搜档网
当前位置:搜档网 › 点击化学的进展和应用

点击化学的进展和应用

点击化学的进展和应用
点击化学的进展和应用

点击化学的进展及应用

点击化学(Click chemistry),又称“链接化学”、“动态组合化学”,意为通过小的化学单元的连接,以较高的产率快速地进行化学合成,得到目标产物。这一概念最早由Barry Sharpless于2001年提出,在化学合成领域引起极大的关注,点击化学的主要特征有产率高,无副产物或副产物无害,反应原料易得,条件简单,选择性强,需较高热力学驱动力等[1]。经过十余年的发展,点击化学在有机合成方面有着很大的贡献,更是在药物开发和生物医用材料合成等诸多领域中成为最为吸引人的合成理念。本文主要介绍了一些经典的点击化学反应体系,并且结合其在有机合成中的实际应用,着重探讨与其相关的一些科研成果,主要包括组织再生,靶向药物递送,纳米材料表面修饰等几个方面。

点击化学反应主要有4种类型,环加成反应、亲核开环反应、非醇醛的羰基化学以及碳碳多键的加成反应。

环加成反应中,Huisgen环加成(CuAAC)是点击化学反应最为经典的体系,即叠氮化物与末端或内部炔烃之间在一价铜催化下,进行1,3—偶极环加成,得到1,2,3—三唑。叠氮化物与末端炔基容易安装在分子中,且较为稳定,该反应速率快,副产物少,广泛应用于在聚合物偶联、后修饰中,但催化所需的一价铜的毒性限制了其应用。因此,环张力引发的叠氮—炔环加成(SPAAC)被提出,由环烯和叠氮化物进行反应。此反应最大的改善在于无铜点击化学反应,避免了一价铜的毒性,通过叁键的角应变以及存在于环烯中的环应变提高了反应速率。但上面两个反应中用到叠氮化物,在反应的过程中具有一定的危险性。另外,我们极为熟悉的Diels—Alder反应,即共轭双烯与取代烯烃反应生成取代环己烯,也属于点击化学的这一类型[1]。

图1 Huisgen环加成反应

图2 叠氮—炔环加成反应

图3 Diels—Alder反应

巯基—烯反应是碳碳多键加成类型的主要反应,具有立体选择性、高产率等点击化学的特性,可在光或热引发下进行,常用于树枝状聚合物的合成与材料表面修饰,在材料和生物医学科学中有很多应用。但巯基化合物常常气味难闻,有毒,且容易被氧化,自身并不稳定,所以一定程度上限制了该反应的应用[1]。

图4 巯基—烯反应

亲核开环反应主要是三元杂原子由于环张力进行亲核开环,以释放其内在的张力能,如环氧衍生杂环丙烷、环状硫酸酯、环状硫酰胺、吖丙啶离子和环硫离子等。在这些三元杂环化合物中,环氧衍生物和吖丙啶离子是点击化学反应中最常应用的底物,可以通过它们的开环形成各种高选择性的化合物。

图5 亲核开环类的点击化学反应

非醇醛的羰基化学包括醛、酮与一级胺形成亚胺的席夫碱反应(Schiff base reaction),肼和羰基化合物脱水缩合等。

图6 席夫碱反应

图7 非醇醛的羰基化学

点击化学在组织再生,药物输送,材料表面修饰,实现聚合物功能化等方面具有诸多应用。在组织再生方面,Xifeng Liu等人使用无金属点击化学制备了可注射的自交联超支化聚(ε—己内酯),将32臂的超支化的PCL树枝状大分子分别通过叠氮基团和含有环炔基的BCN基团进行修饰,使超支化分子尽可能多的带有能够进行SPAAC反应的基团,将两组分的溶液在37℃下培育30分钟后,即通过点击化学反应实现凝胶化,得到的可注射水凝胶生物相容性好,可支持细胞黏附和生长,利于骨组织的再生[2]。

图8 树枝状大分子hyPCL32-BCN和hyPCL32-N3合成示意图

点击化学在不同的药物合成体系也有诸多应用。Zhe Zhang等运用了CuAAC 将β—环糊精和疏水的葡聚糖进行连接,通过β—环糊精为末端的葡聚糖链和苯并咪唑为末端的聚乙二醇链在生理条件下的通过主客体作用得到两亲性嵌段聚合物,并进一步自组装得到具有pH响应性,并且能够装载疏水性药物的胶束[3]。

图9 主客体作用下类两亲性嵌段聚合物的合成

Yavuz Oz等人通过巯基—烯反应实现还原氧化石墨烯为载体的靶向药物输送。还原氧化石墨烯纳米片上的二维结构由于其π—π共轭作用的叠加和其他疏水相互作用,对疏水性药物具有很高的负载能力,而成为一种优异的药物载体;并且,已知具有精氨酸—甘氨酸—天冬氨酸序列(RGD)的合成环肽对肿瘤细胞区域大量表达的整合蛋白具有很强的结合作用,将两者结合科得到靶向药物载体。研究人员将含有马来酰亚胺基团的儿茶酚在还原氧化石墨烯上进行非共价连接,由此引入的双键与带有巯基的具有RGD序列环肽进行点击化学反应,将肿瘤识别部分与药物载体部分相连接,用以输送药物[4]。

图10 定向载药还原氧化石墨烯制备图

Sangmin Lee等人将三乙酰化N—叠氮基乙酰基—D—甘露糖胺(Ac 3 ManNAz)连接在琥珀酸封端的聚(酰氨基胺)(PAMAM)树枝状聚合物上,制备含有叠氮基的高分子量纳米树枝状大分子,这种纳米尺寸的代谢前体因为实体瘤的高通透性和滞留效应,定位于肿瘤细胞,之后通过代谢糖工程,均匀地在肿瘤细胞表面上产生叠氮基团,之后通过体内生物正交点击化学,作为人造化学受体的叠氮基团和环炔基团修饰的药物结合,达到药物靶向递送的效果[5]。

图11 体内点击化学反应靶向输送药物示意图

材料的表面处理也是点击化学的一个重要应用。Cuong M.Q. Le等人通过可逆加成—断裂链转移(RAFT)法聚合合成聚(苯乙烯—马来酸酐)(PSM)共聚物。随后用糠胺衍生形成聚(苯乙烯—马来酸酐)糠酰胺(PSMF)作为高度水溶性的聚合物。然后,在超声波作用下下,碳纳米管(CNT)分散性提高,并且活化碳碳双键并引发其表面的化学反应,通过Diels—Alder反应,实现了在水中直接将PSMF接枝在CNT表面,得到PSMF / CNT复合材料[6]。

图12 通过Diels—Alder制备接枝碳纳米管示意图

S. Kosti?等人通过巯基-烯反应来增加木板的疏水性。先使用乙烯基三甲氧基硅烷-TVMS对木板进行硅烷化,经固化保证凝胶与木板表面羟基的共价连接引入双键,之后,将带有不同烷基的硫醇与木板表面双键进行反应,利用连接上的烷基增加木板疏水性,可达到保护木材料表面的目的[7]。

图13 木板表面改性增加疏水性示意图

在高聚物的功能化中,点击化学也起到很大的作用。Juan Yu等人通过ATRP 和“点击化学”的组合合成了基于乙基纤维素(EC),脂肪酸和糠醛的具有可持续性的纤维素类热塑性弹性体。将叠氮基引入溴化后的乙基纤维素。以四氢糠基甲基丙烯酸酯和甲基丙烯酸月桂酯为原料,通过ATRP分别合成均聚物,以及一系列双嵌段、无规共聚物,并以此引入炔基,通过点击反应将这些聚合物和乙基纤维素主链上的叠氮基团连接,得到刷状聚合物。不同组成所得产物具有不同的拉伸强度和延伸性能,以及相形态。制造了基于EC的不同侧链的可持续TPE,为开发完全基于生物质的材料提供了可持续的途径[8]。

图14 基于乙基纤维素的可持续型热塑性弹性体合成示意图通过上述科研实例,可表明点击化学在各领域合成方面的广泛应用,并能够与主客体、ATRP等结合,得到一系列较为复杂的聚合产物,具有较好的研究前景。但是,点击化学也存在着仍需发展改善的地方,如最经典的CuAAC反应所需催化剂为一价铜,具有一定的毒性,且容易被氧化而失效,反应过程中需用到易爆且剧毒的叠氮化钠等。其他点击化学反应体系也各有不完善的地方,仍待解决。此外,点击化学反应的高产率优势可能随着反应步骤的推进而逐渐降低而不再具有优势,这些不足之处均有待改进。

参考文献

[1] Meghani N M, Amin H H, Lee B J. Mechanistic applications of click chemistry

for pharmaceutical drug discovery and drug delivery[J]. Drug Discovery Today, 2017.

[2] Liu X, Ii A L M, Fundora K A, et al. Poly(ε-caprolactone) Dendrimer

Cross-Linked via Metal-Free Click Chemistry: Injectable Hydrophobic

Platform for Tissue Engineering[J]. Acs Macro Letters, 2016, 5(11):1261

?1265.

[3] Zhang Z, Ding J, Chen X, et al. Intracellular pH-sensitive supramolecular

amphiphiles based on host–guest recognition between benzimidazole and

β-cyclodextrin as potential drug delivery vehicles[J]. Polymer Chemistry,

2013, 4(11):3265-3271.

[4] Oz Y, Barras A, Sanyal R, et al. Functionalization of Reduced Graphene Oxide

via Thiol–Maleimide “Click” Chemistry: Facile Fabric ation of Targeted

Drug Delivery Vehicles[J]. Acs Applied Materials & Interfaces, 2017.

[5] Lee S, Jung S, Koo H, et al. Nano-sized metabolic precursors for heterogeneous

tumor-targeting strategy using bioorthogonal click chemistry in vivo.[J].

Biomaterials, 2017, 148:1.

[6] Le C M Q, Xuan T C, Lim K T. Ultrasound-promoted direct functionalization

of multi-walled carbon nanotubes in water via Diels-Alder “click

chemistry”[J]. Ultrasonics Sonochemistry, 2017, 39:321-329.

[7] S. Kosti?, J. K. Berg, K. Casdorff, et al. A straightforward thiol–ene

click reaction to modify lignocellulosic scaffolds in water[J]. Green

Chemistry, 2017, 19(17).

[8] Yu J, Lu C, Wang C, et al. Sustainable thermoplastic elastomers derived from cellulose, fatty acid and furfural via ATRP and click chemistry[J]. Carbohydrate Polymers, 2017, 176:83-90.

化学推进剂与高分子材料-2012年

化学推进剂与高分子材料-2012 年 目录· 2012 年 1 期
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
中国聚氨酯工业现状和“十二五”发展规划建议 翁汉元,朱长春,吕国会, 植物油多元醇的制备及其在聚氨酯硬泡中的应用进展 张俊良,赵巍,于剑昆, 中国汽车用聚氨酯材料发展方向 贾润萍,黄茂松, 聚氨酯反应注射成型在汽车玻璃包边中的应用 董火成,孙嘉鹏,朱小树,于文杰, HER 扩链剂的合成及其在聚氨酯弹性体中的应用 于剑昆,庄远,杨炜,梁敏, 缩短叠氮胺燃料作为双组元推进剂点火延迟的研究进展 池俊杰, 常伟林, 夏宇, 张晓勤, 线性二硝胺含能增塑剂的合成、性能及应用研究进展 王连心,刘飞,尚丙坤,薛金强, 纳米金属及其复合物在固体推进剂中的应用研究进展 齐晓飞, 张晓宏, 严启龙, 宋振伟, RDX 降感技术研究进展 刘波,刘少武,张远波,王琼林,王锋,李达,刘国涛, 卫星推进剂技术发展趋势概述 张广科,山世华,樊超, 采用叠氮基炔基点击化学方法提高 GAP 推进剂力学性能研究 关鑫,李建民, 复合改性双基推进剂燃烧性能研究 宋桂贤,吴雄岗, 降解偏二甲肼污水高效菌群的构建 范春华,夏本立,王煊军,王力, 蒽醌法生产过氧化氢工作液溶剂中重芳烃含量的分析方法研究 朱爱萍,申丽红, 火焰原子吸收分光光度法测定癸二酸二丁酯中钠含量的不确定度分析 王洋, 肖恒, 翁薇, 聚氨酯绝缘材料体积电阻率测量的不确定度评定 李杰妹,LI Jiemei 信息动态 Antaris 傅里叶近红外分析仪在高分子(多聚物)行业中的应用 赛默飞世尔科技 目录· 2012 年 2 期
? ? ? ? ? ?
用磷腈类催化剂合成的新型聚醚多元醇及其在聚氨酯泡沫制备中的应用新进展 于剑昆, 制备低不饱和度聚醚多元醇用 DMC 催化剂的研究进展 赵巍,ZHAO Wei 信息动态 端羟基聚丁二烯中羟基类型的 NMR 研究进展 郝利峰,孙庆锋,盛红亮, 低温固体推进剂的研究进展 赵庆华,李祎,王莉莉,崔玉春,常亮亮,Z 1,1-二氨基-2,2-二硝基乙烯的合成研究进展 冯晓晶,马会强,张寿忠,苗成才,马英华,

点击化学的进展及应用修订稿

点击化学的进展及应用 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

点击化学的进展及应用 点击化学(Click chemistry),又称“链接化学”、“动态组合化学”,意为通过小的化学单元的连接,以较高的产率快速地进行化学合成,得到目标产物。这一概念最早由Barry Sharpless于2001年提出,在化学合成领域引起极大的关注,点击化学的主要特征有产率高,无副产物或副产物无害,反应原料易得,条件简单,选择性强,需较高热力学驱动力等[1]。经过十余年的发展,点击化学在有机合成方面有着很大的贡献,更是在药物开发和生物医用材料合成等诸多领域中成为最为吸引人的合成理念。本文主要介绍了一些经典的点击化学反应体系,并且结合其在有机合成中的实际应用,着重探讨与其相关的一些科研成果,主要包括组织再生,靶向药物递送,纳米材料表面修饰等几个方面。 点击化学反应主要有4种类型,环加成反应、亲核开环反应、非醇醛的羰基化学以及碳碳多键的加成反应。 环加成反应中,Huisgen环加成(CuAAC)是点击化学反应最为经典的体系,即叠氮化物与末端或内部炔烃之间在一价铜催化下,进行1,3—偶极环加成,得到1,2,3—三唑。叠氮化物与末端炔基容易安装在分子中,且较为稳定,该反应速率快,副产物少,广泛应用于在聚合物偶联、后修饰中,但催化所需的一价铜的毒性限制了其应用。因此,环张力引发的叠氮—炔环加成(SPAAC)被提出,由环烯和叠氮化物进行反应。此反应最大的改善在于无铜点击化学反应,避免了一价铜的毒性,通过叁键的角应变以及存在于环烯中的环应变提高了反应速率。但上面两个反应中用到叠氮化物,在反应的过程中具有一定的危险性。另外,我们极为熟悉的Diels—Alder反应,即共轭双烯与取代烯烃反应生成取代环己烯,也属于点击化学的这一类型[1]。 图1 Huisgen环加成反应 图2 叠氮—炔环加成反应 图3 Diels—Alder反应 巯基—烯反应是碳碳多键加成类型的主要反应,具有立体选择性、高产率等点击化学的特性,可在光或热引发下进行,常用于树枝状聚合物的合成与材料表面修饰,在材料和生物医学科学中有很多应用。但巯基化合物常常气味难闻,有毒,且容易被氧化,自身并不稳定,所以一定程度上限制了该反应的应用[1]。 图4 巯基—烯反应 亲核开环反应主要是三元杂原子由于环张力进行亲核开环,以释放其内在的张力能,如环氧衍生杂环丙烷、环状硫酸酯、环状硫酰胺、吖丙啶离子和环硫离子等。在这些三元杂环化合物中,环氧衍生物和吖丙啶离子是点击化学反应中最常应用的底物,可以通过它们的开环形成各种高选择性的化合物。

有机化学的发展与应用

第一单元 有机化学的发展与应用 [学习目标定位] 1.知道有机化学的发展简史及发展现状,能说出有机化学发展史中做出突出贡献的几个科学家及其成就。2.知道有机化学在人类生活和社会经济发展中的作用。3.理解有机物的一般特点及与无机物的联系与区别。 1.有机化学是研究有机化合物的组成、结构、性质、制备方法与应用的科学。有机化学所研究范围包括有机化合物的来源、结构、性质、合成、应用及有关理论和方法等。 (1)下列三种有机物都是重要的化工原料,请说明它们的主要来源:①甲烷:天然气;②乙烯:石油裂解;③苯:煤的干馏。 (2)乙醇是酒类的主要成分。乙醇可由乙烯与水反应进行合成,反应的化学方程式是CH 2===CH 2+H 2O ――→催化剂 △ CH 3CH 2OH ,该反应类型是加成反应。 2.有下列有机物:①乙酸乙酯、②聚乙烯、③乙醇、④醋酸、⑤甲苯、⑥油脂、⑦淀粉、⑧蛋白质。回答下列问题: (1)属于高分子化合物的是②⑦⑧;

(2)人类食物的主要营养物质是⑥⑦⑧; (3)⑤的结构简式是,其有机物类别是芳香烃; (4)能够发生酯化反应的是③④; (5)能够发生水解反应的是①⑥⑦⑧; (6)既能与钠反应,又能与碳酸钠反应的是④。 探究点一有机化学的发展与应用 1.我国早期的化学实践活动 (1)3 000多年前已经用煤作为燃料。 (2)2 000多年前掌握了石油和天然气的开采技术。 (3)1 000多年前学会了从植物中提取染料、药物和香料等。 2.近代有机化学的形成 (1)19世纪初,瑞典化学家贝采利乌斯提出了有机化学概念,使有机化学逐渐发展成为化学的一个重要分支。 (2)1828年德国化学家维勒首次在实验室用无机盐氰酸铵(NH4CNO)合成了有机物尿素[CO(NH2)2],打破了早期科学家提出的“生命力论”。 (3)德国化学家李比希创立了有机化合物定量分析法和早期的“基团理论”。 (4)1848年~1874年间,关于碳的价键、碳原子的空间结构等理论逐渐趋于完善,之后建立了研究有机化合物的官能团体系,使有机化学成为一门较完整的学科。 3.现代有机化学的发展 (1)关于有机化学结构理论的建立和有机反应机理的研究,使人们对有机反应有了新的掌控能力。 (2)红外光谱(IR)、核磁共振谱(NMR)、质谱(MS)和X射线衍射(XRD)等物理方法的引入,使有

有机化学的发展和前景

有机化学的发展和前景 在人类多姿多彩的生活中,化学可以说是无处不在的。据统计,在工业发达国家的全部生产中,化学过程的工业占高比例,以美国为例占到30%。有机化学是研究有机化合物的来源、制备、结构、性能、应用以及有关理论和方法的学科。自从1828年合成尿素以来,有机化学的发展是日新月异,其发展速度越来越快。近两个世纪来,有机化学学科的发展,揭示了构成物质世界的有机化合物分子中原子链合的本质以及有机分子转化的规律,并设计、合成了具有特定性能的有机分子;它又为相关学科(如材料科学、生命科学、环境科学等)的发展提供了理论、技术和材料。有机化学是一系列相关工业的基础,在能源、信息、材料、人口与健康、环境、国防计划的实施中,在为推动科技发展、社会进步,提高人类的生活质量,改善人类的生存环境的努力中,已经并将继续显示出它的高度开创性和解决重大问题的巨大能力。 此外有机化学还是一门极具创新性的学科。在有机化学的发展中,它的理论和方法也得到了长足的进步。建立在现代物理学(特别是量子力学)和物理化学基础上的物理有机化学,在定量的研究有机化合物的结构、反应性和反应机理等方面所取得的成果,不仅指导着有机合成化学,而且对生命科学的发展也有重大意义。有机合成化学在高选择性反应的研究,特别是不对称催化方法的发展,使得更多具有高生理活性、结构新颖分子的合成成为可能。金属有机化学和元素有机化学,为有机合成化学提供了高选择性的反应试剂和催化剂,以

及各种特殊材料及其加工方法。有机化学以它特有的分离、结构测定、合成等手段,已经成为人类认识自然、改造自然具有非凡能动性和创造力的武器。近年来,计算机技术的引入,使有机化学在结构测定、分子设计和合成设计上如虎添翼,发展得更为迅速。同时,组合化学的发展不仅为有机合成提出了一个新的研究内容,而且也使高通量的自动化合成有机化合物成为现实。 在21世纪,有机化学面临新的发展机遇。一方面,随着有机化学本身的发展及新的分析技术、物理方法以及生物学方法的不断涌现,人类在了解有机化合物的性能、反应以及合成方面将有更新的认识和研究手段;另一方面,材料科学和生命科学的发展,以及人类对于环境和能源的新的要求,都给有机化学提出新的课题和挑战。有机化学将在物理有机化学,有机合成化学,天然产物化学,金属有机化学,化学生物学,有机分析和计算化学,农药化学,药物化学,有机材料化学等各个方面得到发展。 一、物理有机化学 物理有机化学是用物理化学的方法研究有机化学问题的科学,是一门指导有机化学其他学科发展的学科。它研究有机化合物的结构和性能、有机化学反应如何发生和为什么发生,从中找出规律,指导设计、合成新的物种,预见和发现新的有机化学现象。如有机化合物的结构与性能的关系,现代光谱、波谱和显微技术的发展为表征分子结构提供了基础。它对原有的各种反应机理和活泼中间体(协同反应、自由基反应、离子型反应、卡宾反应、激发态反应、电子转移反应等)

点击化学——释义与目标

第l期点击化学——释义与目标 cvcloaddition)代表非催化的过程,用cuAAc代表铜催化的过程。 由于其反应基团的特殊性质,这些反应非常有用。叠氮化物和炔烃的化学势能都很高(热力学不稳定),它们融合成三唑环时放出大于188千焦/摩的热量。而另一方面,这一反应的速率很慢,对于非活化(不是非常缺电子,也没有张力)炔烃,一般需要长时间加热。叠氮化物和炔烃对亲核试剂、亲电试剂和一般的溶剂均表现出惰性,目前,叠氮化物是唯一有此性质的1,3一偶极试剂。更重要的是,叠氮化物和炔烃几乎完全不与生物分子发生反应。它们小,不能形成强氢键,极性相对弱,对连接在其上的其他结构的性质没有显著的影响。而且,它们都可以很容易地引入到有机化合物中。 由于叠氮化物和炔烃的特殊活性——对其它所有试剂的惰性及相互反应的缓慢——它们可被利用于在酶这一“反应容器”中来组装那些能与酶紧密结合的分子,如图4所示。这一技术,被称作“原位点击化学”(“clickchemistry讥si£u”),用叠氮化物和炔烃来标记那些能结合酶上相近位置的分子。如果这些被标记的分子能够同时与目标作用,而使得在某个合适的方向上叠氮化物和炔烃足够的靠近,三唑环就可以生成并把这两部分与酶结合的组件联结起来。因为双臂结合总是比单臂结合要强,于是就可以得到一个能结合得更紧密的分子。这一技术不需要事前了解目标酶的结构,也不需要对酶进行活性测试。因为在这些实验中,如果叠氮化物和炔烃标记的分子没有结合到酶模板的合适位置,溶液中叠氮化物和炔烃的浓度使之不足以发生反应,所以,这个可用质谱轻易探测的三唑环产物一旦生成,就证明一个极佳的酶抑制剂的诞生。 enzyme+m。n。valentreagenls temary∞mp瞅b鬻!嘉烹髦d图4“原位点击化学”(“clickchemigtry加si£“”)技术 Fig.4The“clickchemistryinsi£u”technique 原位点击化学(clickchemistry流sifM)已被用来 发现多种酶的高亲和力的抑制剂,包括重要的神经 递质酶(neurotransmitterenzyme),如乙酰胆碱酯酶 (acetvlcholinesterase)n’8o;新陈代谢酶(metabolic enzyme)¨1,如碳酸酐酶(carbonicaIlhydmse)旧1;和艾 滋病毒(HIV)蛋白酶(HIVpmtease)旧。。在这些和其 它的研究中,可以明显看到三唑环在药物开发中有 着优越的特性。它有着大的偶极距,可以形成强的 氢键,能够参与丌.堆积作用,三唑环可以多种形色 与蛋白发生作用。把两个“看不见的”组件在酶的空 腔中合成三唑环这一发现正影响着原位药物开发工 作中成键的选择性。原位点击化学技术,作为对传 统药物合成与筛选方法的补充,正被世界上很多实 验室和药物公司所采用。 由于铜的细胞毒性和伴随生理调节(attendant bioregulation),铜催化的反应还未能直接应用于活体 细胞中,然而铜催化反应已在有机和材料科学中得 到了格外广泛的应用。这些应用包括合成生物活性 化合物,制备蛋白和聚核苷酸的共轭体(conjugalestode{ecIiOnbyMS proteins andpolynucleotides),合成染料,对已知高分子的改进和合成新型高分子,创造响应材料(responsivematerials),以及在表面上以共价键连结目标结构。其在新药开发上的应用已有综述。‘91这个反应正被深入研究,新的应用正在加速出现。m3 3结论 点击化学是一种简单的合成方式,以实现和创造新功能物质和材料为目的。它在很大程度上已取得成功,并将得到持续的发展。然而,铜催化的三唑环合成只是目前最成功的例子,它远不是精华所在。不难理解,很多化学家认为点击化学仅仅是一个单一的反应。我们希望,随着时间的推移,学术和实践经验能打破这一视野的限制。 点击化学拓展着结构的领域,这些结构可以由专业化学家,也可以由非化学家合成出来。基本原理很简单:化合物片断的连结反应越能抵抗外界影响,就越会有多样的片断得以连结以解决各种问题。 化学家没有像活细胞那样控制反应的能力,也没有

点击化学的研究与应用

点击化学的应用 摘要:“Click chemistry”[1],常译成“点击化学”,是2001年诺贝尔化学奖获得者美国化学家Sharpless提出的一种快速合成大量化合物的新方法,是继组合化学之后又一给传统有机合成化学带来重大革新的合成技术。 1.引言 2001年,笔者,Scripps研究所的化学家,给那些最佳的化学反应起了一个名字“点击化学”[2]。这些反应易于操作,并能高产率生成目标产物,很少甚至没有副产物,在许多条件下运作良好(通常在水中特别好),而且不会受相连在一起的其他官能团影响。“点击”这个绰号意味着用这些方法把分子片段拼接起来就像将搭扣两部分”喀哒”扣起来一样简单。无论搭扣自身接着什么,只要搭扣的两部分碰在一起,它们就能相互结合起来。而且搭扣的两部分结构决定了它们只能和对方相互结合起来。 2.点击化学反应 点击反应有着下列的共同特征: (1)许多反应的组件是衍生于烯烃和炔烃,这些都是石油裂化的产物。从能量与机理的角度,碳-碳多重键都可以成为点击化学反应的活性组件。 (2)绝大部分反应涉及碳-杂原子(主要是氮,氧,硫)键的形成。这与近年来重视碳-碳键形成的有机化学方向不同。 (3)点击反应是很强的放热反应,通过高能的反应物或稳定的产物都可以实现。 (4)点击反应一般是融合(fusion)过程(没有副产物)或缩合过程(产生的副产物为水)。 (5)很多点击反应不受水的负面影响,水的存在反而常常起到加速反应的作用。这些特征可在环氧化物与多种不同亲核试剂的开环反应中展现出来。如图1,因

为环氧化物是一个张力很大的三元环,开环反应是一个非常有利的过程。然而开环需要在特定的条件下发生:亲核试剂仅能沿着C-O键的轴向进攻其中一个碳原子,这样的轨道排列不利于与开环反应竞争的消去反应,从而避免了副产物并得到高的产率。此外,环氧化物与水反应的活性不高,而水的形成氢键能力与极性本质都有利于环氧化物与其它亲核试剂进行开环反应。 3.点击化学的反应类型 点击反应主要有4种类型:环加成反应,特别是1,3-偶极环加成反应[3],也包括杂环Diels-Alder反应[4];亲核开环反应,特别是张力杂环的亲电试剂开环;非醇醛的羰基化学;碳碳多键的加成反应。叠氮化合物和乙炔的环加成反应早在20世纪早期就有报道,但反应生成1,4-和1,5-二取代三唑混合物。后来使用Cu(?)催化剂可得到区域选择性的1,4-三唑且产率高达91%,反应时间也由原来的18 h 缩短为8h[6]。Cu(?)盐催化的反应机理[7]见图2。 亲核开环反应 亲核开环反应主要是三元杂原子张力环的亲核开环以释放它们内在的张力能,如环氧衍生杂环丙烷、环状硫酸酯、环状硫酰胺、吖丙啶离子和环硫离子等。在这些三元杂环化合物中,环氧衍生物和吖丙啶离子是点击反应中最常用的底物,可以通过它们的开环形成各种高区域选择性的化合物。此类反应可在醇P水混合

有机化学发展简史

有机化学发展简史i “有机化学”这一名词于1806年首次由贝采利乌斯提出。当时是作为“无机化学”的对立物而命名的。19世纪初,许多化学家相信,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。 1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。 由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下台成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。 从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述。 法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。 当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。 类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。 有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。 从1858年价键学说的建立,到1916年价键的电子理论的引入,是经典有机化学时期。 1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“-”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只

点击化学在高分子研究中的进展

Chemical Propellants & Polymeric Materials 2010年第8卷第1期 · 17 · 点击化学在高分子研究中的进展 陈晓勇 (中北大学材料科学与工程学院,山西太原 030051;上海交通大学化学与化工学院,上海 200240) 摘 要:首先概括了点击化学的概念、特征和类型,然后对其在高分子研究中的进展进行了综述。详细地梳理了点击化学与新型聚合方法的联用以及点击化学在合成功能聚合物和控制聚合物拓扑结构方面的应用与研究。 关键词:点击化学;高分子;聚合物;进展 中图分类号: O6-1 文献标识码: A 文章编号: 1672-2191(2010)01-0017-03 收稿日期:2009-08-24 作者简介:陈晓勇(1980-),男,助教,主要从事薄膜加工成型、流变学和树脂改性研究。电子信箱:zweigxychen@https://www.sodocs.net/doc/d910372628.html, 生命、医药和新材料等学科的高速发展要求化学学科能够快速、高效、多样、大规模地合成化合物以供选择,从而迅速满足生命、医药和新材料等学科的特别要求,如快速提高合成药物的质量和开发速度等。诺贝尔化学奖获得者Sharpless 提出点击化学概念[1],即希望化学反应像操作个人电脑一样(仅需点击鼠标)可控、简单、高效、快捷。该概念一经提出,便广受关注,现在更是国内外化学、生命、医药和材料学界共同关注的热点之一。它是一种基于高效、高选择性的C -X(X 为杂原子)成键反应来实现大量新化合物制备的一种可靠、实用的合成方法,是组合化学的简化与发展[2-4]。 点击化学应用最为成熟的是亚铜离子催化叠氮化物和端基炔生成1,4-二取代的1,2,3-三唑的Huisgen 偶极环加成反应(合成路线草图如下)[5]。 点击化学有如下特征:①原料来源广,反应适用范围广;②操作简单,条件温和,对氧、水不敏感;③产物收率高,选择性高;④易提纯产物,后处理简单;⑤快速、高通量合成;⑥反应需要高热力学驱动力(>83.7kJ/mol)。目前大概有如下4种类型的点击化学:①环加成,特别是在亚铜盐络合物催化下的炔基和有机叠氮或者叠氮和腈基之间的1,3-偶极环加成反应,也包括杂环Diels -Alder 反应;②亲核开环,特别是张力杂环的亲电试剂开环;③非醇醛的羰基化学反应;④碳碳多键的加成反应,特别是如环氧化的氧化反应[6]。 点击化学技术已渗透到诸多领域,如生命、高分子、超分子化学、功能材料、蛋白质组学、生物偶联技术和生物医药等[7]。文中仅对这几年点击化学在高分子学科中的应用、研究和发展方面进行综述。 1 在高分子研究中的进展 高分子科学由于其本身结构、合成过程和后处理工艺的复杂性与难度,点击化学在其中应用特别广泛与深入。 1.1 点击化学与非传统聚合法联用 传统聚合方法之外的聚合在制备新型聚合物材料方面的巨大优势已得到高分子学界的广泛认可,点击化学与这些非传统聚合法联用更是有利于巩固这个优势并拓展这些聚合法的应用范围。点击化学与ATRP(原子转移活性自由基聚合)联用最多,因为A T R P 方法通常使用卤化物作引发

点击化学的进展及应用

点击化学的进展及应用 点击化学(Click chemistry),又称“链接化学”、“动态组合化学”,意为通过小的化学单元的连接,以较高的产率快速地进行化学合成,得到目标产物。这一概念最早由Barry Sharpless于2001年提出,在化学合成领域引起极大的关注,点击化学的主要特征有产率高,无副产物或副产物无害,反应原料易得,条件简单,选择性强,需较高热力学驱动力等[1]。经过十余年的发展,点击化学在有机合成方面有着很大的贡献,更是在药物开发和生物医用材料合成等诸多领域中成为最为吸引人的合成理念。本文主要介绍了一些经典的点击化学反应体系,并且结合其在有机合成中的实际应用,着重探讨与其相关的一些科研成果,主要包括组织再生,靶向药物递送,纳米材料表面修饰等几个方面。 点击化学反应主要有4种类型,环加成反应、亲核开环反应、非醇醛的羰基化学以及碳碳多键的加成反应。 环加成反应中,Huisgen环加成(CuAAC)是点击化学反应最为经典的体系,即叠氮化物与末端或内部炔烃之间在一价铜催化下,进行1,3—偶极环加成,得到1,2,3—三唑。叠氮化物与末端炔基容易安装在分子中,且较为稳定,该反应速率快,副产物少,广泛应用于在聚合物偶联、后修饰中,但催化所需的一价铜的毒性限制了其应用。因此,环张力引发的叠氮—炔环加成(SPAAC)被提出,由环烯和叠氮化物进行反应。此反应最大的改善在于无铜点击化学反应,避免了一价铜的毒性,通过叁键的角应变以及存在于环烯中的环应变提高了反应速率。但上面两个反应中用到叠氮化物,在反应的过程中具有一定的危险性。另外,我们极为熟悉的Diels—Alder反应,即共轭双烯与取代烯烃反应生成取代环己烯,也属于点击化学的这一类型[1]。 图1 Huisgen环加成反应 图2叠氮—炔环加成反应

点击化学简介

万方数据

万方数据

万方数据

点击化学简介 作者:罗璇, 林丹, 孙玉婷, LUO Xuan, LIN Dan, SUN Yuting 作者单位:罗璇,LUO Xuan(湖北武汉市七里中学,430050), 林丹,孙玉婷,LIN Dan,SUN Yuting(华中师范大学化学教育研究所,湖北武汉,430079) 刊名: 化学教育 英文刊名:CHINESE JOURNAL OF CHEMICAL EDUCATION 年,卷(期):2009,30(10) 参考文献(13条) 1.Kolb H C.Finn M G.Sharpless K B查看详情 2001 2.Bohacek R S.McMartin C.Guida W C查看详情 1996 3.Merrifield R B查看详情 1963 4.董卫莉.赵卫光查看详情 2006(03) 5.Rostovtsev V.Green L G.Fokin V V查看详情 2002 6.Pringle W.Sharpless K B查看详情 1999 7.Kolb H C查看详情 2001 8.李娟查看详情 2007(11) 9.Sharpless K B查看详情 2006 10.Collman J P.Devaraj N K.Chidsey C E D查看详情 2006 11.Punna S.Kaltgrad E.Finn M G查看详情 2005 12.Kacprza K M.Maier N M.Lindner W查看详情 2006 13.张涛.郑朝晖查看详情 2008(08) 本文链接:https://www.sodocs.net/doc/d910372628.html,/Periodical_hxjy200910003.aspx

信息论在生物学和化学领域的应用

信息论在生物学和化学领域的应用 信息科学与技术学院** 指导教师** 摘要:信息论近年来迅速发展,已广泛渗入物理、化学、生物、医学、自动控制、计算机、人工智能、仿生学、经济和管理等不同领域。本文阐述信息论在现代生物学、化学等学科中的应用。 关键词:信息论;生物信息论;化学信息论;基因编码 一、概述 1948年,Claude E.Shannon在BSTJ发表题为“The Mathematical Theory of Communica-tion”的著名论文,创立了后人所称的“信息论”,揭开了人类认识史上的新纪元:由材料和能量的 时代开始走向自觉地认识和利用信息的时代。现在,人们越来越清楚地看到,Shannon信息论 的确是科学史上一座巍峨的里程碑,它把科学领进了信息世界的大门。但是,Shannon信息论 并没有穷尽信息问题的研究。正如Shannon本人所说:“企求一次就揭开自然的全部奥秘,这 种期望是不切实际的”。事实上,一个具有旺盛生命力的理论必然会不断地渗透到新的领域,不断地改变自己的面貌[1]。现如今,信息熵概念广泛渗入物理、化学、生物、医学、自动控制、计算机、人工智能、仿生学、经济和管理等不同领域。信息过程不仅是通讯研究的对象,而且被当作控制社会的手段来研究[2]。就正是由Shannon信息论经过不断的开拓、发展和升华的结果,它是信息理论发展的全新阶段。 二、信息论与生物学 (一)信息与遗传[2] 1944年细菌转化现象的发现,第一次证实了细胞核内DNA核酸是遗传的物质基础。1953 年沃森和克里克提出 DNA螺旋结构模型,认为是由两条多核苷酸链靠碱基间确定配对关系而 联系在一起,形成犹如螺旋状的长梯子,第一梯级相当一对碱基。梯级很多,若以500梯级的 大分子计,其结构可能取型的数目为10330信息量。历史上有过物种,最高估计是40亿种,其 信息量不过才是10g24*109=31.9比特,可见DNA结构可储存遗传信息量大得足以使每一物种 内各个个体间都可以有差别。

浅谈超分子化学的应用及前景展望

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐

有机化学的发展与应用教案

专题一认识有机化合物 第一单元有机化学的发展与应用 【学习任务】 1、了解有机化学的发展与应用,并能通过计算求得有机物的分子式。 2、了解利用基团理论、光谱分析等确定有机物结构的方法。 【学习准备】 在日常生活中,我们接触到各种各样的物质,你能说出哪些是有机化合物吗?它们在生活中有哪些应用呢? 【学习思考】 一、有机物的概述 1.概念:含有________的化合物。 2.组成元素:除碳外,通常还有氢、_____、_____,_____、_____及卤素等。 二、有机化学的发展 1.我国早期有机化学 (1)3 000多年前已经用煤作为燃料。 (2)2 000多年前就掌握了_____和_____的开采技术。 (3)从植物中提取_____ 等物质已经有上千年的历史。 2.有机化学的形成 (1)19世纪初,瑞典化学家_____ 提出了有机化学概念。 (2)19世纪中叶以前,科学家提出“_____ ”,认为有机物只能由动 物或植物产生,不可能通过人工的方法将无机物转变为有机物。 (3)1828年,德国化学家维勒利用无机物合成了第一种有机物尿素,冲破了“生命力 论”学说的束缚,打破了_____ 的界限。 3.现代有机化学 (1)_____ 得到广泛应用,成为人类赖以生存的重要物质基础。 (2)与其他学科融合形成了、以及等多个新型学科。 (3)1965年,我国科学家在世界上第一次用人工方法合成_____ ,标 志着人类合成蛋白质时代的开始。 三、有机化学的应用 糖类油脂蛋白质 石油天然气天然橡胶 2.具有特殊功能的有机物的合成和使用,改变了人们的生活习惯,提高了人类的生活质量。 3.有机物在维持生命活动的过程中发挥着重要作用。 4.利用药物(大多数是有机物)治疗疾病已经成为人类文明进步的重要标志。 思考讨论:含碳元素的化合物一定是有机物吗? 提示:含碳元素的化合物不一定是有机物,如碳的氧化物、碳酸、碳酸(氢)盐、KSCN、

有机化学的发展简史

有机化学的发展简史 “有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。 1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。 由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。 从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。 法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。 当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。 类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。这个问题成为困扰人们多年的谜团。 从1858年价键学说的建立,到1916年价键的电子理论的引入,才解开了这个不解的谜团,这一时期是经典有机化学时期。 1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。 1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念:同分异构体,圆满地解释了这种异构现象。

1.1有机化学的发展与应用

1.1有机化学的发展与应用D

第一单元有机化学的发展与应用 [学习目标定位] 1.知道有机化学的发展简史及发展现状,能说出有机化学发展史中做出突出贡献的几个科学家及其成就。2.知道有机化学在人类生活和社会经济发展中的作用。3.理解有机物的一般特点及与无机物的联系与区别。 1.有机化学是研究有机化合物的组成、结构、性质、制备方法与应用的科学。有机化学所研究范围包括有机化合物的来源、结构、性质、合成、应用及有关理论和方法等。 (1)下列三种有机物都是重要的化工原料,请说明它们的主要来源:①甲烷:天然气;②乙烯:石油裂解;③苯:煤的干馏。 (2)乙醇是酒类的主要成分。乙醇可由乙烯与水反应进行合成,反应的化学方程式是CH2===CH2 CH3CH2OH,该反应类型是加成反+H2O――→ 催化剂 △ 应。 2.有下列有机物:①乙酸乙酯、②聚乙烯、③乙醇、④醋酸、⑤甲苯、⑥油脂、⑦淀粉、⑧蛋

(3)德国化学家李比希创立了有机化合物定量分析法和早期的“基团理论”。 (4)1848年~1874年间,关于碳的价键、碳原子的空间结构等理论逐渐趋于完善,之后建立了研究有机化合物的官能团体系,使有机化学成为一门较完整的学科。 3.现代有机化学的发展 (1)关于有机化学结构理论的建立和有机反应机理的研究,使人们对有机反应有了新的掌控能力。 (2)红外光谱(IR)、核磁共振谱(NMR)、质谱(MS)和X射线衍射(XRD)等物理方法的引入,使有机分析达到了微量、高效、准确的程度。 (3)逆推法合成设计思想的诞生,使有机合成路线的设计实现了程序化并进入计算机设计时代,大大提高了新化合物的合成速度。 (4)有机化学还能破译并合成蛋白质,认识并改造遗传分子,第一次从分子水平上揭示生命的奥秘。1965年,我国科学家在实验室中成功利用无机物合成了具有生命活性的蛋白质——结晶牛胰岛素。 4.有机化学的应用 (1)人类衣食住行用到的天然有机化合物有糖类、油脂、蛋白质、石油、天然气、天然橡胶等。(2)合成的有机物也广泛应用于生活中,如合成纤维、塑料、合成橡胶、合成药物等。

苏教版有机化学专题1第一单元《有机化学的发展与应用》教案

第一单元《有机化学的发展与应用》 1、有机化学的发展与应用 教学目的要求: 1、了解有机化学的发展简史,知道人类对客观事物的认识是循序渐进、螺旋上升的过程。 2、通过对有机化学于日常生活、工农业生产、生命科学等结合较紧密的内容的交流与讨论,使学生认识到人类生活离不开有机物,有机化学与其它学科的交叉渗透日益增多,是许多新诞生领域的研究基础。 3、通过调查研究、查阅资料等探究活动,了解有机化学的发展现状,进一步培养学生学习和研究化学的志向。 教学重点难点:对有机化学与有机物的认识 教学过程: 一、有机化学的发展。 1、我国早期的有机化学: 我们的祖先在3000多年前用煤作燃料,2000多年前掌握石油和天然气的开采,从植物中提取染料和香料等物质已经有上千年的历史。 2、有机化学的形成: 19世纪初,瑞典化学家贝采利乌斯提出有机化学概念,使有机化学逐渐发展成为化学的一个重要分支。 3、现代有机化学: 21世纪的今天,各种合成有机物已经渗透到各个领域;有机化学已经与其它学科融合形成了多个新型学科,应用前景十分广阔。 介绍:德国化学家维勒 1828年,贝采利乌斯的学生、德国年轻的化学家维勒,在实验室中加热无机物氰酸铵时无意中得到了尿素。NH4CNO CO(NH2)2 第一次用无机物合成有机物。 有机物的生成不必借助于所谓生命力的作用。 二、有机化学的应用 1、人类的衣食住行离不开有机物: 天然有机物:如糖类、油脂、蛋白质、石油、天然气、天然橡胶等。 合成有机物:塑料、合成纤维、合成橡胶、合成药物等。 2、具有特殊功能有机物的合成和使用改变了人们的生活习惯,提高了人类的生活质量。 3、有机物在维持生命活动的过程中发挥着重要作用。 生命体中许多物质都是有机物,如细胞中存在的糖类、脂肪、氨基酸、蛋白质和核酸等,都是有机物。 4、药物中大多数是有机化合物,在帮助人们战胜疾病,延长寿命的过程中发挥着重要的作用。 5、1965年,世界上第一次用人工方法合成的蛋白质——结晶牛胰岛素在中国诞生。 课堂小结: 一、有机化学的发展。

点击化学研究进展及其在药学领域的应用

点击化学研究进展及其在药学领域的应用 摘要:点击化学是利用一系列可靠的、高效的、选择性的而又具模块化的化学反应生成含杂原子的化合物,从而实现碳杂原子的连接(C-X-C) ,是用最佳的化学反应合成的分子来实现期望得到的功能,从而避免复杂的化学反应。此后,一价铜催化端炔和有机叠氮的环加成反应引起了人们极大的重视,并迅速在医药化学、生物和生物医学、组合化学和材料科学等领域得到广泛的应用。 关键字:点击化学叠氮 1,3-环加成反应三氮唑药物合成 叠氮化合物和乙炔的环加成反应早在20世纪早期就有报道,Huisgen[1]将1,3-偶极环加成反应用于氮杂三唑的合成。1,3-偶极环加成反应是一类非常有趣和与众不同的环化反应,属于周环反应的一种。在氮杂唑的合成中,炔基作为亲偶极体,而重氮或叠氮化合物的激发态具有1,3-偶极结构,作为l,3-偶极体参加反应。最初,反应需在甲苯回流的高温条件下进行。炔基上两个碳原子的电子云密度相差不大,而生成两种环化产物所需的活化能也十分接近,因此会有1,4-和l,5-两种位置异构体。考虑到实验安全性以及两个异构体分离的问题,这个反应并没有得到有机化学家足够的重视。传统的Huisgen反应因为如下的缺点:1)底物往往需要吸电子的基团活化,在炔基的两端有强的吸电子基团的化合物显示了最好的活性,在炔基的一端或叠氮上连有强吸电子的化合物也能发生Huisgen反应,没有活化基团的底物不能发生1,3-偶极反应;2)热Huisgen环加成反应速度慢、温度高,通常都需要在甲苯乙醇中回流,或再DMF、DMSO中加热数十小时,甚至数天,才能完成反应。此外,由于许多有机叠氮是不稳定的,在高温反应时通常面临着分解甚至爆炸的潜在危险;3)热Huisgen反应区域选择性差,产物为1,4-和1,5-二取代的混合物,对末端区来说,区域选择性的问题尤其突出,通常得到比值接近1:1的混合物。结果,发现更温和、更好选择性的条件来完成Huisgen环加成,一直是迫切的需要。 合成化学家一直试图改进反应的产率和区域选择性,进行了各种有益的尝试。Sharpless研究小组[2]长期从事碳与杂原子之间化学键的形成研究,并对氮杂三唑的合成反应进行了改进。Sharpless等发现,CuS04和抗坏血酸钠ⅣC)在室温下原位(in situ)产生的一价铜能够高效地催化末端炔和有机叠氮发生Huisgen环加成反应,可以在十分温和的条件下只生成l,4.二取代的氮杂三唑。此反应可以在水相中进行,不需要通过柱层析的方法就可以得到纯品,且可得到区域选择性的1,4-三唑,且产率高达91%,反应时间也由原来的18 h缩短为 8 h。Sharpless等在改进后的Huisgen 1,3-偶极环加成基础上提出了“Click Chemistry”的概念,以表明这是十分理想的有机化学反应。于是,它是一种新型、简单、快速并且是新世纪最引人注目之一的合成方法。其核心是利用一系列可靠的、高效的、选择性的而又具模块化的化学反应生成含杂原子的化合物,从而实现碳杂原子的连接(C-X-C) ,是用最佳的化学反应合成的分子来实现期望得到的功能,从而避免复杂的化学反应。此后,一价铜催化端炔和有机叠氮的

相关主题