搜档网
当前位置:搜档网 › 甘草酸的纯化工艺研究分析

甘草酸的纯化工艺研究分析

甘草酸的纯化工艺研究分析
甘草酸的纯化工艺研究分析

河北工大学

毕业论文

作者:贾晋阳学号:

学院:化工学院

系(专业):制药工程

题目:甘草酸的纯化工艺研究

指导者:

(姓名) (专业技术职务)

评阅者:

(姓名) (专业技术职务)

2012年6月9日

甘草酸的纯化工艺研究

摘要:从6种树脂中通过静态吸附筛选出了ADS-17树脂作为提取纯化甘草酸的最佳树脂。研究了pH值、上样液流速、上样液浓度、洗脱液浓度、洗脱液用量这五个因素对甘草酸吸附、解吸作用的影响,并通过正交试验考察了最佳工艺条件。实验结果证明最佳吸附条件为:pH值为6.0、上样液流速为2BV/h、上样浓度为10mg/ml;最佳解吸条件为:洗脱剂10%乙醇、洗脱液用量234ml。在实验得出的最佳条件下,甘草酸的纯度为65.07%,回收率为61.39%。另外,我们还在氢氧化钠回流的条件下进行了甘草酸构型的转换,结果表明转构后的甘草酸纯度为87.66%,产率44.1%。

关键词:大孔树脂吸附纯化甘草酸

Title The research of the Purification Technology of

Glycyrrhizic Acid

Abstract

By static adsorption, ADS-17 resin is filtered as the optimal resin to extract purified glycyrrhizic acid from the six kinds of resins. The study of pH, supernatant flow rate, supernatant concentration, eluent concentration and eluent amount shows these five factors effects on the adsorption and desorption of glycyrrhizic acid, and optimum conditions were investigated by orthogonal experiment. Experimental results showed that the optimum adsorption conditions as follows: pH 6.0, supernatant flow rate for 2BV/h, the concentration of the supernatant for 10mg/ml; best desorption conditions were as follows: 10% ethanol, eluent amount for 234ml. Under optimal conditions droved by experiment, the purity of glycyrrhizic acid was 65.07%, recovery rate was 65.3%. In addition, we completed the structural conversion of glycyrrhizic acid under a condition of sodium hydroxide's reflux; results showed that the purity of glycyrrhizic acid reached 87.66%; recovery rate reached 44.1% after the conversion.

Keywords:Macroporous resins Adsorption Purification

Glycyrrhizic Acid

目次

1 引言 (1)

1.1 甘草酸简介 (1)

1.2 甘草酸及其生产概述 (2)

1.3 大孔树脂分离纯化技术 (3)

1.4 本论文研究内容 (3)

2 实验原理及材料 (4)

2.1 实验原理 (4)

2.2 实验试剂和设备 (5)

3 甘草酸的纯化研究 (7)

3.1 大孔树脂的预处理及再生 (7)

3.2 甘草酸检测方法的确定 (8)

3.3 树脂种类的选择 (9)

3.4 甘草酸的动态吸附 (11)

3.5 甘草酸的梯度洗脱 (14)

3.6 18β-甘草酸到18α-甘草酸的构型转换 (18)

4 实验数据与讨论 (19)

4.1 静态实验结果分析 (20)

4.2 动态试验结果分析 (20)

4.3 构型转换结果分析 (20)

结论 (22)

参考文献 (23)

致谢 (25)

附录 (26)

1引言

甘草酸(GA ),是从甘草的根茎中提取出的一种高甜度、低热值的具有天然活性的成分,其在甘草中的存在形式主要为钾盐和钙盐,游离的甘草酸含量并不多。它的植物来源——甘草也是一种我国的传统中药,具有悠久的使用历史,中医上认为:甘草味甘,是补脾益气,止咳、止痛的良药,并且已被美国FDA 收录为安全无毒物质[1]。

科学研究表明,甘草中的主要成分有甘草酸和黄酮类,具有抗炎、镇咳、抗肿瘤、等作用,有较强的人体免疫功能促进作用[2],在医疗领域具有极高应用价值。因此本文阐述了将大孔树脂用于甘草酸纯化的原理、方法及应用,并在此基础上提出本论文的研究内容。

1.1 甘草酸简介

中文名:甘草酸,又称甘草甜素、甘草皂甙 CAS :1405-86-3 英文名:Glycyrrhizic acid 分子式:C 42H 62O 16 分子量:822.92

化学名:(3β,20β)-20-羧基-11-氧代-30-去甲基-(18α-H )-整齐墩果-12-烯-3β-羟基-2-O-β-D-葡萄吡喃糖醛酸基-α-D-葡萄吡喃糖醛酸[3]

结构式为:

O

O

O

O

OH

HO OH

HO

O HO

HO

O

OH

H

H

O

H

O

OH

甘草酸是一种三萜皂苷类天然药物,分解温度220℃,在醋酸中为无色柱状结晶,易溶于热水,可溶于热稀醇,但难溶于无水乙醇或乙醚[4]。其主要用途有:

(1)作为高甜度、低热值的食品添加剂,可添加于食品、饮料中作甜味剂,或在黄色或棕色食品、饮料中作天然色素[5]。

(2)用于化妆品及卷烟业,可间接的增强皮质甾类化合物的作用,主要用霜、露、乳液、奶类等化妆品,能降低化妆品的毒性,也可用于防止化妆品的过敏反应,适于高级发用或肤用化妆品[6]。

1.2甘草酸及其生产概述

由于甘草成分复杂,仅黄酮类就有150多个成分,其分离、纯化较为复杂、难度较高。目前甘草酸及其盐的生产工艺方法较多[7],其中主要有溶剂法和树脂法二种。

1.2.1水提法

水提法是使用时间最早,也是最为常用的一种溶剂提取法,其特点在于操作简单,成本低廉,但得率较低,据1990年中国药典方法测定,甘草酸得率仅为3%。这是在因为甘草酸中水容性杂质较多,水提法提取出的杂质也相应增加,在去除杂质的过程中损失了大量甘草酸。

1.2.2氨性醇提取法

在对甘草酸的提取研究中,发现用含氨0.3%的60%乙醇回流,对甘草酸的提取具有较好的效果。甘草酸得率达10.49%,比水提法提高了两倍,并且避免了糖类、淀粉等水溶性杂质的混入,利于进一步的精制过程。但在加热回流过程中,有氨气逸出会造成环境污染问题,氨的损失也不能忽略。

1.2.3聚酰胺法

将甘草酸粗品制成的单铵盐,再吸附在粉末状的聚酰胺上,然后洗脱掉杂质,再用极性溶剂洗脱甘草酸单铵盐,最后用强酸型交换树脂脱胺,制得甘草酸。该方法获得的甘草酸纯度很高,但操作繁琐,不易进行工业化生产。

1.2.4离子交换树脂法

该法利用甘草酸中含有3个羧基与离子交换树脂形成离子键,吸附在树脂上,而其他一些不含羧基的杂质不能被吸附,进而达到分离的目的。日本曾以弱碱性树脂吸附甘草酸, 再用氨水洗脱下来,进而得到纯度较高的产品。但是离子交换树脂法处理量小,不适宜大批量生产。

1.2.5大孔吸附树脂法

大孔吸附树脂法是一种较为经济实用的方法。通常选用的树脂有D101、NKA、X-5、XAD、DA 201以及AB-8等。利用大孔树脂的空间结构、氢键进行吸附,以水或稀低级醇洗脱,收集洗脱液,回收溶剂后可得到较高纯度的甘草酸。该法的优点在于操作简单、易于大批量生产,大孔树脂可重复使用,缺点是即使回收溶剂,消耗的乙醇依旧较多,需要控制成本[8-10]。

1.3大孔树脂分离纯化技术

大孔树脂(macroporous resin)作为一种新材料,近年来已广泛应用于天然产物的分离,已成为分离有机化合物特别是水溶性化合物的一种有效手段。大孔树脂对甘草酸粗品的吸附量较大,且能再生并反复使用。该方法操作简便,成本低,是目前纯化甘草酸经济有效的方法。

据报道,20世纪80年代日本首先采用大孔树脂来分离纯化甘草酸,并且使收率显著提高,成本也降低了。随后我国也对该项工艺路线进行了相关研究,但由于商业机密等原因披露较少。所以,虽然我国甘草的出口量很大,但多为原料粉或浸膏等初加工产品,不仅工艺落后,而且对环境也有严重污染。因此,我们设计了这个实验,研究几种大孔树脂对甘草酸的分离纯化效果,改进纯化甘草酸的工艺条件[11-13]。

1.4本论文研究内容

大孔树脂应用于甘草酸的分离已将近20年[14],但纵观现有文献不难发现,许多大孔树脂发现时间较早,虽然研究较为透彻,但分离纯化效果已经落后于新型的选择性大孔吸附树脂,因此有必要对其进行重新研究。

本论文的主要实验内容:

1、利用静态吸附实验,筛选出吸附量和纯化程度比较高的大孔树脂。

2、通过动态吸附实验,确定大孔树脂的泄漏点,进而计算吸附量,并获得影响吸附量的具体实验因素。

3、通过梯度洗脱实验,确定洗脱剂的最佳洗脱浓度。

4、由解吸实验,获得洗脱液中甘草酸的含量分布,绘制解吸曲线。

5、最后将纯化后的甘草酸置于碱液中蒸煮,将具有毒副作用的18β构型,转变为具有疗效的18α构型。

2实验原理及材料

2.1 实验原理

本实验以低含量甘草酸为原料,利用大孔树脂的空间结构对甘草酸及杂质的吸附能力的差异,从甘草酸粗提液中选择性吸附甘草酸,再通过吸附和解吸附的过程,用一定浓度的乙醇溶液将其从树脂柱中洗脱下来,从而达到分离纯化甘草酸的目的。

由甘草酸的结构上看可以发现,甘草酸分为两个主要部分,一部分是由五环三萜组成的疏水基;另一部分为两个葡萄糖环组成的亲水基,这就导致了甘草酸不仅具有疏水性还具有亲水性。而大孔树脂是吸附性和筛选性相结合的分子分离材料,其吸附性是由于范德华力或氢键的作用,而筛选原理由树脂本身的孔型结构所决定[15]。所以,需要筛选出孔径大小与甘草酸近似,孔隙率较高,在水中易于与甘草酸通过范德华力或氢键结合,在一定浓度的乙醇溶剂中易于与甘草酸分离的大孔树脂。

2.2实验试剂和设备

2.2.1实验试剂

名称级别生产厂家

甲醇色谱纯天津市康科德技术有限公司

磷酸色谱纯天津市康科德技术有限公司

乙腈色谱纯天津市科密欧化学试剂有限公司

乙酸铵分析纯天津市化学试剂一厂

冰醋酸分析纯天津市科密欧化学试剂有限公司

氢氧化钠分析纯天津市科密欧化学试剂有限公司

碳酸氢钠分析纯天津市天大化工实验厂

氯化钠分析纯天津市风船化学试剂科技有限公司

甲酸分析纯天津市化学试剂一厂

正丁醇分析纯天津市科密欧化学试剂有限公司

乙酸乙酯分析纯天津市科密欧化学试剂有限公司

氨水分析纯天津市科密欧化学试剂有限公司

无水乙醇分析纯天津市风船化学试剂科技有限公司

无水甲醇分析纯天津市江天化工技术有限公司

浓硫酸分析纯天津市光复精细化工研究所甘草酸80%西安融升生物科技有限公司

甘草酸25%西安融升生物科技有限公司

甘草酸单铵盐成都曼思特生物科技有限公司盐酸

蒸馏水

牌号树脂结构极性粒径范围

(mm)

平均孔径

(nm)

孔隙率

(%)

比表面

(m2/g)

X-5交联苯乙

烯-二乙烯

苯共聚物

非极性0.3-1.25 29-30 50-60 500-600

AB-8交联苯乙

烯-二乙烯

苯共聚物

弱极性0.3-1.25 13-14 42-46 480-520

NKA 交联苯乙

烯-二乙烯

苯共聚物

非极性0.3-1.0 20-22 - 570-590

ADS-17交联苯乙

烯-二乙烯

苯共聚物

中极性0.3-1.25 25-30 45-50 90-150

D101 交联苯乙

烯-二乙烯

苯共聚物

非极性0.3-1.25 25-28 42-46 600-700

D4020- 非极性0.3-1.25 10-10.5 - 540-580

名称型号生产厂家

循环水真空泵SHZ-D(Ⅲ)巩义市英峪予华仪器厂

层析柱φ2.2×30cm

旋转蒸发器RE52CS 上海亚荣生化仪器厂

恒温水浴锅B-220 上海亚荣生化仪器厂

色谱泵LC-10ATvp 日本岛津

色谱控制器AT-530 Auto Science

紫外检测器SPD-10Avp 日本岛津

色谱泵600 Waters

色谱控制器600 Waters

二极管阵列检测器2996 Waters

薄层层析硅胶板GF-254 青岛海洋化工厂分厂

超声波清洗器PS-10A 东莞市洁康超声波设备有限公司

紫外分析仪ZF7巩义市予华仪器有限责任公司

玻璃点样毛细管华西医科大学仪器厂

3甘草酸的纯化研究

3.1大孔树脂的预处理及再生

3.1.1 大孔树脂的预处理[16-19]

工业级新树脂在工厂被合成出来后不能直接使用,使用前需要用一些方法进行预处理,以除去树脂中所含少量的低聚物,有机物及有害离子,才能保证其理化特性符合要求。以下为一般树脂的预处理流程:

①以丙酮为溶剂浸泡树脂24h(1BV为1个树脂床体积)。

②用2BV的乙醇以2BV/h的流速通过树脂柱,并浸泡树脂4~5h。

③用乙醇2BV/h的流速洗涤树脂,至流出液加水不呈白色混浊为止,再用蒸馏水以同样流速洗净乙醇。

④用2BV的5%HCl溶液以4~6BV/h的流速通过树脂层,并浸泡树脂2~4h,而后用水以同样流速洗至出水pH中性。

⑤用2BV的2%NaOH溶液以4~6BV/h的流速通过树脂层,并浸泡树脂2~4h,而后用水以同样流速洗至出水pH呈中性。

将处理完的树脂置于水环境中密封保存,备用。

3.1.2大孔树脂的再生

树脂反复使用多次后,会在其表面或者内部残存很多非吸附性杂质或吸附性杂质,导致树脂颜色加深,吸附能力下降,柱效降低。因此,需要对大孔树脂进行再生处理。

处理前首先要明确树脂中残留物的种类,最常见的是树脂受到有机物污染,可以用1%NaOH、10%NaCl盐碱混合溶液浸泡处理。若是由于大孔树脂放置时间过久,受到微生物污染后,可重新进行预处理或者用小于1%双氧水溶液浸泡、水洗即可。若大孔树脂失水变干时,可以用乙醇浸泡,然后再水洗。若树脂受到铁污染时,可以用4~10%的盐酸溶液浸泡处理[20]。

3.2 甘草酸检测方法的确定

3.2.1 TLC法

取甘草酸粗品2.0g用10ml70%乙醇溶解,置于温包上加热5分钟,然后趁热过滤,得到红棕色溶液作为原料对照品。配制展开剂正丁醇:水:冰醋酸=4:2:1和4:1:1[21],取对照品和标准品点板,用两种展开剂展开,在紫外灯光下观察。展开剂为正丁醇:水:冰醋酸=4:2:1的硅胶板有拖尾现象,展开时间约为2小时;展开剂为正丁醇:水:冰醋酸=4:1:1的硅胶板分离较好,Rf约为0.6,展开时间约为1.5小时。

3.2.2HPLC法

色谱条件为流动相:甲醇:0.2%mol/L醋酸铵:冰醋酸=67:33:1检测波长为254nm[22],流量1.0ml/min,柱温维持在28-30℃。先由标准品进样,获得甘草酸的保留时间。再用处理过的原料对照品进样,与标准品谱图对比获得原料中甘草酸的含量。

结果发现在甘草酸的高效液相色谱上,邻近甘草酸的位置存在许多杂质峰,TLC法得

到的点不能说明只存在甘草酸,还可能存在与甘草酸类似的杂质,该方法不能用于甘草酸的定性分析。所以只选用HPLC法进行检测。

3.2.3流动相的选择

根据文献记载,甘草酸高效液相色谱使用的流动相主要分为两类,一类为乙腈体系,即乙腈:0.1%磷酸=35:65;另一类为甲醇体系,即甲醇:0.2%mol/l乙酸铵:乙酸=67:33:1[23]。我们将两种体系都用于高效液相色谱的检测,发现乙腈体系峰形较好,杂质峰较少,保留时间较长,出峰时间较晚,但是由于乙腈毒性较大,价格较贵,与甲醇换相时易产生气泡阻塞泵体。甲醇体系的保留时间较短,峰形较乙腈体系差,但杂质峰较多,更能说明样品中甘草酸的实际含量,且较短的保留时间有利于缩短检测时间增加检测效率。

在流动相为甲醇:0.2%mol/l乙酸铵:乙酸=67:33:1中,甘草酸峰值与杂质峰未完全分开,积分结果不准确。所以,我们调整了流动相比例,甲醇:0.2%mol/l乙酸铵:乙酸=60:40:1,保留时间变长,甘草酸峰值与杂质峰的分离不理想。将流动相比例调整为甲醇:0.2%mol/l乙酸铵:乙酸=65:35:1,保留时间相应变短,用原料进样,甘草酸峰附近未发现杂质峰。

因此,确定高效液相色谱的流动相为甲醇:0.2%mol/l乙酸铵:乙酸=65:35:1。3.3树脂种类的选择

准确称取六种大孔树脂(AB-8、ADS-17、D4020、X-5、D101、NKA)各5g,分别置于100ml锥形瓶中,加入25%甘草酸原料30ml,浓度10mg/ml,静置24小时,期间摇动几次,取少量上层清液检测甘草酸含量,结果发现六组实验均未检测到甘草酸。

继续向锥形瓶中加入25%甘草酸原料20ml,浓度10mg/ml,静置24小时,期间摇动几次,取少量上层清液检测甘草酸含量,发现AB-8、D4020、X-5、NKA中均检测到甘草酸,在ADS-17和D101中则均未检测到甘草酸。

再次向锥形瓶中加入25%甘草酸原料20ml,浓度10mg/ml,静置24小时,期间摇动几次,取少量上层清液检测甘草酸含量,在ADS-17和D101中依然未检测到甘草酸。

最后向ADS-17和D101组的锥形瓶中加入25%甘草酸原料20ml,浓度10mg/ml,静置24小时,期间摇动几次,取少量上层清液检测甘草酸含量,ADS-17中检测到甘草酸含

量为0.81%,D101为0.01%,可认为这两种树脂已经达到泄漏点,ADS-17的静态吸附量为88.37mg 原料,D101的静态吸附量为89.98mg 原料。

-2

2

4

6

8

10

12

14

16

18

-0.1

0.00.10.20.30.40.50.60.7min

图1 ADS-17泄漏点HPLC 图

5

10

15

20

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

G A %

min

图2 D101泄漏点HPLC 图

因此,选择ADS-17和D101树脂进行动态实验。

GA0.81%

GA0.01%

3.4 甘草酸的动态吸附

3.4.1ADS-17动态吸附实验

设定pH(5.0、6.0、7.0)、原料流速(1BV/h、2BV/h、3BV/h)、上样浓度(5mg/ml、10mg/ml、15mg/ml)为实验因素,绘制三因素三水平正交实验表。

表1:ADS-17动态吸附正交试验因素水平表

序号 A

pH

B

原料流速(BV/h)

C

上样浓度(mg/ml)

1 5.0 1 5

2 6.0 2 10

3 7.0 3 15

取ADS-17树脂540ml,平均装入9根层析柱中,即填料体积为60ml(1BV)。配制各种pH和浓度的原料液3BV,以设定条件进行实验,用一组13ml西林瓶盛接原料流出液,检测各瓶中甘草酸含量,确定各组实验的泄漏点,并计算吸附量。

表2:ADS-17动态吸附的正交试验表

实验号 A B C 吸附量(mg)

1 5.0 1 5 1015

2 6.0 2 5 1565

3 7.0 3 5 365

4 6.0 1 10 1770

5 5.0 2 10 720

6 7.0 3 10 1180

7 7.0 1 15 1095

8 5.0 2 15 1290

9 6.0 3 15 1485

表3:ADS-17动态正交试验结果总结表

项目pH项原料流速项上样浓度项

K1(mg)3485 3880 2936

K2(mg)4820 3575 4045

K3(mg)2171 3021 3870

K1(mg)1162 1293 979

K2(mg)1607 1191 1348

K3(mg)724 1007 1295

R(mg)883 286 369

对于该动态吸附实验,其中吸附量计算公式:

?+

吸附量(mg)=(13)(1)

n

C60

C——上样浓度,单位mg/ml

n——泄漏点所在瓶号(13为每个西林瓶的体积)

计算举例:

在第4组实验中,由HPLC检测得出第9瓶出现泄露,则在第4组的实验条件下,甘草酸的吸附量为

(60+13×9)×10=1770mg

其它实验组的吸附量以同样的方法计算。

当pH=5时,三组吸附量的加和为K1=1015+1180+1290=3485mg,而K1= K1/3=1162mg。

同理可以计算出正交表中的其他各因素水平下的吸附量的总和K及平均值K。

pH因素下的极差计算公式:

R=-

平均吸附量的最大值平均吸附量的最小值(2)即R =1607-724=883。

同理以同样的方法可计算原料流速和上样浓度的极差。

因此在三个影响因素中,pH是最主要的影响因素,其次为原料流速,上样浓度的影响最小,最佳条件组合为A2B2C2,即ADS-17树脂选定的最佳实验条件为pH=6.0,原料流速2BV/h,上样浓度C=10mg/ml。

3.4.2D101动态吸附实验

设定pH(5.5、6.0、6.5)、原料流速(1.5BV/h、2.0BV/h、2.5BV/h)、上样浓度(8mg/ml、10mg/ml、12mg/ml)为实验因素,绘制三因素三水平正交实验表。

表4:D101动态吸附正交试验因素水平表

序号 A

pH

B

原料流速(BV/h)

C

上样浓度(mg/ml)

1 5.5 1.5 8

2 6.0 2.0 10

3 6.5 2.5 12

取D101树脂540ml,平均装入9根层析柱中,即树脂床体积为60ml(1BV)。配制各种pH值和浓度的原料液5BV,以设定条件进行实验,收集原料流出液,检测甘草酸含量,确定各组实验的泄漏点[24]。

表5:D101动态吸附的正交试验表

实验号 A B C 吸附量(mg)

1 5.5 1.5 8 1728

2 6.0 2 8 1936

3 6.5 2.5 8 2048

4 6.0 1.

5 10 2290

5 6.5 2 10 2410

6 5.5 2.5 10 1900

7 6.5 1.5 12 2280

8 5.5 2 12 1968

9 6.0 2.5 12 1968

表6:D101动态正交试验结果总结表

项目pH项原料流速项上样浓度项K1(mg)5596 6298 5712

K2(mg)6194 6314 6600

K3(mg)6738 5916 6216

K1(mg)1865 2099 1904

K2(mg)2065 2105 2200

K3(mg)2246 1972 2072

R(mg)381 133 296

实验数据的处理可依照ADS-17树脂的方法进行。

从正交试验的结果可以看出:原料流速对其的影响最大,其次是pH 值,最后是上样浓度,最佳条件组合为A 3B 2C 2。即D101树脂选定的最佳实验因素为pH=6.5,流速2BV/h ,上样浓度10mg/ml 。

3.5 甘草酸的梯度洗脱

3.5.1 ADS-17梯度洗脱实验

量取ADS-17树脂60ml(1BV)装柱,配制浓度为10mg/ml 的甘草酸原料液3BV ,调节pH=6.0,以2BV/h 的流速通过树脂柱,分别用10%乙醇、30%乙醇、50%乙醇、70%乙醇、90%乙醇各4BV 洗脱甘草酸,进行平行试验,检测洗脱液中甘草酸含量,确定最佳洗脱浓度。

表7:ADS-17梯度洗脱表

洗脱剂浓度

10%乙醇 30%乙醇 50%乙醇 70%乙醇 90%乙醇

甘草酸含量(%)

34.54 27.32 13.41 9.32 4.03

20

40

60

80

100

05101520253035G A (%)

Ethanol concentration(%)

图3 ADS-17梯度洗脱曲线

由洗脱曲线可知,随着乙醇浓度的增加,甘草酸纯度逐渐降低。

实验中发现,先用水洗后再用乙醇洗脱时,会明显减少色素等水溶性杂质的含量,但在溶剂改变时有大量的气泡产生,且乙醇浓度越高产生的气泡越多,甚至会出现断层,导致乱流或短路,严重影响了柱层析的分离效果。该现象出现的主要原因是因为乙醇为亲水试剂,与水混合时,混合体积减小,因氢键结合而产生空腔,在树脂床内产生了气泡。因此,用高浓度乙醇洗脱时,在树脂床上层预留一段水溶液,开始时可以减慢乙醇的流速,待溶液稳定后再提高至所需流速,现象会改善很多。 3.5.2 ADS-17解吸曲线的绘制

取60mlADS-17树脂装柱,称取25%的甘草酸1.8g ,配制成10mg/ml 的溶液。以6BV 10%乙醇溶液为洗脱剂,用一组13ml 西林瓶盛接洗脱液,检测各瓶中甘草酸含量。以洗脱液体积为横坐标,甘草酸含量为纵坐标,绘制解吸曲线。收集全部洗脱液,测定甘草酸的平均含量为34.54%,旋转蒸发,获得甘草酸粗品0.51g (以纯甘草酸计187mg ),回收率为61.39%。

表8:ADS-17解吸表

洗脱液体积(ml ) 26 52 78 104 130 156 182 甘草酸含量(%) 8.72

15.70

23.57

27.57

35.22

49.39

49.71

洗脱液体积(ml ) 208 234 260 286 312 338 364 390 甘草酸含量(%) 56.05

65.07

53.98

45.43

38.23

24.25

11.71

3.79

50

100

150

200

250

300

350

400

10203040

506070G A (%)

ml

图4 ADS-17解吸曲线

由解吸表可知,洗脱体积在234ml 时甘草酸含量已达最高65.07%。 回收率的计算:

ADS-17中甘草酸粗品的吸附用量为3BV 即1.8g ,最佳吸附和洗脱条件下,甘草酸含量为34.54%,旋蒸得干燥固体质量为0.51g 。

甘草酸回收率计算公式:

M1

100%M2

???洗脱纯度回收率(%)=原料纯度 (3)

M1——洗脱质量,单位g M2——原料质量,单位g

回收率为(34.54×0.51)/(15.94×1.8)×100%=61.39% (用HPLC 检测甘草酸原料纯度为15.94%) 3.5.3 D101梯度洗脱实验

量取D101树脂60ml (1BV)装柱,配制浓度为10mg/ml 的甘草酸原料液4BV ,调节pH=6.0,以2 BV/h 的流速通过树脂柱,分别用10%乙醇、30%乙醇、50%乙醇、70%乙醇、90%乙醇洗脱甘草酸,检测洗脱液中甘草酸含量,确定最佳洗脱浓度。

表9:D101梯度洗脱表

洗脱剂浓度

10%乙醇 30%乙醇 50%乙醇 70%乙醇 90%乙醇

甘草酸含量(%) 2.79

13.89

24.09 23.92 11.74

20

40

60

80

100

05

10

15

20

25

G A (%)

Ethanol concentration (%)

工艺验证方案

工艺验证方案

工艺验证方案 XXXXXXXXXXXXX

目录 1验证方案的起草与审批 1.1 验证方案的起草 1.2 验证方案的审批 2 概述 3 验证人员 4 时间进度表 5 验证目的 6 作业流程 7 有关的文件 7.1 工艺验证记录表 7.2 质量标准 7.3 “工艺验证总结审批”会议记录表 8 验证内容 8.1 清洗工作尖的数量。 8.1.1 本次验证工作尖的数量确定为一个标准的数量1000pcs。 8.2 清洗工作尖所用清水的量。 8.2.1 本次实验三种情况:清水用量:6L、7L、8L。 8.3 洗洁精的用量。 8.3.1本次验证五种情况:30ml、40ml、50ml、60ml、

8.4 清洗工作尖所用的时间。 8.4.1 本次验证5种情况:20分钟、25分钟、30分钟、35分钟、40分钟。 9 验证结论、最终评价和建议 1 验证方案的起草与审批 1.1 验证方案的起草 1.2 验证方案的审批

工作尖的超声波清洗为本厂已生产多年的产品工艺,当前搬到新厂房,采用新的设备、公用设施进行生产,为了保证产品质量,须对本品的超声波清洗生产工艺进行验证。 本方案采用同步验证的方式,因已具备以下条件: —生产及工艺条件的监控比较充分,工艺参数的适当波动不会造成工艺过程的失误或产品的不合格; —所采用的检验标准以质管部定制的检验标准为允收依据; 本次验证是以清洗1000个工作尖为标准进行验证,实际生产中工作尖的数量按1000的百分比进行配比洗洁精的用量。 3 验证人员 工艺验证小组人员组成: 4 时间进度表

08月05日至 08月06日完成各工艺因素验证 08月11日小组会议经过相关参数设定 5 验证目的 我们对新厂房、采用新的设备、公用设施进行生产,为了保证产品质量,须对本品的超声波清洗生产工艺进行验证。 6 作业流程 工作尖放入超声波清洗机 倒入清水、洗洁精 开启超声波清洗机 取出工作尖 清水冲洗 7 有关文件

甘草酸的提取、分离和纯化

甘草酸的提取、分离及纯化实验 甘草酸的性质及用途 甘草为豆科植物的根,主要产于我国内蒙古、山西、甘肃、宁夏、新疆等地。甘草味甘,故又名甜草、蜜草。其主要化学成分有四类:三萜类、黄酮类、生物碱类及多糖类。其中三萜类成分有甘草酸、羟基甘草次酸等。 甘草酸又称甘草皂苷、甘草甜素。白色结晶,可用冰醋酸结晶,有很强的甜味。分子式为C42H62O16,分子量为822.90。纯品为白色、无臭的结晶性粉末,熔点212~217℃,易溶于热水及热的稀乙醇,几乎不溶于无水乙醇或乙醚。甘草酸在植物中常以钙、钾、铵盐等形式存在。从甘草根为原料制得的甘草浸膏中提取的铵盐,其甜度为蔗糖的50~100倍,精制甘草酸钠、钾盐的甜度为蔗糖的200~300倍,是一种天然的甜味剂。 甘草素入口后不能立刻感觉到甜味,而是逐渐才有感觉,并且一直延续很长时间还留有余味,因此甘草素与砂糖、葡萄糖等糖类复配,可以得到口感良好的甜味。因为它是非糖类、高甜度的甜味剂,因此没有褐变、吸湿及发酵等缺点。甘草素在医药上还可用作消化道溃疡治疗剂、解毒剂、消炎剂以及降血脂、抗动脉粥样硬化、降胆固醇等。目前,甘草素已广泛用于食品、医药、化妆品、饮料、卷烟等行业。 我国甘草资源丰富,带皮甘草中含甘草酸7%~10%,去皮甘草中约5.5%~9.0%。甘草经溶剂浸取,可以制得甘草浸膏,再进一步加工可以制得甘草酸。 1 实验目的 1.掌握甘草酸的提取原理和方法。 2.掌握甘草酸的分离纯化方法。 2 实验原理 甘草酸在原料中以钾盐或钙盐形式存在,其盐易溶于水,因此可用极性溶剂提取。 提取后滤液再加硫酸,因难溶于酸性溶液而析出游离甘草酸。 3实验材料、仪器和试剂 实验材料:甘草 实验仪器:电子分析天平(精确至0.001g)、移液管、紫外分光光度计、超声波清洗器、抽滤装置、水浴锅、旋转蒸发仪、容量瓶(10mL、25mL、100mL) 试剂:70 %的乙醇溶液、蒸馏水、硫酸(3.5mol/L)、浓氨水、25 %氨水、冰醋酸、80%甲醇 质量分数为70 %的乙醇溶液(100 mL):用量筒量取75 mL 无水乙醇,25 mL 二次重蒸馏水于烧杯中,混匀;质量分数为10 %的乙醇溶液(100 mL):用量筒量取12.5 mL 无水乙醇,87.5 mL 二次重蒸馏水于烧杯中,混匀;质量分数为0.5 %的氨水溶液(100 mL):

推荐-甘草有效成分的提取与分离 精品

20XX-20XX学年第二学期 药用植物资源与开发 名称甘草化学成分的提取与分离 年级 20XX 学院中药材学院 专业植物科学与技术 学号 07107107 姓名林俊旭 任课教师张永刚 完成时间 20XX-5-11 成绩

甘草中化学成分的提取与分离 摘要:本文主要介绍了甘草中主要的化学成分以及这些化学成分的含量和性质,并简述了甘草酸,甘草次酸和甘草甘的提取和有效成分的含量测定,为进一步的生产实践做出贡献。 关键词:甘草化学成分提取 正文:甘草属于豆科甘草属,以根和根状茎入药。甘草在我国集中分布于三北地区(东北、华北和西北各省区),而以新疆、内蒙古、宁夏和甘肃为中心产区。随着药学及其相关学科以及科研设备的发展,甘草中主要含有的甘草酸、甘草次酸、黄酮、生物碱和氨基酸等化学成分,具有广泛的生物活性。 一、化学成分 药用甘草质量与其化学成分的组成、积累变化有直接的关系。先后从甘草属植物中提取、分离、鉴定了200多种化学成分,涉及甘草属植物10个种。其中最重要并已证实具有生物活性的成分主要是甘草酸等三萜皂苷类、黄酮类、香豆素类、多糖、生物碱、氨基酸等。 三萜皂苷类化合物:甘草属植物中三萜皂类成分具有量高、生理活性强的特点,甘草的许多药理作用都与这类成分有直接关系。至今在甘草属植物中已鉴定得到61种三萜类化合物,其中苷元45个。这些三萜类化合物其苷元均为3β-经基齐墩果烷型化合物的衍生物;皂苷一般为3β-羟基上的氧苷,糖元多为D-葡萄糖酸或D-葡萄糖。甘草酸一直被认为是甘草中最重要三萜类化合物,《中国药典》把甘草酸的量作为评价甘草药材及其制品质量的重要指标,通常要求不低于2%。 黄酮类成分:是近年来研究最活跃的天然活性成分之一,广泛存在于植物界中。这类化合物的存在对植物生长、发育、开花、结果以及抵御异物的侵入起着重要的作用。目前,从甘草属植物中已发现黄酮及其衍生物153种,它们的基本母核结构类型有15种,其中包括:黄酮、黄酮醇、双氢黄酮、双氢黄酮醇、查尔酮、异黄酮、双氢异黄酮、异黄烷、异黄烯等。对甘草中黄酮类成分的药理作用研究表明,这些成分在抗肿瘤、抗氧化、抗病毒方面作用显著。 甘草中黄酮类成分的分布和积策也表现出一定的特点。乌拉尔甘草无论是野生还是栽培,在一个生长季中,叶中总黄酮量最高,而地下部分的t相对较低;在5—10月,叶中的总黄酮量逐渐下降,而地下部分总黄酮盆具有上升趋势。各

纯净水、矿泉水、矿物质水工艺流程图

1纯净水生产工艺流程图(之1/2) 提供符合GB5750 要求的水源,有动、静态检测 并有记录 目的:提供优良的原水 20T 不锈钢罐,有0.45um 的空气呼吸器,每半年进行一 次清洗消毒,每周进行水微生物和理化检测 目的:积蓄原水,除去原水中泥沙 不锈钢罐,每7天进行一次正洗和反洗 每周进行一次水微生物和理化检测,每半年消毒一次。 目的:除去水中较大的有机物及其它异物 控制要求 不锈钢外壳,两组共14支5um 滤芯 ,每6个月更换一次或滤芯压差大于0.07Mpa 时更换 目的:过滤大颗粒杂质,保护RO 膜,加阻垢剂主要是包裹 水中 的Ga 2+、Mg 2+离子,使之不易堵塞RO 膜孔 36根陶氏膜,树脂外壳,正常情况下二年半清洗一次或当 一、二泵压后压一、二级浓水压差大于1MPa 时,应对RO 膜进行清洗 (参见作业文件) 目的:截留进水中的杂质,离子和有机物及病毒等 根陶氏膜,树脂外壳,每三年进行一次清洗或当一、二泵压 1MPa 时,应对RO 膜进行清洗 目的:将水电导率降为10us/cm 以内,除去水中异物 不锈钢罐,每季度进行一次清洗消毒 目的:贮存过滤后的水,确保生产连续性 4T 不锈钢罐,臭氧浓度0.45~0.65ppm ,每小时记录臭氧在 线值 目的:杀灭水中微生物,防止二次 污染 2T 不锈钢管罐,原则上每6个月进行一次清洗消毒 目的:保持臭氧浓度

接下页 纯净水生产工艺流程图(之2/2) 接上页 控制要求 钛滤芯,30根滤芯直径0.45um ,外壳不锈钢,每6个月清 目的:过滤杂质及微生物残渣 全不锈钢自动灌装机,机时产量900桶 /小时 目的:生产出合格的成品水 目视,双灯检台,分别检测桶内桶底和桶身及漂浮 物 目的:检出成品水内异物 将生产日期打印在收缩膜上 目的:便于消费者饮用时知生产日期

工艺验证方案

文件编号:******* 版本号:00 *****工艺再验证方案

*****有限公司

验证方案

目录 1.概述 (3) 1.1产品基本信息 (3) 1.2验证背景 (3) 1.3验证目的 (3) 1.4适用范围 (3) 2.职能部门及职责 (4) 3.风险评估 (4) 3.1目的 (4) 3.2范围 (4) 3.3评估方法 (4) 3.4评估标准 (5) 3.5风险评估结果及风险控制 (5) 4.验证项目、接受标准、实测结果及验证结论 (9) 4.1验证文件确认 (9) 4.2设备、设施及公用系统确认 (10) 4.3关键人员确认 (11) 4.4工艺参数控制确认 (12) 4.5成品质量确认 (14) 4.6稳定性考察试验 (15) 4.7偏差和变更控制 (15)

5.验证结果评定与结论 (15) 6.时间进度安排 (15) 7.附件 附件1:称量情况确认表 附件2:制粒生产过程记录表 附件3:压片生产过程记录表 附件4:包装质量检查记录表 其他附件:合格物料供应商名单、中间产品报告单、成品报告单、生产记录、培训记录、药品生产工艺验证合格证 1.概述 1.1产品基本信息 1.1.1产品名称:*** 1.1.2产品剂型:片剂 1.1.3产品规格:***

1.1.4药品批准文号:国药准字*** 1.1.5制剂批量:*** 1.1.6内包装:**** 1.1.7产品有效期:*** 1.1.8制剂生产工艺流程图: 1.2验证背景 ****为我公司中药制剂品种,制剂生产工艺于***年进行了再验证,验证结果判定为合格。***年月因生产需要,*******。 1.3验证目的 按照GMP及“附录2 确认与验证”的要求,应对*****制剂生产工艺进行再验证,以证明*******按照现行批准的生产工艺仍能生产出符合GMP要求、质量标准及注册标准要

甘草酸的纯化工艺研究分析

河北工大学 毕业论文 作者:贾晋阳学号: 学院:化工学院 系(专业):制药工程 题目:甘草酸的纯化工艺研究 指导者: (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2012年6月9日

甘草酸的纯化工艺研究 摘要:从6种树脂中通过静态吸附筛选出了ADS-17树脂作为提取纯化甘草酸的最佳树脂。研究了pH值、上样液流速、上样液浓度、洗脱液浓度、洗脱液用量这五个因素对甘草酸吸附、解吸作用的影响,并通过正交试验考察了最佳工艺条件。实验结果证明最佳吸附条件为:pH值为6.0、上样液流速为2BV/h、上样浓度为10mg/ml;最佳解吸条件为:洗脱剂10%乙醇、洗脱液用量234ml。在实验得出的最佳条件下,甘草酸的纯度为65.07%,回收率为61.39%。另外,我们还在氢氧化钠回流的条件下进行了甘草酸构型的转换,结果表明转构后的甘草酸纯度为87.66%,产率44.1%。 关键词:大孔树脂吸附纯化甘草酸

Title The research of the Purification Technology of Glycyrrhizic Acid Abstract By static adsorption, ADS-17 resin is filtered as the optimal resin to extract purified glycyrrhizic acid from the six kinds of resins. The study of pH, supernatant flow rate, supernatant concentration, eluent concentration and eluent amount shows these five factors effects on the adsorption and desorption of glycyrrhizic acid, and optimum conditions were investigated by orthogonal experiment. Experimental results showed that the optimum adsorption conditions as follows: pH 6.0, supernatant flow rate for 2BV/h, the concentration of the supernatant for 10mg/ml; best desorption conditions were as follows: 10% ethanol, eluent amount for 234ml. Under optimal conditions droved by experiment, the purity of glycyrrhizic acid was 65.07%, recovery rate was 65.3%. In addition, we completed the structural conversion of glycyrrhizic acid under a condition of sodium hydroxide's reflux; results showed that the purity of glycyrrhizic acid reached 87.66%; recovery rate reached 44.1% after the conversion. Keywords:Macroporous resins Adsorption Purification Glycyrrhizic Acid

甘草有效成分的提取与分离

2012-2013学年第二学期 药用植物资源与开发 论文名称甘草化学成分的提取与分离 年级 2010 学院中药材学院 专业植物科学与技术 学号 07107107 姓名林俊旭 任课教师张永刚 完成时间 2013-5-11 成绩

甘草中化学成分的提取与分离 摘要:本文主要介绍了甘草中主要的化学成分以及这些化学成分的含量和性质,并简述了甘草酸,甘草次酸和甘草甘的提取和有效成分的含量测定,为进一步的生产实践做出贡献。 关键词:甘草化学成分提取 正文:甘草属于豆科甘草属,以根和根状茎入药。甘草在我国集中分布于三北地区(东北、华北和西北各省区),而以新疆、内蒙古、宁夏和甘肃为中心产区。随着药学及其相关学科以及科研设备的发展,甘草中主要含有的甘草酸、甘草次酸、黄酮、生物碱和氨基酸等化学成分,具有广泛的生物活性。 一、化学成分 药用甘草质量与其化学成分的组成、积累变化有直接的关系。先后从甘草属植物中提取、分离、鉴定了200多种化学成分,涉及甘草属植物10个种。其中最重要并已证实具有生物活性的成分主要是甘草酸等三萜皂苷类、黄酮类、香豆素类、多糖、生物碱、氨基酸等。 三萜皂苷类化合物:甘草属植物中三萜皂类成分具有量高、生理活性强的特点,甘草的许多药理作用都与这类成分有直接关系。至今在甘草属植物中已鉴定得到61种三萜类化合物,其中苷元45个。这些三萜类化合物其苷元均为3β-经基齐墩果烷型化合物的衍生物;皂苷一般为3β-羟基上的氧苷,糖元多为D-葡萄糖酸或D-葡萄糖。甘草酸一直被认为是甘草中最重要三萜类化合物,《中国药典》把甘草酸的量作为评价甘草药材及其制品质量的重要指标,通常要求不低于2%。 黄酮类成分:是近年来研究最活跃的天然活性成分之一,广泛存在于植物界中。这类化合物的存在对植物生长、发育、开花、结果以及抵御异物的侵入起着重要的作用。目前,从甘草属植物中已发现黄酮及其衍生物153种,它们的基本母核结构类型有15种,其中包括:黄酮、黄酮醇、双氢黄酮、双氢黄酮醇、查尔酮、异黄酮、双氢异黄酮、异黄烷、异黄烯等。对甘草中黄酮类成分的药理作用研究表明,这些成分在抗肿瘤、抗氧化、抗病毒方面作用显著。 甘草中黄酮类成分的分布和积策也表现出一定的特点。乌拉尔甘草无论是野生还是栽培,在一个生长季中,叶中总黄酮量最高,而地下部分的t相对较低;在5—10月,叶中的总黄酮量逐渐下降,而地下部分总黄酮盆具有上升趋势。各

甘草酸提取方法总结

甘草酸提取方法总结 1、甘草酸一般以钾盐或钙盐形式存在于甘草中,其盐易溶于水。同时,甘草酸为有机弱酸,酸性条件下游离。这是我们采用水酸提取法从甘草中提取甘草酸的理论依据。操作方法:将甘草进行适当粉碎,取lOOg甘草粗粉置于1000mL烧杯中,加500mL水,加热煮沸10min,然后置于振荡器上,于60℃下恒温振荡2h。过滤,将滤渣重复上述操作,至滤液于252nm无明显吸收为止。合并滤液,蒸发浓缩至200mL左右,然后边搅拌边滴加浓H2SO4。至不再析出沉淀;陈化2h,离心分离,将沉淀物置于100℃下干燥lh,得到棕色块状物8.9g,即为甘草酸粗品,粉碎备用。 2,过滤。合 并滤液,沉淀 减压干燥,称重。 3 ①、 提取1.5 加入溶剂 10小时,过滤。 (约15℃) 连续3 4、以 静置0.5h, ②、减压过滤, ③、醇热回流法:取10.00g甘草,加入70﹪乙醇100ml,90。C热回流提取2次,第一次1h,减压过滤,滤渣继续热回流0.5h,合并两次滤液定容到250ml。 ④、0.5﹪稀氨水和70﹪乙醇混合回流法:取10.00g甘草,加入混合溶剂100ml(按1:1比例),90。C热回流提取1h,减压过滤,滤渣继续热回流0.5h,合并两次滤液定容到250ml。 5、称取一定质量的甘草粉放入反应器中,加入其5倍质量的水,在搅拌下于85℃以上加热回流2.5h,过滤、滤渣再加3倍质量的水重复提取一次,合并滤液。 6、氨性醇提取法:称取一定量的甘草饮片,分别加5、4、4倍量的含氨0.3%的60%乙醇回流提取3次,每次1.5h。

7、将干燥甘草根粉碎,用水煮沸提取3次,合并提取液过滤后浓缩至原体积的1/5,搅拌下加入浓硫酸至不再析出沉淀为止,静置过夜。收集棕色沉淀,水洗,并在60℃以下干燥磨粉。粉末用丙酮回流提取3次,滤除不溶于丙酮的杂质,丙酮液放冷加20%氢氧化钾溶液至弱碱性,析出晶体为甘草酸三钾盐,其水溶液加酸即可生成游离甘草酸。 8、超临界CO2萃取法本法在超临界萃取状态下,用CO2做萃取剂,用水—乙醇作挟带剂从甘草中萃取甘草苷,最佳萃取温度为40℃,压力为35MPa,萃取体系与物料的质量比为4~5,萃取时间为5h。提取中CO2不与提取物有效成分发生化学反应,无毒、无污染、无致癌性、沸点低,便于从产品中清除。 9、稀氨水提取法:称10g甘草切片加0.5%的稀氨水150mL,在100℃加热60min,过滤,滤渣加稀氨水重复浸提二次,合并滤液,减压浓缩至200mL,加浓硫酸调pH,分离沉淀物,水洗3次,冷冻干燥,称重, 10、,合并滤液, 11200mL 即成膏状, 12 40OmL、300mL、,抽滤, 13 至原体积的 14 草粗粉101/5, 15 ,60℃恒温干燥,pH至7~8, 趁热抽滤,沉淀用少量冰醋酸洗涤1~2次,即得甘草酸提取物。

甘草酸提取及抑菌活性研究

甘草酸提取及抑菌活性研究 以新疆乌拉尔甘草饮片为原料,研究了在超声波条件下影响甘草酸提取率的几个因素,结果表明:以浓度为60%的乙醇为提取剂,料液比1:15,超声作用时间40min,浸泡4h为最佳。此外,分别以甘草酸对真菌(包括棉花枯萎病菌、小麦纹枯病菌、辣椒根腐病菌、辣椒疫病病菌)进行抑菌活性研究,结果表明浓度为1000mg/L的甘草酸对小麦纹枯病菌抑制率为68.15%,抑菌作用明显,对棉花枯萎病菌、辣椒根腐病菌、辣椒疫病病菌抑制作用相对较弱。 标签:甘草;甘草酸;提取工艺;抑菌研究 甘草酸(glycyrrhizic acid,GA)是豆科(legumrrihiza)甘草属(glycyrrhiza)植物的根或根茎中提取的一种天然甜味剂。研究表明甘草酸具有广阔的应用领域,且应用价值极高,但提取效率、成本、纯度又是影响效能的关键问题之一。超声辅助提取在天然植物有效成分的提取中取得良好的效果,且在甘草酸类或同类物质的提取中收效明显,表现出省时、选择性好、收率高、操作方便等一系列满足技术和市场方面的优点。为此,我们提出利用超声波的各种优良特性,在不影响甘草酸的物化、生物活性的基础上,不同条件下促进甘草酸的提取率。 从保护生态环境的角度来看,甘草酸对人体无害而有益,本研究以甘草酸乙醇提取液对真菌进行抑菌活性研究,以甘草酸做为新型杀菌剂防除农田有害病源微生物,将可能成为绿色农药发展的一个新方向。 1材料与方法 1.1材料及设备 材料:甘草饮片购于益和大药房;试剂:glycyrrhizicacid(SIGMA),其他试剂均为分析纯;供试菌种为吉林农业大学实验室提供。 主要设备:KQ5200E超声波清洗器昆山超声仪器有限公司;RE-52A旋转蒸发仪上海亚荣生化仪器厂;UV-2000紫外-可见分光光度计尤尼柯有限公司;DHP-9162电热温恒培养箱上海齐欣科学仪器有限公司。 1.2方法 1.2.1提取工艺设计 准确称取甘草粉末5g,加入10mL 70%的乙醇溶液,浸泡后超声波辅助提取2次,抽滤,合并滤液。吸取0.2mL提取液用70%的乙醇定容至25mL,取定容后溶液4mL二次定容至25mL,测定溶液吸光度。采用反复结晶法,将甘草酸超声波粗提液加酸沉淀,再经乙醇溶提,氨化成盐析出,反复结晶得到甘草酸纯品。

超纯水工艺流程

超纯水工艺流程 预处理----反渗透----CEDI膜块----抛光树脂 膜法超纯水制取设备工艺流程:原水—超滤(多介质过滤器、活性炭过滤器)—反渗透—EDI—超纯水 渗透/电去离子(RO/EDI)集成膜技术是近年来迅速发展成熟,并得到大规模工业应用的最新一代超纯水制造技术,在国际上已逐渐成为纯水技术的主流。RO/EDI的集成膜技术在电子企业用水,实验室纯水系统,电厂用水等方面具有独特的优势。 自来水进入原水箱,通过原水泵增压,经砂滤器、炭滤器、阻垢剂加药、保安过滤器,到达反渗透单元,经两级反渗透过滤进入EDI单元,达到电阻率15MΩ.cm(25℃)进入纯水水箱。纯水供水设计为循环方式,经纯水供水泵增压,通过紫外线消毒器、抛光混床、0.22微米过滤器接入纯水供水管,到达使用点。 1.1预处理单元 采用石英砂过滤、活性炭过滤、保安过滤作为两级反渗透的预处理。 1.2膜系统单元 膜系统单元是本系统的核心,负责去除水中大部分的有害物质,保证终端产水达到标准要求。本设计中采用辅以pH值调节的两级反渗透作为初级脱盐工艺,EDI模块作为深度脱盐工艺。 1.2.1反渗透模块 反渗透膜是以压力差为驱动力的液相膜分离方法,可以看作是渗透的一种反向作用。在压力推动下,溶液中的水分子透过膜,而其它分子、离子、细菌、病毒等被截留,从而实现脱盐效果,达到纯化目的。 整个反渗透系统由高压泵、反渗透膜、压力容器以及相应的仪器、仪表、阀门、机架、管道及管件等组成;此外还有独立的化学清洗装置。

1.2.2EDI模块 EDI技术是将膜法和离子交换法结合起来的新工艺,基本原理主要包括离子交换、直流电场下离子的选择性迁移及树脂的电再生。水中的离子首先通过交换作用吸附于树脂颗粒上,再在电场作用下经由树脂颗粒构成的“离子传输通道”迁移到膜表面并透过离子交换膜进入浓室。由于离子的交换、迁移及离子交换树脂的电再生相伴发生,犹如边工作边再生的混床离子交换树脂柱,因此可以连续不断地制取高质量的纯水、高纯水。 EDI系统由增压泵、膜堆、电源以及相应的仪器、仪表、阀门、机架、管道等组成。 1.3供水单元 纯水供水循环采用254nm紫外线杀菌、抛光混床脱盐、0.22微米过滤,达到用户的纯水水质要求。 为保证纯水的品质以及生物学指标,在纯水制备的终端设置精度为0.22μm的微滤膜过滤器,用于截留去除脱盐设备出水中的微粒以及细菌尸体。由于0.22μm的微滤膜膜过滤器为整个脱盐工艺的最后一道处理设备,因此又称终端过滤器。过滤器内装折叠式微孔滤膜,过滤精度0.22μm,过滤器出口设置压力表。过滤器经过一段时间的运行后,滤膜表面截留了大量杂质,使滤膜堵塞,导致工作压力增加,当进出口压力差增大到某一设定值时,更换滤膜。 终端过滤器由罐体、0.22μm滤芯、压力表组成。 1.4主要设备 主要设备:原水箱、原水增压泵、砂滤器,炭滤器罐体、多路阀、阻垢剂计量泵、阻垢剂(氨基三甲叉膦酸ATMP)药罐、保安过滤器、保安过滤滤芯、一级RO高压泵、一级RO膜、二级RO高压泵、二级RO膜、膜壳、PH值调整计量泵、EDI增压泵、EDI模块、超纯水水箱、纯水增压泵、抛光混床罐、抛光树脂、0.22微米过滤器、0.22微米滤芯等。

片剂工艺验证方案及报告

XXXXX工艺验证方案 YZS-G-1XX037 类别:验证管理工艺验证方案 制定人:制定日期:年月日 审核人:审核日期:年月日 批准人:批准日期:年月日 颁发部门:生效日期:年月日 复印数:份

目录 1.概述 2.目的 3.产品简介 4.验证内容、方法及标准 4.1粉碎过筛 4.2配料混合 4.3压片 4.4包装 4.5成品质量 4.6各工序收率及物量平衡 5验证结果评定与结论 6.稳定性考察 7.相关文件 8.图一 9.相关记录

1.主题内容 本方案规定了XXXXX生产工艺验证的目的,步骤、标准及评价内容 2.适用范围 本方案适用于XXXXX生产工艺的验证 3.责任人 3.1工艺验证小组 组长: 组员: 3.2其他相关人员 4.验证的内容 4.1概述 XXXXX是我公司的主要产品,在以往的生产过程中,此产品生产工艺是稳定可靠的,但是为符合GMP要求,我公司新建了厂房,引进了先进的设备,因此在该产品正式投入生产前进行工艺验证,进行工艺验证的前提条件是: 1.厂房、设施、设备已经过验证并验证合格可投入使用。 2.相应的文件已批准执行。 3.物料通过供应商审计并审计合格。 4.人员已进行全面健康检查和系统培训且已有健康证和培训上岗证。 本验证方案拟在XXXXX试生产时实施 4.2目的: 本产品工艺验证方案的目的在于通过对XXXXX生产工艺的验证,证明该生产工艺可靠性和稳定性 4.3产品简介: 4.3.1处方:原辅料名称万片的用量 4.3.2工艺流程图(见图一) 4.3.3生产、质、量管理文件 批生产指令及记录 XXXXX批生产指令及记录 生产工艺规程 XXXXX批生产工艺规程 质量标准 XXXXX质量标准及主要物料质量标准

甘草酸的粗提工艺研究[1]

甘草酸的粗提工艺研究 余华1陈芳2* (1.四川出入境检验检疫局,四川成都 610041; 2. 西南大学药学院,重庆 400715) 2*为通讯作者。 摘要:甘草酸的提取是甘草开发和甘草应用的关键技术之一。试验以甘草的饮片为原料,乙醇作溶剂,用超声波辅助提取法提取甘草酸,研究了在超声波条件下影响提取率的几个因素:包括溶剂用量、溶剂浓度、超声时间、浸泡时间,粒度等几个方面,得到了一条操作简便、省时、提取率高、纯度较高、选择性好的工艺。最佳提取工艺为:以浓度为70%的乙醇为提取溶剂,超声作用时间60min,浸泡2h,粒度为50目。通过此工艺, 提取时间较传统提取工艺缩短,甘草酸的得率有所提高。 关键词:甘草酸;正交实验设计;超声波;提取工艺。 Study on the Primary Process of Glycyrrhizic Acid Extracting from Glycyrrhiza Yu hua1Chen Fang2* (1.Sichuan Entry-Exit Inspection and Quaranting Bureau of P.R. China, Sichuan Chengdu, 610041; 2. School of Pharmaceutical sciences , Southwest University, Chong qing, 400715,China ) Abstract:Glycyrrhizin extraction of Radix Glycyrrhiza is one of the key technologies of the development and application of Radix Glycyrrhiza. This paper used Radix Glycyrrhiza as the

纯水车间桶装水生产工艺流程

纯水车间桶装水生产工艺流程 1. 水处理:原水—多介质预处理—活性炭—软水器—精密过滤器(三组)—R反渗透(一级、二级)—灌装泵—紫外线杀菌—灌装线。 2. 桶装水灌装线:人工上桶—拔盖机—自动上水—内外桶清洗消毒灌装机—上桶盖—贴批号套膜—热缩机—灯检—卸桶。 3. 水源准备:桶装水是由两个二级水箱的水灌制完成的,为了保证灌装谁的充足供给,必须前一天晚上把连接灌装泵的二级水箱注满水,与此同时,把此水箱底下的连接另一个二级水箱的阀门关上,水箱上的进水阀门也顺之转向另一个二级水箱,这样是为了保证设备的正常供水。开始制桶装水时,必须先查看所有二级水箱阀门是否恢复原样,在保证不影响设备用水的前提下,可以把连接EDI水箱的阀门截上。电主箱打开电工箱后,在保证自身安全的情况下把控制灌装泵和空压机泵的阀门逐一合上后,关上电工箱门并锁上。 4. 桶装水生产线准备:每次生产桶装水时,先把盖进行消毒,要求爱尔施消毒片每次溶解30片后倒入消毒桶(约50L水)内对盖进行30分钟以上浸泡后,放掉污水必须用纯净水对盖进行清洗数遍,方可使用。 5. 两消毒水箱分别注入自来水(每水箱约200L)第一水箱为自来水清洗,第二水箱为消毒清洗,要求用爱尔施50片溶解后方可倒入水箱内。 6. 打开机器总开关检查“紧急停止”钮是否开启(2个),电工箱内电源是否处在打开位置,再用钥匙打开控制电源,一切准备就绪后,

回到机房,再次对机器进行各项检查,确认无误后方可把灌装泵打开,再把二级开关按钮转向手动,最后按住灌装机器

“启动”按钮,3秒钟后机器启动,进行桶装水灌制。操作间以外上桶,卸桶由专人完成。 7. 在生产水的过程中,由于灌装水的用水量较大,机器启动频繁,要求工作人员最少每10分钟队机房巡视一次,如果设备用水与车间灌装用水发生冲突时,首先要保证设备用水。 注:在灌制过程中机器出现任何异常现象必须先停机再进行解决操作。挂盖儿出现脱落时,必须由传送带把桶传出后方可手动上盖操作,如违规操作出现问题。 药剂科—制水车间 2016.06.03 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待 你的好评与关注!)

工艺验证方案

工艺验证方案 1

下载文档 收藏 1工艺验证方案 体外诊断试剂质量管理体系文件 北京生物医学科技有限公司生产工艺验证方案类别:验证方案编号: 部门:XXXXXX 诊断试剂盒(AAAA)工艺验证小组页码:共 23 页,第 1 页 XXXX(XXXX) XXXX(XXXX)诊断试剂盒 (AAAA)工艺验证方案 AAAA)版次: □ 新订□ 替代: 年月日制定人: 审批会签: (验证小组) 批准人: 生效日期: 年年月月日日共 23 页,第 1 页 北京易斯威特生物医学科技有限公司生产工艺验证方案目录一. 目的 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3 二、范围 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3 三、职责 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3 1、验证委员会 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3 2、工艺验证小组 2

备科 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 4、生产部 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 5、质量检验部 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 四、验证内容 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 1、文件 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4 2、方案概要 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈5 3、验证步骤 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈5 五、时间进度表 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈10 六、验证周期 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈11 七、验证结果评价和建议 ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈11 八、附件 3

甘草酸提取方法总结

甘草酸提取方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

甘草酸提取方法总结 1、甘草酸一般以钾盐或钙盐形式存在于甘草中,其盐易溶于水。同时,甘草酸为有机弱酸,酸性条件下游离。这是我们采用水酸提取法从甘草中提取甘草酸的理论依据。操作方法:将甘草进行适当粉碎,取lOOg甘草粗粉置于1000mL烧杯中,加500mL水,加热煮沸10min,然后置于振荡器上,于60℃下恒温振荡2h。过滤,将滤渣重复上述操作,至滤液于252nm无明显吸收为止。合并滤液,蒸发浓缩至200mL左右,然后边搅拌边滴加浓H2SO4。至不再析出沉淀;陈化2h,离心分离,将沉淀物置于100℃下干燥lh,得到棕色块状物 8.9g,即为甘草酸粗品,粉碎备用。 2、甘草经室温干燥后磨成粗末以适量水浸泡20h,过滤,,滤渣再用适量水浸泡20h,过滤。合并滤液, 在搅拌下缓缓滴加3.5-4mol/L硫酸至溶液的pH为1.9,放置冰箱6h以上,倾去上清液。沉淀以适量甲醇回流提取两次,合并提取液,滴加氨水至ph7.5-8.0,减压蒸干,得糖浆状物。趁热加入冰醋酸使溶解,室温静置,投入甘草酸单铵盐晶种。翌日吸滤,以少量冷冰醋酸洗涤,减压干燥,称重。 3、以下实验提取溶剂组成经优化均为60%乙醇+1%氨水+水 ①、热回流提取法:称取相应粒度的甘草10克,第1次加入溶剂100ml于约80℃温度下进行回流提取1.5小时,过滤;提取后的残渣加入溶剂80ml进行第二次回流提取1.5小时,过滤;再次将残渣加入溶剂80ml进行第三次回流提取1.5小时,过滤。 ②、索氏提取法:称取相应粒度的甘草10克,加入溶剂200ml在约80℃下提取5小时或10小时,过滤。 ③、室温提取法:称取相应粒度的甘草3克,加入溶剂30ml,间断2小时手摇,室温(约15℃)下提取相应时间,过滤。 ④、微波辅助提取法:称取相应粒度的甘草10克,加入溶剂100ml,在经技术改造后的微波辅助提取设备内约80℃温度下提取相应时间,过滤。 连续3次提取时,第1 次提取4min,过滤,残渣再重复提取2次。 4、以70﹪乙醇作为提取溶剂,对以下4种提取方法进行了考察: ①、室温静置提取法:取10.00g甘草切片,加入70﹪乙醇100ml,静置1h,减压过滤,滤渣继续静置0.5h,过滤,合并两次滤液并定容到250 ml。 ②、超声波辅助提取法:取10.00g甘草,加100ml70﹪乙醇浸泡1 h,超声提取30min, 减压过滤,滤渣继续合并滤液超声提取30min, 合并两次滤液定容到250ml。 ③、醇热回流法:取10.00g甘草,加入70﹪乙醇100ml,90。C热回流提取2次,第一次1h, 减压过滤,滤渣继续热回流0.5h,合并两次滤液定容到 250ml。 ④、0.5﹪稀氨水和70﹪乙醇混合回流法:取10.00g甘草,加入混合溶剂100ml(按1:1比例),90。C热回流提取1h, 减压过滤,滤渣继续热回流0.5h,合并两次滤液定容到250ml。 5、称取一定质量的甘草粉放入反应器中,加入其5倍质量的水,在搅拌下于85 ℃以上加热回流2.5 h,过滤、滤渣再加3倍质量的水重复提取一次,合并滤液。 6、氨性醇提取法:称取一定量的甘草饮片,分别加5、4、4倍量的含氨0.3%的60%乙醇回流提取3次,每次1.5h。

制药纯化水系统的工艺流程及标准说明

制药纯化水系统的工艺流程及标准说明 药品生产企业的工艺用水主要是指制剂生产中洗瓶、配料等工序以及原料药生产的精制、洗涤等工序所用的水。水的名称应避免和水的制造过程有关,如去离子水、除盐水、蒸馏水这样的名称,即水的制造过程与其名称脱钩,而是从化学和微生物的角度根据质量指标对水进行分类(如中国药典规定纯化水可以用三种不同方法制得,将来可能还会有更好得方法)。 注射用水一般用纯化水通过蒸馏法(还有反渗透法和超滤法)制得,化学纯度高达 99.999% ,无热原。因纯蒸汽的制备过程与用蒸馏水制备注射用水的过程相同,可使用同一台多效蒸馏水机或单独的纯蒸汽发生器,故将纯蒸汽放在注射用水一起讨论。 二级反渗透是以采用一级反渗透的产水作为原水,进行第二次反渗透的净化,产水导电率≤3μs/cm。在饮用纯净水方面已广泛应用。反渗透技术常应用于预除盐处理,能够使离子交换树脂的负荷减轻90%以上,树脂的再生剂用量也减少90%。因此,不仅节约运行费用,而且还利于环境保护。反渗透独特水处理技术是其他净水方法如蒸馏、电渗析、离子交换等无法达到的 制药纯化水系统工艺流程 原水→原水增压泵→多介质过滤器→活性碳过滤器→软水器→精密过滤器→第一级反渗透→PH调节装置→中间水箱→第二级反渗透→纯化水箱→输送泵→紫外线杀菌器→微孔过滤器→用水点(推荐工艺)。 原水→原水增压泵→多介质过滤器→活性碳过滤器→软水器→精密过滤器→第一级反渗透→中间水箱→中间水泵→离子交换设备→纯化水箱→输送泵→紫外线杀菌器→微孔过滤器→用水点(传统工艺)。

原水→原水增压泵→多介质过滤器→活性碳过滤器→软水器→精密过滤器→第一级反渗透→中间水箱→中间水泵→EDI设备→纯化水箱→输送泵→紫外线杀菌器→微孔过滤器→用水点(最新工艺)。 制药纯化水的标准: 药品生产用水要求参考纯化水标准,参考纯化水检测方法 1、医药业无菌、无热源纯化水制取。 2、物医药用水。 3、医疗血液透析用水。 4、饮用纯净水、饮料用水的制取。

工艺验证报告模板

工艺验证报告 内部资料禁止外传) 文件编码:100200 目录 1. 介绍. ....................... 错误!未定义书签。 2. 验证目的. ..................... 错误! 未定义书签。 3. 验证范围. ..................... 错误!未定义书签。 4. 验证类型. ..................... 错误!未定义书签。 5.验证日期与相关批号. .................. 错误! 未定义书签。 6.验证小组成员及职责. .................. 错误!未定义书签。 7.简单工艺描述(略). .................. 错误!未定义书签。 8. 胺化工艺验证. .................... 错误!未定义书签。 . 工艺参数.......................... 错误! 未定义书签。 . 验证人员及日期. ................ 错误! 未定义书签。 . 验证标准、分析方法. ........... 错误! 未定义书签。 . 验证数据. .................. 错误! 未定义书签。 . 验证结果分析、评价及建议. ............ 错误! 未定义书签。 9. 纯化工艺验证. .................... 错误!未定义书签。 . 工艺参数.......................... 错误! 未定义书签。 . 验证人员及日期. ................ 错误! 未定义书签。 . 验证标准、分析方法. ........... 错误! 未定义书签。 . 验证数据. .................. 错误! 未定义书签。 . 验证结果分析、评价及建议. ............ 错误! 未定义书签。 10. .......................... 成盐工艺验证 错误!未定义书签。 . 工艺参数. .................. 错误! 未定义书签。 . 验证人员及日期. ............. 错误! 未定义书签。 . 验证标准. .................. 错误! 未定义书签。 . 分析方法. .................. 错误! 未定义书签。 . 验证数据. .................. 错误! 未定义书签。 . 验证结果分析、评价及建议. ............ 错误! 未定义书签。 11. .................... 验证结果批准、会签及日期 错误!未定义书签

大孔吸附树脂纯化甘草提取物中甘草酸的研究

大孔吸附树脂纯化甘草提取物中甘草酸的研究 目的研究光果甘草中甘草酸的最佳大孔树脂纯化工艺。方法以大孔吸附树脂纯化物中甘草酸的含量为考察指标,从24种大孔吸附树脂中筛选出纯化甘草粗提物中甘草酸的最佳大孔吸附树脂,并确定纯化甘草酸的最佳工艺条件。结果AB-8大孔吸附树脂纯化甘草酸效果最佳,最佳工艺条件:上柱液浓度为0.11mg/mL,径高比为1:8,上样体积为所用树脂2BV,上样速度与洗脱速度均为2BV/h,用30%、50%的乙醇除杂,用80%乙醇富集甘草酸。纯化后产品纯度为60.74%,收率为3.29%,转移率为76.33%。结论采用AB-8大孔吸附树脂可较好地纯化甘草酸。 标签:甘草;甘草酸;AB-8大孔吸附树脂 药用甘草为豆科植物甘草(Glycyrrhiza uralensis Fish.),胀果甘草(Glycyrrhiza inflata Batalin)或光果甘草(Glycyrrhiza glabra L.)的干燥根及根茎[1]。甘草为药食两用植物,甘草酸又称甘草皂苷,是甘草的主要活性成分之一,具有促肾上腺皮质激素作用,能减少尿量及钠排出,增加钾排出,血钠上升,血钙降低。可用于解毒,抗炎[2],镇咳,抗肿瘤,抗溃疡,抗菌等[3]。近年来的药理研究发现,甘草酸类药物对防治病毒性肝炎、高血脂症和癌症等疾病有一定的疗效[3-4],对艾滋病毒也有一定的抑制增殖作用[5]。 长期以来,我国是甘草主要出口国,但产品多为原草或浸膏等初加工产品,缺乏深加工。研究有工业应用价值的甘草酸分离与精制技术具有重要意义。本实验将考察24种大孔树脂,选择出最优树脂进行甘草酸的纯化实验,并确定纯化的最佳条件。制定出稳定可靠,成本低廉的纯化工艺,以期对工业化生产有所帮助。 1 材料 LC-2010A高效液相色谱仪(日本岛津公司),FA10004N型万分之一分析天平(上海精密科学仪器有限公司),树脂(河北沧州宝恩吸附材料有限公司),甲醇色谱纯(天津市康科德科技有限公司),冰醋酸分析纯(天津市康科德科技有限公司),醋酸铵分析纯(天津市北方天医化学试剂场),光果甘草(购于河北安国药市长安中药材有限公司,经李天翔教授(天津中医药大学)鉴定),剪段约为3cm,砸至酥松,50℃干燥备用。甘草酸单铵盐对照品(批号为110731-201115,购于天津市药品检验所,纯度>98%)。 2 方法与结果 2.1甘草酸含量测定 2.1.1色谱条件色譜柱为MERITECH-C18柱(4.6mm×200mm,5μm),流动相:甲醇-0.2mol/L醋酸铵溶液-冰醋酸(67:32:1),柱温:30℃,流速:1ml/min,

相关主题