来实现期望得到的功能,从而避免复杂的化学反应。此后,一价铜催化端炔和有机叠氮的

点击化学及其在生物医学领域中的应用

点击化学及其在生物医学领域中的应用 点击化学法主要由诺贝尔化学奖获得者sharpless于2001年提出,其以组合化学为基础,经过一系列革命性变化的合成方法,为一种新型的快速合成大量化合物方法。由于其具备反应条件温和、产物收率高、高度选择性、产物速率快、产物易分离等优点,使得其在各种用途的生物医用领域中得到广泛应用,并为其提供较多便利,逐渐受到国内、国外科学家的关注。为更加深入地了解点击化学法在生物医学领域中的应用效果,现综述如下。 1 点击化学概述 点击化学被称作链接化学、动态组合化学,属于一个模块合成概念,为一种选用易得原料,经过可靠性、模块化、高选择性、高效率的化学转变,进而实现碳杂原子连接(c-s-c),通过应用低成本快速合成各类新化合物组合化学方法,突破传统有机合成,为目前化学领域发展较显著的一个趋势。 点击化学具备的优异特征可使应用分子裁剪手段模块组合成复杂化合物,主要包括树枝状分子、星形聚合物、梳形聚合物、糖类衍生物及蛋白质及生物杂化物等生物医学材料。 2 点击化学法及其在生物医学领域中的应用 2.1 应用至合成基因载体领域 研究指出,临床已将点击化学法应用到合成基因载体领域中,且在高转染效率与低细胞毒性的基因载体中已经获得一定进展。应用电极化学反应合成法,主要将聚天冬酰胺作为基础,成分主要以含有双硫键聚乙烯亚胺衍生物p为主,并以其为载体,作为非病毒基因载体的研究。研究时,使用已合成的叠氮管能化聚合含有双硫键作为载体,单炔终止予聚乙烯亚胺;点击化学反应合成后,主链为聚天冬酰胺,侧链为聚亚胺作,有研究显示,pxss-peis 可和质粒dna与浓缩dna互相结合,之后形成纳米粒子。还有体外试验研究表明,高分子刷被降解后,不仅具备低细胞毒性,而且具备转染活性,表明在基因载体领域中,这种还原可降解分子刷发挥着潜在作用。 2.2 应用至药物释放载体领域 药物载体不仅在药物释放体系中发挥着重要作用,而且还对药效产生决定性作用。点击化学法以其独特性被制备药物释放载体领域的科学家所重视。临床研究指出,通过合成一种叠氮修饰嵌段共聚物,阿霉素-葡萄糖酸酸前体药物与人类β-葡萄糖醛酸酶结合后可互相产生作用,加快恶性肿瘤细胞增长。 与预先经叠氮修饰的嵌段共聚物结合后,两者之间耦合率约为95%。结合后的药物嵌段共聚物会自发性形成胶束,具备单分散、形态小的特点。将其放置到37℃环境及存在β-葡萄糖醛酸镁的环境下,经过5d后,约会释放出40%的药物。置于无酶环境下,则胶束内药物释放率不足5%。通过进一步探讨,结果显示胶束载体不会给细胞产生毒性,在酶相应性癌症治疗领域内该一基因运输载体具有潜在性应用。 2.3 应用至荧光标记领域中 在医疗检测、药物探测及生物技术领域内,生化分析物荧光标记技术为一种主导分析法,主要具备主导作用。报道指出,进行点击化学反应主要对3-叠氮香豆素的聚乙二醇和炔基修饰的牛血清白蛋白应用端基。经过分析后,首先可将其合成一系列端基,主要为3-叠氮香豆素聚乙二醇,蛋白质模型主要应用炔基修饰的牛血清白蛋白,应用点击化学法发生反应之后,即可标记蛋白质原位荧光。将荧光基团接入,使用体积排阻色谱,可准确监测乙二醇和牛血清白蛋白反应程度。 还有研究指出,对细胞荧光进行检测时应用新型免疫荧光标记法,最终可合成两种化合物,其中一种化合物为6-叠氮-乙酸琥珀酰亚胺活性酯;另一种化合物为4-乙炔基-n-乙基-1,8-萘酰亚胺。经过点击化学荧光显色反应后,可形成一种新型免疫分析法,在细胞水平方面,表明同时使用该种方法、传统抗体标记技术及生物素-链霉亲和素免疫荧光检测系统,信号不

点击化学简介_罗璇

知识介绍 点击化学简介 罗 璇1 林 丹2 孙玉婷2 (1.湖北武汉市七里中学 430050;2.华中师范大学化学教育研究所 湖北武汉 430079) 摘 要 点击化学是2001年诺贝尔化学奖获得者美国化学家Sharpless提出的一种快速合成大量化合物的新方法。介绍了点击化学的概念及其主要反应类型,综述了点击化学作为一种新的合成方法在药物开发、聚合物合成和表面修饰等领域的应用,并对其发展前景进行了展望。 关键词 点击化学 药物开发 聚合物合成 表面修饰 环加成反应 “Click Chemistry”[1],常译成“点击化学”,是2001年诺贝尔化学奖获得者美国化学家Sharpless 提出的一种快速合成大量化合物的新方法,是继组合化学之后又一给传统有机合成化学带来重大革新的合成技术。目前,该技术已在众多研究领域得到迅速发展,如在DNA、自组装、表面修饰、超分子化学、树枝状分子、功能聚合物、组合化学、蛋白质组学、生物偶联技术和生物医药等方面展示了广泛的应用前景。 1 点击化学的提出 一个可成药化合物应满足以下条件:含有不少于30个非氢原子,相对分子质量不小于500,由C、N、O、P、S、C l和Br组成,在室温下稳定和对水、氧稳定等。1996年Guida等[2]通过计算机模拟计算得出具备此条件的化合物有1063个———这个惊人的数字大概是太阳中原子数目的100万倍;然而,到目前为止已知的满足此条件的化合物仅有106~107个,即只有很少的药物被开发出来。 从20世纪末开始,随着新药物需求的增长和高通量筛选方法的出现,使大量新型分子的合成成为化学合成的迫切任务,建立分子库、发展分子多样性成了重要的课题。在这个浩瀚的潜在备选分子结构库中,肯定有着解决各种化学问题的答案———那就是,许多不同的分子有着人们期待的功能。而困难就是如何找到这些分子。新功能分子的创造,往往是利用类似结构(做出与拥有目标功能的已知结构相类似的结构),或者从未经检验的结构中搜寻。 在现代化学150余年的历史中,发展出了将分子片段相互连接的多种技术。其中有相当多是很精致的,要求在严格控制的条件下细致地操作高活性的反应物。如1990年代的新兴技术———组合化学[3]就是这方面的一项重要技术,但在结构类型多样性上还有很大的局限性,且它比传统合成化学更依赖于单体官能团间的反应。点击化学的提出,则顺应了化学合成对分子多样性的要求。2001年, S cripps研究所的化学家,给那些最佳的化学反应起了一个名字———“点击化学”。这些反应易于操作,并能高产率生成目标产物,很少甚至没有副产物,在许多条件下运作良好(通常在水中特别好),而且不会受相连在一起的其他官能团影响。“点击”意味着用这些方法把分子片段拼接起来就像将搭扣2部分“喀哒”扣起来一样简单。无论搭扣自身接着什么,只要搭扣的2部分碰在一起,它们就能相互结合起来。而且搭扣的2部分结构决定了它们只能和对方相互结合起来。 2 点击化学反应 点击化学反应必须是模块化、应用范围宽、高产率和立体选择性的,通常还具有较高的热力学驱动力,使反应迅速,并得到单一产物。点击化学反应有着下列的共同特征[4]:(1)许多反应的组件是衍生于烯烃和炔烃,这些都是石油裂化的产物。从能量与机理的角度,碳—碳多重键都可以成为点击化学反应的活性组件。(2)绝大部分反应涉及碳—杂原子(主要是氮,氧,硫)键的形成。这与近年来重视碳—碳键形成的有机化学方向不同。(3)点击化学反应是很强的放热反应,通过高能的反应物或稳定的产物都可以实现。(4)点击化学反应一般是融合过程(没有副产物)或缩合过程(产生的副产物为水)。 (5)很多点击化学反应不受水的负面影响,水的存在反而常常起到加速反应的作用。 3 点击化学的主要反应类型 大部分点击化学反应许多年前就已经发现并广泛应用了,但它们尚未被充分地利用。这包括4类反应:(1)环加成反应;(2)亲核开环反应;(3)非醇醛的羰基化合物温和的缩合反应;(4)碳碳多键的加成反应。 3.1 环加成反应 点击化学的思想在杂原子参与的环加成反应中得到充分的体现,这些模块化融合的过程把2个不饱和的反应物结合起来,生成许多有趣的五元杂环和六元杂环。通常其反应基团是相对非极性的,这些融合反应涵盖广泛的反应,如Diels-Alder反应。最有用的是1,3-偶极环加成反应,其中以叠氮 · 3 · 2009年第10期 化 学 教 育

点击化学

2006年第26卷有机化学V ol. 26, 2006第3期, 271~277 Chinese Journal of Organic Chemistry No. 3, 271~277 zwg@https://www.sodocs.net/doc/4e3656812.html, * E-mail: Received February 14, 2005; revised May 11, 2005; accepted July 18, 2005.

272 有 机 化 学 V ol. 26, 2006 2.2 张力环的亲核开环反应 烯烃经过氧化、加成等修饰过程可生成一些高能量的中间体, 如环氧衍生物、氮杂环丙烷、环状硫酸酯、环状硫酰胺、吖丙啶鎓离子、环硫鎓离子等, 其S N 2开环反应是可靠的、立体专一的和几乎定量的, 常常有很高的区域选择性[4]. 例如顺环己二烯的双环氧化物2与胺的反应(Scheme 1), 在无溶剂的情况下, 生成氨基醇3; 在质子性溶剂中, 生成区域异构体4, 产物可通过重结晶分离[5] . Scheme 1 与环氧衍生物相比, 利用氮杂环丙烷氮上的取代基和溶剂的不同能很好地控制开环的区域选择性. 如当氮原子上的取代基为磺酰基时, 亲核试剂优先进攻空间位阻小的碳; 当取代基为酰基时, 则与之相反[6](Scheme 2). Scheme 2 在无溶剂的条件下, 氮杂环丙烷7和仲胺直接进行融合, 得到产物8和9, 8经过热裂解得到仲胺10; 9在170 ℃下加上两倍等量的p -TsOH?H 2O, 生成伯胺11 (Scheme 3). 氮杂环丙烷类的开环过程甚至在水中也能 Scheme 3 很容易进行, 化合物12与叠氮化物反应生成13 (50 ℃),与肼生成14 (25 ℃), 它们可分别与炔环加成和与β-二酮缩合. 以氨基醇(或β-卤代胺)为起始原料, 很容易生成高活性的吖丙啶鎓离子, 与之相类似的环硫鎓离子则更易形成. 吖丙啶鎓和环硫鎓化学最适合以水为溶剂, 随着溶剂中水的含量的增加, 产率和选择性也随之增加(Scheme 4). 2.3 环加成反应 “链接”化学的思想在杂原子参与的环加成反应中得到充分的体现, 这些模块化(modular)融合(fusion)的过程把两个不饱和的反应物结合起来, 生成许多有趣的五元杂环和六元杂环.

二氧化硅粒子的表面化学修饰——方法、原理及应用

二氧化硅粒子的表面化学修饰——方法、原理及应用 发表时间:2018-05-25T16:21:13.483Z 来源:《知识-力量》2018年4月上作者:欧阳绮红[导读] 在本文中,对二氧化硅粒子的表面化学修饰方法、原理及其应用展开分析和探讨,通过对所收集研究成果资料的整理和分析,在本文中对偶联剂法、表面接枝法和一步法的进行阐述和分析,(韩山师范学院) 摘要:在本文中,对二氧化硅粒子的表面化学修饰方法、原理及其应用展开分析和探讨,通过对所收集研究成果资料的整理和分析,在本文中对偶联剂法、表面接枝法和一步法的进行阐述和分析,同时也对各种改性方法应用优势及存在的问题进行重点介绍。关键词:二氧化硅粒子;表面化学修饰;方法;原理;应用;分析二氧化硅(SiO2)作为一种非金属氧化物,又被称之为硅石,通常情况下是作为一种无机材料进行应用,在实际应用中也具有较好的化学和热稳定性。其中尤其是将SiO2与有机基体复合,SiO2的优势性能可以更好的在复合材料中体现,然而由于表面存在大量的羟基和不饱和键,导致其表面能比较高,容易出现团聚的现象,在一定程度上也对有机基体分散均匀性造成不良影响,最终导致复合材料的内部出现缺陷[1]。基于此,结合所学知识内容和相关资料对SiO2粒子的表面化学修饰方法、原理及应用进行分析。 1化学修饰方法及机理分析 1.1偶联剂法 在偶联剂法当中又包含了后嫁接法和共缩聚法两种类型,其中后嫁接法主要是通过先对SiO2粒子进行制备,然后借助偶联剂与SiO2表面发生羟基反应,在SiO2表面接上有机基团以后,最后得到有机功能化的SiO2。而共缩聚法则是在SiO2制备过程中,通过模板剂在其中发挥作用,将含有特定基团的偶联剂与正硅酸乙酯加入到该体系中,最后合称为具有有机功能化的SiO2[2]。硅烷偶联剂作为SiO2表面修饰剂中应用较为广泛的一种,可以运用以下通式对其进行表示: 结合反应的条件,硅烷偶联剂对SiO2进行修饰主要分为有水反应和无水反应两种形式,如下图1所示。在有水的情况下,X基团发生水解反应生成羟基,然后形成Si—OH,在此基础上再与SiO2表面Si—OH发生脱水缩合反应,最后形成不具备规则性的多分子层;在无水的情况下,X基团直接与Si—OH发生反应,生成Si—O—Si,最后形成较为规则的单分子层。通常情况下,会选择在有水的情况下对SiO2进行修饰。 图1 硅烷偶联剂对SiO2进行修饰 1.2表面接枝法 表面接枝法在二氧化硅粒子表面化学修饰中进行应用,主要是通过SiO2粒子表面功能基团发生反应,实现改性。在表面接枝法中所涉及到的内容又包含了聚合生长接枝法和的偶联接枝法,其中对聚合生长接枝法进行应用,主要是单体在引发剂的作用背景下,可以直接性的从SiO2粒子表面进行聚合生长,也充分的体现出接枝率高的特点。对偶联接枝法进行应用则是通过无机粒子表面的高能团发生反应实现接枝,其中尤其是点击化学,采用这种方法可以有效将分子片段有效拼接起来,也充分体现出操作简便、发生反应条件温和的特点。 图 2 点击化学反应法将PLL接枝到SiO2的表面 1.3一步法 运用一步法对SiO2表面进行修饰,主要是通过StOber方法对SiO2微球进行制备,NH4+覆盖到SiO2的表面,在一定程度上也阻止了粒子团聚情况,并使之形成稳定较高的胶束。与此同时,苯二酚及其甲醛在催化作用下与OH-发生反应,并形成大量的羟甲基取代物,这种产物在NH4+静电作用下也沉积在SiO2的表面,形成酚醛树脂包覆的二氧化硅微球。最后再对其进行高温碳化,使其形成碳空心球[2]。 2二氧化硅粒子表面化学修饰的作用 2.1提高SiO2粒子分散性

点击化学在高分子研究中的进展

点击化学在高分子研究进展 高分子C091陈超096343 摘要点击化学是2001年诺贝尔化学奖获得者美国化学家Sharpless提出的一种快速合成大量化合物的新方法。本文首先概括了点击化学的概念、特征和类型,然后对其在高分子研究中的进展进行了综述。详细地梳理了点击化学与新型聚合方法的联用以及点击化学在合成功能聚合物和控制聚合物拓扑结构方面的应用与研究。 关键词:点击化学;高分子;聚合物;进展 “Click Chemistry”[1],常译成“点击化学”,是2001年诺贝尔化学奖获得者美国化学家Sharpless提出的一种快速合成大量化合物的新方法,是继组合化学之后又一给传统有机合成化学带来重大革新的合成技术。目前,该技术已在众多研究领域得到迅速发展,如在DNA、自组装、表面修饰、超分子化学、树枝状分子、功能聚合物、组合化学、蛋白质组学、生物偶联技术和生物医药等方面展示了广泛的应用前景。 1 点击化学的提出 从20世纪末开始,随着新药物需求的增长和高通量筛选方法的出现,使大量新型分子的合成成为化学合成的迫切任务,建立分子库、发展分子多样性成了重要的课题。在这个浩瀚的潜在备选分子结构库中,肯定有着解决各种化学问题的答案那就是,许多不同的分子有着人们期待的功能。而困难就是如何找到这些分子。新功能分子的创造,往往是利用类似结构(做出与拥有目标功能的已知结构相类似的结构),或者从未经检验的结构中搜寻。在现代化学150余年的历史中,发展出了将分子片段相互连接的多种技术。其中有相当多是很精致的,要求在严格控制的条件下细致地操作高活性的反应物。2001年,Scripps研究所的化学家,

相关主题