搜档网
当前位置:搜档网 › 积分变换习题解答1-5

积分变换习题解答1-5

积分变换习题解答1-5
积分变换习题解答1-5

1.求微分方程()()(),()x t x t t t δ'+=-∞<<+∞的解. 分析:求解微分、积分方程的步骤:

1)对微分、积分方程取Fourier 变换得象函数的代数方程; 2)解代数方程得象函数;

3)取Fourier 逆变换得象原函数(方程的解).

解:设()(),x t X ω??=??F 对方程两边取Fourier 变换,得 ()()j 1.X X ωωω+= 即

()1.

1

X j ω

ω=

+

其逆变换为()0,

.e ,0

t

t x t t -?

≥??

4.求解下列积分方程: 1)()

()

()2

22

2

10;y a b t b

t a

τττ+∞-∞

=

<

<+-+?

d

2)(

)2

2

t

t y τ

ττ+∞-

---∞

=?

e

d .

解:1)利用卷积定理可以求解此类积分方程.显然,方程的左端是未知函数()y t 与

2

2

1t a

+的卷积,即()2

2

1y t t a

+.设

()(),y t Y ω??=??F 对方程两边取

Fourier 变换,有

()222

211y t t a t b ????=??*+?????+?F F

()222

211y t t a t b ??

??

???=???+?????

??+F

F

F

易知:22

cos 2t

t

βωωβωβ

+∞-=

+?

πd e

,有

()2

2

2

2

11

t

t

Y t t t a

t b

ωωω+∞+∞---∞

-∞

?=

++?

?

j j e

d e

d

()2

2

2

2

cos cos 22t t Y t t t a t b

ωωω+∞+∞?=++?

?

d d

所以()()22b b a a a b

Y b

a ω

ω

ω

ω----==

πe e

πe

由上可知222201cos π

2d e a t t t a t a a ω

ω+∞

-?

?

=??

=?++??F ,

()()-1

b a a y t e b ω--?=??

???F

()-1

-b a a b a b b a ω--=

?-??

????

F πe π

()()2

2

--a b a b t b a =

??

+??

π.

2)设()(),y t Y ω??=??F 对方程两边取Fourier 变换,同理可得

(

)2

2

e

t

t

y t -

-???=??

?

???

F

F

利用钟形脉冲函数的Fourier

变换2

2

4e e

t A ω

ββ

-

-??=

?

?

F 及由

Fourier 变换的定义可求得:22

2e t

ββ

βω

-??=??

+F ,从而

(

)2

2

e t

t y t -

-??????=?????

???

F

F

F

()()2

2

2

2

2

2

212

1Y ω

ω

ω

ω

ω-

-

=

=++πe πe

()

2

2

2

2

2

ω

ω

ω-

-

=-πe

πj e

从而

()()

2

2

2

-1

-1

22

y t ωω

ω--

??

?

?

=-?????????

?

?

?

πe πj e

F

F , 其中,记()2

2

e

f t ω

-

??=??F ,则(

)2

2

1t

f t -

=

,上式中第二项可

利用微分性质()()()()2

2

2

2

f t f t ω

ωω-

''????==????F F j j e

,则

()

(

)2

2

2

2

-1

2

2

2

1t

f t t ω

ω-

-

?

??

?''== ??? ????

??

?

F

d j e

d 2

22t -=

因此

(

)2

2

2

2

2

t

t

y t --

=-π

π

2

2221t t -?=

-??

e

. 5.求下列微分方程的解()x t :

()()()()d ax t b x f t ch t τττ+∞-∞

'+-=?

其中()(),f t h t 为已知函数,,,a b c 均为已知常数.

解:设

()()()()()(),,.

f t F h t H x t X ωωω??????===??????F F F 对方程两边取Fourier 变换,可得

()()()()j a X bX F cH ωωωωω+=

()()()

,j cH X a bF ωωωω=

+

从而

()()()()

-1

.12t

cH X a bF x t ωωωωωω+∞-∞

??==

??+?

F

j π

e

d j

积分变换习题解答1-4

1-4 1.证明下列各式: 2)()1f t ()()()()()23123f t f t f t f t f t ???? =????; 6) ()()() ()() ()1 21212 d d d ;d d d f t f t f t f t f t f t t t t ? ?==?? 10)() ()()d t f t u t f ττ-∞ =? 分析:根据卷积的定义证明. 证明: 2) () ()()12 3f t f t f t ????()()()123d f f t f t ττττ+∞ -∞??=--? ? ? ()()()132d f f u f t u du τττ+∞+∞ -∞ -∞??=--???? ? ? ()()()132d d f f u f t u u τττ+∞+∞ -∞-∞=--?? ()()()123 d d f f t u f u u τττ+∞+∞-∞ -∞??=--????? ? ( )()()123d f t u f t u f u u +∞ -∞??=--?? ? ()()()123f t f t f t ??=? ? 6) ()()()()1212d d d d d f t f t f f t t t τττ+∞ -∞??? ?=?-?????? ? ()()()()1212 d d d d d f f t f t f t t t τττ+∞ -∞ ??=?-=??? , ()()()()1212d d d d d f t f t f t f t t τττ+∞ -∞??? ?=-??????? ? ()()()()12 12d d d d d f t f f t f t t t τττ+∞ -∞ ?? =-?=???? ? . 10) ()()()()d f t u t f u t τττ+∞ -∞=-? ()1,0,t u t t τττ?? ???? ?()d t f ττ-∞=?. 2.若()()()()12e ,sin t f t u t f t tu t α-==,求()()12f t f t . 注意:不能随意调换()1f t 和()2f t 的位置.

复变函数与积分变换习题答案

习题六 1. 求映射1 w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2222 11i=+i i x y w u v z x y x y x y ===-+++ 221 x x u x y ax a = ==+, 所以1w z =将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y = =-++ 22 2222 x y kx u v x y x y x y = =- =- +++ v ku =- 故1 w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则2222 ,u v y x u v u v ==++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12w > (以(12,0)为圆心、 1 2为半径的圆)

复变函数与积分变换课后习题答案详解

… 复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) / ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππ2222e cos isin i i 44-??????=-+-= +-=- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+); 3 3 31313;;;.n i i z i ???? -+-- ? ? ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 3 2 2 222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ () ()()()(){ }3 3 2 3 2 1i 31i 311313313388-+??-+? ???== --?-?+?-?- ? ?????? ? ?? ?? ()1 80i 18 = += ∴1i 3Re 1?? -+= ? ??? , 1i 3Im 0??-+= ? ???. ④解: ∵ () ()() ()()2 3 3 23 1313 3133i 1i 38 ??--?-?-+?-?- ?? ??-+? ? = ? ??? ()1 80i 18 = += ∴1i 3Re 1??-+= ? ?? ? , 1i 3Im 0??-+= ? ??? . ⑤解: ∵()()1, 2i 211i, k n k n k k n k ?-=?=∈?=+-???. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i 415-+=+=. 2i 2i -+=-- ②解:33-= 33-=- ③解:()()2i 32i 2i 32i 51365++=++=?=. ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 2 22++== ()1i 11i 222i ++-??= = ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+, 则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数. 若z =x ,x ∈,则z x x ==.

积分变换习题解答2-3

2-3 1.设()()12,f t f t 均满足Laplace 变换存在定理的条件(若它们的增长指数均为c ),且()()()()1212,f t f t F s F s ????==????L L ,则乘积()()12f t f t ?的Laplace 变换一定存在,且 ()()()()j 1122j 1d 2πj F q F s q q f t f t ββ+∞ -∞??=-????L 其中(),Re .c s c ββ>>+ 证明: 已知()()12,f t f t 均满足Laplace 变换存在定理的条件且其增长指数均为c ,由Laplace 变换存在定理知()()12f t f t ?也满足Laplace 变换存在定理的条件且 ()()()()1212e e ct ct f t f t f t f t M M ?=?≤?22e ,0ct M t =≤<+∞ 表明()()12f t f t ?的增长指数为2c .因此()()12f t f t ?的Laplace 变换 ()()()120 e d st F s f t f t t +∞ -=? 在半平面()Re 2s c >上一定存在,且右端积分在()()Re s c c ββ≥+>上绝对且一致收敛,并且在()Re 2s c >的半平面内,()F s 为解析函数. 根据()()11F f t s ??=??L ,则()1f t 的Laplace 反演积分公式为 ()()11j j 1e d 2πj qt q f F q t ββ+∞-∞= ? 从而 ()()()()12120 e d st f t f t f t f t t +∞ -????=??L ()()j 120 j e d 1e d 2πj q s t t F q q f t t ββ+∞+--∞∞ ??=???? ?? (交换积分次序)()()()1j 0j 2e 12πj d d s q t F q f t t q ββ++∞-∞ ∞--??=?????? ()()j 12j 1d 2πj F q F s q q ββ+∞ -∞= -? 2.求下列函数的Laplace 逆变换(象原函数);并用另一种方法加以验证.

复变函数与积分变换课后习题答案详解

复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππe cos isin 44-??????=-+- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+ ); 33 3;;;.n z i ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 322222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ (( )( ){ }3 3 2 3 2 111313188-+? ???== --?-?+?-????? ? ?? ?? ()1 80i 18 = += ∴Re 1=?? , Im 0=?? . ④解: ∵ () ( )(( )2 3 3 2 3 13131i 8 ??--?-?+?-???? =?? ()1 80i 18 = += ∴Re 1 =? ? , Im 0=? ? . ⑤解: ∵()()1,2i 211i, k n k n k k n k ?-=? =∈?=+-???¢. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i -+= 2i 2i -+=-- ②解:33-= 33-=- ③解:()( )2i 32i 2i 32i ++=++= ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 22++== ()1i 11i 222i ++-??== ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,

复变函数及积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。 (1) i 解:2 cos sin 2 2 i i e i ππ π ==+ (2) -1 解:1cos sin i e i πππ-==+ (3) 1+ 解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解: 2221cos sin 2sin 2sin cos 2sin (sin cos )2 2 2 2 22 2sin cos()sin()2sin 222222 i i i i i e παα α α α α α αααπαπαα?? - ??? -+=+=+? ?=-+-= ??? (5) 3z 解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e + 解:()1cos1sin1i i e ee e i +==+ (7) 11i i -+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++ 二、计算下列数值 (1) 解:

1 ar 2 1 ar 2 1 ar 2 b i ctg k a b i ctg a b i ctg a π ?? + ? ?? == ? ? =? ? ? (2) 解: 6 22 6363 4 63 22 2 i k i i i i e i e e e i π ππππ ππ ???? ++ ? ? ???? ?? + ? ?? ? =+ ? ? ? ? ====+ ? ? ?=- ? (3) i i 解: ()22 22 i i k k i i e e ππ ππ ???? +-+ ? ? ???? == (4) 解: ()1/22 22 i i k k e e ππ ππ ???? ++ ? ? ???? == (5) cos5α 解:由于:()() 55 2cos5 i i e e ααα - +=, 而: ()()()() ()()()() 5 555 5 5 555 5 cos sin cos sin cos sin cos sin n n i n n n n i n n e i C i e i C i α α αααα αααα - = - - = =+= =-=- ∑ ∑ 所以: ()()()() ()()() ()()()() 5 55 5 5 55 5 4325 3 5 4325 1 cos5cos sin cos sin 2 1 cos sin11 2 5cos sin cos sin cos 5cos sin10cos sin cos n n n n n n n n n n n C i i C i i C i ααααα αα ααααα ααααα -- = -- = ??=+- ?? ?? =+- ?? =++ =-+ ∑ ∑ (6) sin5α 解:由于:()() 55 2sin5 i i e e ααα - -=, 所以:

复变函数与积分变换(修订版复旦大学)课后的第三章习题答案

习题三 1. 计算积分2 ()d C x y ix z -+?,其中C 为从原点到点1+i 的直线段. 解 设直线段的方程为y x =,则z x ix =+. 01x ≤≤ 故 ()()1 22 1 23 1 0()1 1 (1)(1)(1)333C x y ix dz x y ix d x ix i i ix i dx i i x i -+=-++-=+=+?=+=?? ? 2. 计算积分(1)d C z z -?,其中积分路径C 为 (1) 从点0到点1+i 的直线段; (2) 沿抛物线y=x2,从点0到点1+i 的弧段. 解 (1)设z x ix =+. 01x ≤≤ ()()1 11()C z dz x ix d x ix i -=-++=?? (2)设2 z x ix =+. 01x ≤≤ ()()1 22 211()3 C i z dz x ix d x ix -=-++=?? 3. 计算积分d C z z ?,其中积分路径C 为 (1) 从点-i 到点i 的直线段; (2) 沿单位圆周|z|=1的左半圆周,从点-i 到点i; (3) 沿单位圆周|z|=1的右半圆周,从点-i 到点i. 解 (1)设z iy =. 11y -≤≤ 11 1 1 C z dz ydiy i ydy i --===??? (2)设i z e θ =. θ从32π到2π 22 332 2 12i i C z dz de i de i π π θ θππ===???

(3) 设i z e θ =. θ从32π到2π 2 32 12i C z dz de i π θ π==?? 6. 计算积分()sin z C z e z dz -???,其中C 为0 z a =>. 解 ()sin sin z z C C C z e z dz z dz e zdz -?=-????蜒 ? ∵sin z e z ?在z a =所围的区域内解析 ∴sin 0z C e zdz ?=?? 从而 ()20 22 sin 0 z i C C i z e z dz z dz adae a i e d π θ π θθ-?====?? ??蜒 故()sin 0 z C z e z dz -?=?? 7. 计算积分2 1 (1) C dz z z +??,其中积分路径C 为 (1)11:2 C z = (2) 23 :2 C z = (3) 31:2 C z i += (4) 43:2 C z i -= 解:(1)在 1 2 z = 所围的区域内, 21 (1)z z +只有一个奇点0z =. 12 1 11111 ()2002(1) 22C C dz dz i i z z z z i z i ππ= -?-?=--=+-+?? 蜒(2)在2C 所围的区域内包含三个奇点 0,z z i ==±.故 22 1 11111()20(1) 22C C dz dz i i i z z z z i z i πππ= -?-?=--=+-+?? 蜒(3)在2C 所围的区域内包含一个奇点 z i =-,故 32 1 11111()00(1) 22C C dz dz i i z z z z i z i ππ= -?-?=--=-+-+??蜒(4)在4C 所围的区域内包含两个奇点 0,z z i ==,故

复变函数与积分变换第五版习题解答

复变函数与积分变换第五版答案 目录 练 习 一...............................1 练 习 二...............................3 练 习 三...............................5 练 习 四...............................8 练 习 五..............................13 练 习 六..............................16 练 习 七..............................18 练 习 八..............................21 练 习 九 (24) 练 习 一 1.求下列各复数的实部、虚部、模与幅角。 (1)i i i i 524321-- --; 解:i i i i 524321---- = i 2582516+ z k k Argz z z z ∈+== = = π22 1 arctan 25 5825 8Im 25 16 Re (2)3 ) 231(i + 解: 3) 231(i + z k k Argz z z z e i i ∈+===-=-==+=π ππ π π 210Im 1Re 1 ][)3 sin 3(cos 333 2.将下列复数写成三角表示式。 1)i 31- 解:i 31-

)35sin 35(cos 2ππi += (2)i i +12 解:i i +12 )4 sin 4(cos 21π π i i +=+= 3.利用复数的三角表示计算下列各式。 (1)i i 2332++- 解:i i 2332++- 2sin 2 cos π π i i +== (2)4 22i +- 解:4 22i +-4 1 )]43sin 43(cos 22[ππi += 3,2,1,0] 1683sin 1683[cos 2]424/3sin ]424/3[cos 283 8 3 =+++=+++=k k i k k i k ππππππ 4..设 321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位 圆z =1的一个正三角形的项点。 证:因,1321===z z z 所以321,,z z z 都在圆周 32z z ++=0 则, 321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又 ,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量

复变函数与积分变换 复旦大学出版社 习题六答案

习题六 1. 求映射1w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2 2 2 2 11i=+i i x y w u v z x y x y x y == = - +++ 2 2 1x x u x y ax a = == +, 所以1w z = 将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 2 2 2 2 1i x y w z x y x y = =- ++ 2 22 2 2 2 x y kx u v x y x y x y = =- =- +++ v ku =- 故1w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则 2 2 2 2 ,u v y x u v u v = = ++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12 w > (以(12 ,0)为圆心、12 为半径的圆) 3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版-习题1

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解: i 4 πππe cos isin 44-?????? =-+-=+= ? ? ? ??????? ②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+ ); 33 311;;;.22n z i ??-+-- ???? ①解: ∵设z =x +iy 则 ()()()()()()()2 2 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴()222 22Re z a x a y z a x a y ---??= ?+??++, ()2 2 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵()()()()()()()()3 2 322222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴() 332Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵( ( )( ){ } 3 3 2 3 2 11 131318 8 -+????==--?-?+?-????? ?? ??? ()1 80i 18 = +=

积分变换习题解答2-2

2-2 1.求下列函数的Laplace 变换式: 1)()232f t t t =++. 解:由[]2 132!1232132m m m t s s s s s t t +????==++=++???? 及有L L L . 2)()1e t f t t =-. 解 :[]() () 11 11 ,e e t t t t t s s s s --????= ==- ????2 2 2+1-1L L ,L 1-. 3)()()2 1e t f t t =-. 解: ()22-1e e 2e e t t t t t t t ????=-+???? L L () () () 2 3 2 3 2 2 145 .-1-1-1s s s s s s -+= - + = -1 5)()cos f t t at =. 解: 由微分性质有: [][]() 2 2 2 222 2 d d cos cos d d s s a t at at s s s a s a -?? =-=-= ? +?? +L L 6) ()5sin 23cos 2f t t t =- 解:已知[][]2 2 2 2 sin ,cos s t t s s ω ωωω ω= = ++L L ,则 []52 2 222103sin 23cos 25 34 4 4 s t t s s s --=-= +++L 8)()4e cos 4t f t t -=. 解: 由[]2 cos 416 t s +s = L 及位移性质有 42cos 4416 e t s t s -??=??++4(+)L . 3.若()()f t F s ??=??L ,证明(象函数的微分性质):

复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案

习题二 1. 求映射 1 w z z =+ 下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则 2222 22 1i i i i i()i x y x y u v x y x y x y x y x y x y x y -+=++ =++=++-++++ 因为22 4x y +=,所以 53i 44u iv x y += + 所以 54u x =,34v y =+ 53 4 4 ,u v x y == 所以( ) ()2 25344 2 u v + =即( ) ()2 2 22531 u v + =,表示椭圆. 2. 在映射2 w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ? ρ=或 i w u v =+. 解:设222 i ()2i w u v x iy x y xy =+=+=-+ 所以22 ,2.u x y v xy =-= (1) 记e i w ? ρ=,则 π 02,4r θ<<= 映射成w 平面内虚轴上从O 到4i 的一段,即 π 04,. 2ρ?<<= (2) 记e i w ? ρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即 π 04,0.2ρ?<<<<

(3) 记w u iv =+,则将直线x=a 映成了22,2.u a y v ay =-=即 222 4().v a a u =-是以原点为焦点,张口向左的抛物线将y=b 映成了22 ,2.u x b v xb =-= 即222 4()v b b u =+是以原点为焦点,张口向右抛物线如图所示 . 3. 求下列极限. 解:令 1z t = ,则,0z t →∞→. 于是2 22 01lim lim 011z t t z t →∞→==++. (2) 0Re()lim z z z →; 解:设z=x+yi ,则Re()i z x z x y =+有 000 Re()1 lim lim i 1i z x y kx z x z x kx k →→=→== ++ 显然当取不同的值时f(z)的极限不同 所以极限不存在. (3) 2lim (1) z i z i z z →-+; 解: 2lim (1) z i z i z z →-+= 11 lim lim ()()()2 z i z i z i z i z z i z i z →→-==- +-+.

工程数学积分变换答案

工程数学积分变换答案 【篇一:复变函数与积分变换是一门内容丰富】 建立和发展与解决实际问题的需要联系密切,其理论与方法被广泛 应用在自然科学的许多领域,是机械、电子工程、控制工程,理论 物理与流体力学,弹性力学等专业理论研究和实际应用中不可缺少 的数学工具。 课程包含2部分内容:向量分析与场论,复变函数论与积分变换。 本课程的目的,是使学生掌握向量分析与场论,复变函数论,积分 变换的基本理论、基本概念与基本方法,使学生在运用向量分析与 场论,复变函数论,积分变换的思想和方法解决实际问题的能力方 面得到系统的培养和训练,为在后 继专业课程和以后的实际工作打下良好的数学基础 向量分析与场论部分 第一章向量与向量值函数分析学时:4 几何向量,几何向量的加法、数乘、数量积、向量积,向量的混合 积与三重向量积,向量值函数的定义,向量值函数的加法、数乘、 复合、数量积运算,向量值函数的极限、连续,向量值函数的导数,向量值函数的体积分、曲线积分、曲面积分,高斯公式,斯托克斯 公式。 第二章数量场学时:2 数量场的等值面,数量场的方向导数、梯度的概念,哈米尔顿算子 的用法。 第三章数量场学时:6 向量场的向量线,向量场的通量,向量场的散度,向量场的环量, 向量场的环量面密度、向量场的旋度,向量场场函数的导数与向量 场的散度、旋度及数量场的梯度之间的关系。 第四章三种特殊形式的向量场学时:4 保守场,保守场的旋度,保守场的势函数,管形场,管形场的向量势,调和场,调和函数。 复变函数与积分变换部分 第一章:复数与平面点集学时:2 复数的直角坐标表示法,三角表示法,指数表示法。复数的模和辐角,复数的四则运算。平面区域,邻域,聚点,闭集,孤立点,边 界点,边界,连通集,区域,单连通区域,多连通区域。

积分变换课后答案

1-1 1. 试证:若 ()f t 满足Fourier 积分定理中的条件,则有 ()()()d d 0 cos sin f t a t b t ωωωωωω+∞+∞ =+? ? 其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞ -∞-∞ ==?? 分析:由Fourier 积分的复数形式和三角形式都可以证明此题,请读者试 用三角形式证明. 证明:利用Fourier 积分的复数形式,有 ()()j j e e d π12t t f t f ωωτω+∞+∞--∞-∞??= ? ????? ()()j j d e d π11cos sin 2t f ωτωτωττω+∞+∞-∞-∞??=-???? ?? ()()()j j d 1cos sin 2 a b t t ωωωωω+∞ -∞??= -+??? 由于()()()(),,a a b b ωωωω=-=--所以 ()()()d d 11cos sin 22 f t a t b t ωωωωωω+∞+∞-∞-∞= +?? ()()d d 0 cos sin a t b t ωωωωωω+∞+∞ =+? ? 2.求下列函数的Fourier 积分: 1)()22 21,10,1t t f t t ?-≤?=?>??; 2) ()0, 0;e sin 2,0 t t f t t t -???为连续的偶函数,其Fourier 变换为 j 21()[()]()e d 2()cos d 2(1)cos d 00t F f t f t t f t t t t t t ωωωω-+∞ +∞?====-?-∞ ???F

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

习题二 1. 求映射1w z z =+下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则 2222221i i i i i()i x y x y u v x y x y x y x y x y x y x y -+=++=++=++-++++ 因为224x y +=,所以53i 44 u iv x y +=+ 所以 54u x = ,34 v y =+ 5344 ,u v x y == 所以()()2 253442u v +=即()()222253221u v +=,表示椭圆. 2. 在映射2w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ?ρ=或i w u v =+. (1)π02,4r θ<<= ; (2)π02,04 r θ<<<<; (3) x=a, y=b .(a, b 为实数) 解:设222i ()2i w u v x iy x y xy =+=+=-+ 所以22,2.u x y v xy =-= (1) 记e i w ?ρ=,则π02,4 r θ<<=映射成w 平面内虚轴上从O 到4i 的一段,即 π04,.2 ρ?<<= (2) 记e i w ?ρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即π04,0.2 ρ?<<<<

(3) 记w u iv =+,则将直线x =a 映成了22,2.u a y v ay =-=即2224().v a a u =-是以原点为焦点,张口向左的抛物线将y =b 映成了22,2.u x b v xb =-= 即2224()v b b u =+是以原点为焦点,张口向右抛物线如图所示. 3. 求下列极限. (1) 2 1lim 1z z →∞+; 解:令1z t =,则,0z t →∞→. 于是2 22 01lim lim 011z t t z t →∞→==++. (2) 0Re()lim z z z →; 解:设z =x +y i ,则Re()i z x z x y =+有 000 Re()1lim lim i 1i z x y kx z x z x kx k →→=→==++ 显然当取不同的值时f (z )的极限不同 所以极限不存在. (3) 2lim (1) z i z i z z →-+; 解:2lim (1)z i z i z z →-+=11lim lim ()()()2 z i z i z i z i z z i z i z →→-==-+-+.

复变函数与积分变换试题及答案

复变函数与积分变换试题(一) 一、填空(3分×10) 1.)31ln(i --的模 ?? ,幅角 ?? 。 2.-8i的三个单根分别为: , , 。 3.Ln z在 的区域内连续。 4.z z f =)(的解极域为:? ?? ? 。 5.xyi y x z f 2)(22+-=的导数=')(z f ? ??。 6.=?? ? ???0,sin Re 3z z s ?? ?。 7.指数函数的映照特点是:??? ? ?? ??。 8.幂函数的映照特点是: ? ?? ? ?。 9.若)(ωF =F [f (t)],则)(t f = F )][(1ω-f ?? ??。 10.若f (t )满足拉氏积分存在条件,则L [f (t )]= ? ? 。 二、(10分) 已知222 1 21),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解 析函数,且f(0)=0。 三、(10分)应用留数的相关定理计算 ?=--2||6)3)(1(z z z z dz 四、计算积分(5分×2) 1.?=-2 ||) 1(z z z dz

2.? -c i z z 3 )(cos C :绕点i 一周正向任意简单闭曲线。 五、(10分)求函数) (1 )(i z z z f -= 在以下各圆环内的罗朗展式。 1.1||0<-

复变函数与积分变换修订版-复旦大学课后的习题答案

习题 七 1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有 ?+∞ ?=0 d sin )()(ωωωt b t f 其中()?+∞ ?=0 tdt sin π2)(ωωt f b 当 f (t ) 为 偶 函 数 时 , 则 有 ?+∞?=0 cos )()(ωωtd w a t f 其中? +∞ ?=0 2 tdt c f(t))(ωωπ os a 证明: 因为ωωωd G t f t i ?+∞ ∞ -=e )(π21)(其中)(ωG 为f (t )的傅里叶变换 ()()()(cos sin )i t G f t e dt f t t i t dt ωωωω+∞ +∞ --∞-∞ ==?-? ? ()cos ()sin f t tdt i f t tdt ωω+∞ +∞ -∞ -∞ =?-?? ? 当f (t )为奇函数时,t cos f(t)ω?为奇函数,从而 ? +∞ ∞ -=?0tdt cos f(t)ω t sin f(t)ω?为偶函数,从而 ? ?+∞ ∞ -+∞ ?=?0 .sin f(t)2tdt sin f(t)tdt ωω 故.sin f(t)2)(0 tdt i G ωω?-=? +∞ 有 )()(ωωG G -=-为奇数。 ωωωωπ ωωπ ωd t i t G d e G t f t i )sin (cos )(21)(21)(+?= ?= ? ? +∞ ∞ -+∞ ∞ - =0 1()sin d ()sin d 2ππi G i t G t ωωωωωω+∞ +∞ -∞?=??? 所以,当f(t)为奇函数时,有 00 2()b()sin d .b()= ()sin dt.πf t t f t t ωωωωω+∞ +∞ =????其中同理,当f(t)为偶函数时,有 ()()cos d f t a t ωωω+∞ =??.其中 02()()cos π a f t tdt ωω+∞ = ?? 2.在上一题中,设()f t =21, 0, 1 t t t ?

相关主题