搜档网
当前位置:搜档网 › 2013年与三角形有关的线段(经典习题)

2013年与三角形有关的线段(经典习题)

2013年与三角形有关的线段(经典习题)
2013年与三角形有关的线段(经典习题)

习题精选

习题一习题二

习题一

一、选择题:

1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;

⑥3:4:5.其中可构成三角形的有( )

A.1个 B.2个 C.3个 D.4个

2.如果三角形的两边长分别为3和5,则周长L的取值范围是( )

A.6

3.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取 ( )

A.10cm的木棒 B.20cm的木棒C.50cm的木棒 D.60cm的木棒

4.已知等腰三角形的两边长分别为3和6,则它的周长为( )

A.9 B.12 C.15 D.12或15

5.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( )

A. 2cm B. 3cm C. 4cm D. 5cm

6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )

A.2个 B.3个 C.4个 D.5个

二、填空题:

1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.

2.若等腰三角形的两边长分别为3和7,则它的周长为_______;若等腰三角形的两边长分别是3和4,则它的周长为_____.

3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.

4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成______个三角形.

5.已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,△BCD的周长为15cm,则底边BC的长为__________.

6.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为_____.

三、基础训练:

1.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).

2.已知等腰三角形的两边长分别为4,9,求它的周长.

四、提高训练:

设△ABC的三边a,b,c的长度都是自然数,且a≤b≤c,a+b+c=13,则以a,b,c为边的三角形共有几个?

五、探索发现:

若三角形的各边长均为正整数,且最长边为9,则这样的三角形的个数是多少?

六、中考题与竞赛题:

1.(2001.南京)有下列长度的三条线段,能组成三角形的是( )

A. 1cm, 2cm, 3cm B. 1cm, 2cm, 4cm; C. 2cm, 3cm, 4cm D. 2cm, 3cm,6cm

2.(2002.青海)两根木棒的长分别是8cm,10cm,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x的取值范围是________;如果以5cm为等腰三角形的一边,另一边为10cm,则它的周长为________.

答案:

一、1.B 2.D 3.B 4.C 5.B 6.B

二、1.52 4.3 5. 5cm 6. 7cm

三、

1.解:在△APB中,AP+BP>AB,

同理BP+PC>BC,PC+AP>AC,

三式相加得2(AP+BP+PC)>AB+AC+BC,

∴AP+BP+CP>(AB+AC+BC).

2.22

四、5个

五、25个

六、1. C 2. 2cm

习题二

一、选择题:

1.如图1所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B落在点B′的位置,则线段AC具有性质( )

A.是边BB′上的中线 B.是边BB′上的高

C.是∠BAB′的角平分线 D.以上三种性质合一

2.如图2所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )

A.DE是△BCD的中线 B.BD是△ABC的中线

C.AD=DC,BD=EC D.∠C的对边是DE

3.如图3所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC= 4cm2,则S阴影等于( )

A. 2cm2 B. 1cm 2 C.cm2 D.cm2

4.在△ABC,∠A=90°,角平分线AE、中线AD、高AH的大小关系为( )

A.AH

5.在△ABC中,D是BC上的点,且BD:DC=2:1,S△ACD=12,那么S△ABC等于( )

A.30 B. 36 C.72 D.24

6.不是利用三角形稳定性的是( )

A.自行车的三角形车架 B.三角形房架

C.照相机的三角架 D.矩形门框的斜拉条

二、填空题:

1.直角三角形两锐角的平分线所夹的钝角为_______度.

2.等腰三角形的高线、角平分线、中线的总条数为________.

3.在△ABC中,∠B=80°,∠C=40°,AD,AE分别是△ABC的高线和角平分线,则∠DAE 的度数为_________.

4.三角形的三条中线交于一点,这一点在_______,三角形的三条角平分线交于一点,这一点在__________,三角形的三条高线所在直线交于一点,这一点在_____.

三、基础训练:

1.如图所示,在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数.

2.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.

四、提高训练:

在△ABC中,∠A=50°,高BE,CF所在的直线交于点O,求∠BOC的度数.

五、探索发现:

如图所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s与n有什么关系,并求出当n=13时,s的值.

六、中考题与竞赛题:

(2000.杭州)AD,AE分别是等边三角形ABC的高和中线,则AD 与AE 的大小关系为____.

答案:

一、1.D 2.D 3.B 4.D 5.B 6.C

二、1.135 2.3条或7条 3.20°

4.三角形内部三角形内部三角形内部、边上或外部

三、1.∠AEC=45° 2.AD= 13cm

四、∠BOC=50°或130°

五、s=3n-3,当n=13时,s=36.

六、AD=AE.

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

解三角形经典练习试题集锦(附答案)

解三角形 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为0 60,则 底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .0 60 30或 B .0 060 45或 C .0 060120或 D .0 15030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .0 90 B .0 120 C .0 135 D .0 150 二、填空题 1.在Rt △ABC 中,0 90C =,则B A sin sin 的最大值是 _______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3.在△ABC 中,若====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值 是________。 三、解答题 1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么? 2.在△ABC 中,求证: )cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求证: C B A C B A cos cos cos sin sin sin ++>++。

三角形经典习题(必看)

三角形复习卷 一、选择题 1.一个三角形的两边长分别是2cm 和9cm ,第三边的长是一个奇数,则第三边长为( ) A 、5cm B 、7cm C 、9cm D 、11cm 2. 1.在下列条件中:①∠A+∠B=∠C ,②∠A∶∠B∶∠C=2∶3∶4,③∠A=90°-∠B ,④∠A=∠B= 2 1 ∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个; B 、2个; C 、3个; D 、4个 3.对于三角形的内角,下列判断中不正确的是( ); A.至少有两个锐角 B.最多有一个直角 C.必有一个角大于600 D.至少有一个角不小600 4. 如图,∠BAC=90°,AD⊥BC,则图中互余的角有( ) A 、2对; B 、3对; C 、4对; D 、5对; 5. 下列说法错误的是( ) A. 三角形三条中线交于三角形内一点; B. 三角形三条角平分线交于三角形内一点 C. 三角形三条高交于三角形内一点; D. 三角形的中线、角平分线、高都是线段 6、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A 、115° B、120° C、125° D、130° 7、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 相交于一点P ,若∠A=50°,则∠BPC=( ) A 、150° B、130° C、120° D、100° 8、7.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A.5 B.6 C.7 D.8 9如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB 为( )A. 80° B. 72° C. 48° D. 36° 10.在△ABC 中,∠A=2∠B=4∠C ,则△ABC 为( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能 11.直角三角形两锐角的平分线相交所夹的钝角为( ) A 、125° B 、135° C 、145° D 、150° 12.等腰△ABC 的底边为5cm ,一腰上的中线把周长分为差为3cm 的两部分,则△ABC 的腰长是( )cm 。 A B C D E P 第7题 第9题

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

与三角形有关的线段练习题

1 与三角形有关的线段检测题 一、选择题 1、△ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( ) A .a +b=c B .a +b>c C .a +b90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,△ABC 中BC 边上的高是( ) A .FC B .BE C .A D D .AE 3、三角形的三条高在( ) A .三角形内部 B .三角形外部 C .三角形的边上 D .三角形的内部、外部或与边重合 4、如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( ) A .三角形的稳定性 B .两点之间线段最短 C .两点确定一条直线 D .垂线段最短 5、如图,△ABC 中,∠C=90°,D 、E 为AC 上的两点,且AE=DE ,BD 平分∠EBC ,则下列说法中不正确的是( )A .BC 是△ABE 边AE 上的高 B .BE 是△ABD 的中线 C .B D 是△EBC 的角平分线 D .∠ABE=∠EBD=∠DBC 6、下列判断正确的是( ) (1)平分三角形内角的射线叫三角形的角平分线; (2)三角形的中线、角平分线都是线段; (3)一个三角形有三条角平分线和三条中线; (4)三角形的中线是经过顶点和对边中点的直线. A .(1)(2)(3)(4) B .(2)(3)(4) C .(3)(4) D .(2)(3) 7、如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( ) A .两点之间线段最短 B .矩形的对称性 C .矩形的四个角都是直角 D .三角形的稳定性 8、观察下列图形,则第个图形中三角形的个数是( )

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

(完整版)解三角形三类经典题型

解三角形三类经典类型 类型一 类型二 类型三 判断三角形形状 求范围与最值 求值专题 类型一 判断三角形形状 2 2 2 例1已知△ ABC 中,bsinB=csinC,且sin A sin B sin C ,试判断三角形的形状. 解:T bsinB=csinC,由正弦定理得 sin 2 B=sin 2C ,「. sinB=sinC B=C 由sin 2A sin 2 B sin 2C 得a 2 b 2 c 2 三角形为等腰直角三角形. 例2:在厶ABC 中,若E =60 ,2 b=a+c,试判断△ ABC 的形状. 解:T2 b=a+c,由正弦定理得 2sinB=sinA+sinC,由 B=60 得 sinA+sinC= . 3 由三角形内角和定理知 sinA+sin( 120 A )= 3 ,整理得sin(A+ 30 )=1 二A+30 90,即A 60 ,所以三角形为等边三角形 2bc 整理得(a 2 b 2)(a 2 b 2 c 2) 0 ? a 2 b 2或a 2 b 2 c 2 即三角形为等腰三角形或直角三角形 例4:在厶ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= sin B sinC ,试判断三角形的形状. cosB cosC 解:⑴由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC — cosBsinC=0即sin(B — C)=0 ? B=C 即三角形为等腰三角形 (2)由已知得sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得 例3:在厶ABC 中,已知 tan A tan B 2 ,试判断厶ABC 的形状. b 2 解:法1:由题意得 sin AcosB sin B cos A ■ 2 A sin A ■ 2 - sin B ,化简整理得 sinAcosA=sinBcosB 即 sin2A=sin2B ??? 2A=2B 或 2A+2B=n /? A=B 或 A a 2 a 2 ,2 c b 法2:由已知得sinAcosB sin B cos A 2 a 2 结合正、余弦定理得 b 2 2ac b b 2 2 2 c a a 2 b 2 B i ,?三角形的形状为等腰三角形或直角三角形.

11.1与三角形有关线段练习题

考点1:认识三角形 1.如图7.1.1-1的三角形记作__________,它的三条边是__________,三个顶点分别是_________,三个内角是__________,顶点A 、B 、C 所对的边分别是___________,用小写字母分别表示__________. 2.三角形按边分类可分为__________三角形,__________三角形;等腰三角形分为底与腰__________的三角形和底与腰__________的三角形. 3.如图7.1.1-2所示,以AB 为一边的三角形有( ) A.3个 B.4个 C.5个 D.6个 4.如图7-1-26,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个…,则在第n 个图形中,互不重叠的三角形共有_______个(用含n 的代数式表示) . 图7-1-26 考点2:三角形三边关系 1、已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( ) A.2cm B.3cm C.4cm D.5cm 4.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ) A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,10 5.已知三角形的三边长分别为4、5、x ,则x 不可能是( ) A .3 B .5 C .7 D .9 6..已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A.13cm B.6cm C.5cm D.4cm 7.一个三角形的两条边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( ) A.14 B.15 C.16 D.17 8.如果线段a 、b 、c 能组成三角形,那么,它们的长度比可能是( ) A.1∶2∶4 B.1∶3∶4 C.3∶4∶7 D.2∶3∶4 9.已知等腰三角形的两边长分别为4cm 和7cm ,则此三角形的周长为( ) A.15cm B.18cm C.15cm 或18cm D.不能确定 10.下列各组给出的三条线段中不能组成三角形的是( ) A.3,4,5 B.3a ,4a ,5a C.3+a ,4+a ,5+a D.三条线段之比为3∶5∶8 11..三角形三边的比是3∶4∶5,周长是96cm ,那么三边分别是________cm. 12.已知等腰三角形的周长是25cm ,其中一边长为10cm ,求另两边长__________. 已知三角形的三边长分别为3,8,x; 若x 的值为奇数,则x 的值有______个; 已知等腰三角形的周长为21cm ,若腰长为底边长的3倍,则其三边长分别为______; 如果△ABC 是等腰三角形,试问: ⑴ 若周长是18,一边长是8,则另两边长是_________________; ⑵ 若周长是18,一边长是4,则另两边长是__________________。 考点3:三角形的高 1.如图7.1.2-1,在△ABC 中,BC 边上的高是________;在△AFC 中,CF 边上的高是________;在△ABE 中,AB 边上的高是_________. 2.如图7.1.2-2,△ABC 的三条高AD 、BE 、CF 相交于点H ,则△ABH 的三条高是_______,这三条高交于________.BD 是△________、△________、△________的高. 图 7.1.1-2 图7.1.1-1

三角形经典题50道附答案解析

1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:1 2CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A D B C

证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) ∴△EFD ≌△CGD EF =CG B A C D F 2 1 E

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

等腰三角形典型例题练习(含答案)#(精选.)

等腰三角形典型例题练习

等腰三角形典型例题练习 一.选择题(共2小题) 1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为() A.5cm B.3cm C.2cm D.不能确定 2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD 和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论: ①AE=BD ②CN=CM ③MN∥AB 其中正确结论的个数是() A.0B.1C.2D.3 二.填空题(共1小题) 3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF 的面积与△ABC的面积之比等于_________. 三.解答题(共15小题) 4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证 DE=DF. 5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.

6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC 是什么三角形?并说明理由. 7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE. (1)∠E等于多少度? (2)△DBE是什么三角形?为什么? 8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD. 9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF. 10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E, 求证:BD=2CE.

实用文档之解三角形经典练习题集锦(附答案)

实用文档之"解三角形" 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则 △ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角 为0 60,则底边长为( ) A .2 B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0 060120或 D .0 015030或 6.边长为5,7,8的三角形的最大角与最小角的和是 ( ) A .090 B .0120 C .0135 D .0 150 二、填空题 1.在Rt △ABC 中,0 90C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3 . 在△ABC 中,若 ====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。 三、解答题 1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么? 2.在△ABC 中,求证: )cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求 证: C B A C B A cos cos cos sin sin sin ++>++。 4.在△ABC 中,设,3 ,2π =-=+C A b c a 求B sin 的 值。 解三角形 一、选择题 1.在△ABC 中,::1:2:3A B C =,则::a b c 等于 ( ) A .1:2:3 B .3:2:1 C .2 D .2 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .大于零 B .小于零 C .等于零 D .不能确定 3.在△ABC 中,若B A 2=,则a 等于( ) A .A b sin 2 B .A b cos 2 C .B b sin 2

证明线段和差练习题(三角形全等)

证明线段和差练习题 几何中有许多题目要证明一线段等于另两线段的和(或差),解决这类问题常用的方 法大体有五种,即,利用等量线段代换、截短法、接长法、利用面积证明、旋转等五种。下面分别列举几例逐一说明: 一、利用等量线段代换:证一线段等于另两线段的和(或差),只需证这条全线段的两部分,分别等于较短的两条线段,问题就解决了。 例1已知:如图,在△ABC 中,∠B 和∠C 的角平分线BD 、CD 相交于一点D ,过D 点作EF ∥BC 交AB 与点E ,交AC 与点F 。求证:EF=BE+CF 二、截短法或接长法:所谓截短法就是将长线段,截成几条线段,然后分别证明这几条线段等于要证明中的较短的线段,最后代入达到目的。所谓接长法是将较短的两条线段适当的连接起来,然后再证这条线段等于第三条线段,从而达到目的。 例2:如图所示已知 △ABC 中,0 90C ∠=,AC=BC ,AD 是∠BAC 的 角平分线.求证:AB=AC+CD.

三、面积法:利用三角形的面积进行证明。 例3:所示已知△ABC中,AB=AC,P是底边上的任意一点,PE⊥AC, PD⊥AB,BF是腰AC上的高,E、D、F为垂足。 求证:①PE+PD=BF ②当P点在BC的延长线上时,PE、PD、PF之间满足什么关系式? 四、旋转法:通过旋转变换,而得全等三角形是解决正 方形中有关题目类型的一种技巧 例4、如图①,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,则有结论EF=BE+FD成立; (1)如图②,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC、CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明?若不成立,请说明理由。 (2)若将(1)中的条件改为:在四边形ABCD中,AB=AD,∠B+∠D=180°,延长BC 到点E,延长CD到点F,使得∠EAF仍然是∠BAD的一半,则结论EF=BE+FD是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明。 D

三角形培优经典题型

《三角形》练习题 班级_________ 姓名__________ 分数__________一、选择题(每题4分) 1.等腰三角形的两边长分别是3和7,那么它的周长是() A、13 B、16 C、17 D、13或17 2、如图1,图中三角形的个数为() A.17 B.18 C.19 D.20 3、在△ABC中,∠A-∠C=25°,∠B-∠A=10°,则∠B=() A、28° B、35° C、15° D、21° 4、如图2,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点, ∠A=50°,则∠D=() A.15°B.20°C.25°D.30° 5、已知一个多边形的每一个内角都等于135°,则这个多边形是() A. 五边形 B. 六边形 C. 七边形 D. 八边形 6、如图3,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°, 则∠P的度数为() A.15°B.20°C.25°D.30° 7、一个多边形截去一个内角后,形成另一个多边形,它的内角和为2520°, 则原来多边形的边数不可能是() A、15条 B、16条 C、17条 D、18条 8、已知三条线段分别是a、b、c且a<b<c(a、b、c均为整数), 若c=6,则线段a、b、c能组成三角形的个数为() A、3个 B、4个 C、5个 D、6个

图1 图2 图3 二、填空题(每题4分) 9、若△ABC的三边长分别是4,X,9,则X的取值范围是_____, 周长L的取值范围是_____;当周长为奇数时,X=_____ 10、一条线段的长为a,若要使3a—l,4a+1,12-a这三条线段组成一个三角形,则a 的取值范围__________. 11、等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分, 则此等腰三角形的腰长是_____ 12、如图4,小亮从A点出发,沿直线前进100m后向左转30°,再沿直线前进100m, 又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了________m 13、如图5,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,S△ABC=12, 则S△ADF -S△BEF=_____. 14、如图6,∠A+∠B+∠C+∠D+∠E+∠F的度数是______° 15、如图7,DC平分∠AD B,E C平分∠AEB,若∠DAE=α, ∠D BE=β,则∠D CE=______ (用α、β表示). 16、如图8,DO平分∠CDA,BO平分∠CBA,∠A=20°,∠C=30°,∠O=______°.

解三角形经典例题及解答

知识回顾: 4、理解定理 (1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即 存在正数 k 使 a ksinA , ________________ , c ksinC ; (2)」 b J 等价于 ______________________ sin A sin B sin C (3) 正弦定理的基本作用为: 正弦、余弦定理 1、直角三角形中,角与边的等式关系:在 Rt ABC 中,设 BC=a ,AG=b , AB=c , 根据锐角三角函数中正弦函数的定义,有 -sin A ,- sin B ,又sinC 1 -,从而在直角三 c c c 角形ABC 中,-?- sin A b sin B c si nC 2、当 ABC 是锐角三角形时,设边 AB 上的高是CD 根据任意角三角函数的定义, 有 CD=asinB bsinA ,则 一- b ,同理可得一 sin A sin B sin C b sin B 从而」- sin A b sin B c sin C 3、正弦定理:在一个三角形中,各边和它所对角的 ____ 的比相等,即旦 sin A b sin B c sin C c b a c sin C sin B ' sin A sin C

① 已知三角形的任意两角及其一边可以求其他边,如 a bsinA ; b sin B ② 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如 sin A a sin B ; sinC . b (4) 一般地,已知三角形的某些边和角,求其它的边和角的过程叫作 解三角形? 5、知识拓展 6、 勾股定理: ___________________________________ 7、 余弦定理:三角形中 __________ 平方等于 _______________________ 减去 _____________ ______________ 的两倍,即a 2 b 2 8、余弦定理的推论: cosC ____________________________ 。 9、在 ABC 中,若a 2 b 2 c 2,则 ______________________ ,反之成立; 典型例题: a b sin A sin B c si nC 2R ,其中2R 为外接圆直径. c 2 cosA cosB

与三角形有关的线段练习题(含答案)

与三角形有关的线段练习题 11.1.1 三角形的边 1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是() 2.以下列各组线段的长为边长,能组成三角形的是() A.2,3,5 B.3,4,5 C.3,5,10 D.4,4,8 3.下列说法正确的有() ①等腰三角形是等边三角形; ②三角形按边分可分为等腰三角形、等边三角形和不等边三角形; ③等腰三角形至少有两边相等; ④三角形按角分应分为锐角三角形、直角三角形和钝角三角形. A.①②B.①③④C.③④D.①②④ 4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边. 5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0. (1)求c的取值范围; (2)若第三边长c是整数,求c的值.

11.1.2三角形的高、中线与角平分线 11.1.3 三角形的稳定性 1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性. 2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________. 第2题图第3题图 3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°. 4.若AE是△ABC的中线,且BE=4cm,则BC=________cm. 5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________. 第5题图第6题图 6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2. 7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6. (1)求△ABC的面积; (2)求BC的长.

全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判断△DEF 的形状. 3、如图,△ABC 和△ADE 都是等边三角形,线段BE 、CD 相交于点H ,线段BE 、AC 相交于点G ,线段BE 、CD 相交于点H .请你解决以下问题: (1) 试说明BE =CD 的理由; (2) 试求BE 和CD 的夹角∠FHE 的度数 A A

C B Ex1、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明AG =AF 的理由. Ex2、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试用两种不同的方法说明BE 、CF 、EF 为边长的三角形是直角三角形。 A

二.证明全等常用方法(截长发或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC 的理由. Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法, 自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用补短法说明AE +CF =EF . B B F C

(完整word版)与三角形有关的线段练习题

与三角形有关的线段练习题 1.等腰三角形的底边BC=8 cm,且|AC-BC|=2 cm,则腰长AC为( ) A.10 cm或6 cm B.10 cm C.6 cm D.8 cm或6 cm 2.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为() A.5 B.6 C.7 D.8 3.如果三角形的三边长是三个连续自然数,则下面判断错误的是 ( ). A.周长大于6 B.周长可以被6整除 C.周长可以被3整除 D.周长有时是奇数 4.三角形三边长a、b、c满足(a-b-c)(b-c)=0,则这个三角形是() A.等边三角形 B.等腰三角形 C.斜三角形 D.任意三角形 5.等腰三角形周长为23,且腰长为整数,这样的三角形共有()个 A.4个 B.5个 C.6个 D.7个 7.用7根火柴首尾顺次连结摆成一个三角形,能摆成不同的三角形的个数是___________ 8.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 9.探究规律:如图,已知直线m∥n,A、B为直线n上的两点,C、P为直线m上的两点。 (1)请写出图中面积相等的各对三角形:______________________________。 (2)如果A、B、C为三个定点,点P在m上移动,那么无论P点移动到任何位置总有:与△ABC的面积相等;理由是: 10.已知△ABC的周长是24cm,三边a、b、c满足c+a=2b,c-a=4cm,求a、b、c的长. 11.一个等腰三角形的周长为32 cm,腰长的3倍比底边长的2倍多6 cm.求各边长. 12.已知:△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:△ABC的各边的长。 13.图中的每个小正方形的边长都为1,请写出以A、B、C、D、E、F中的三点为顶点且面积为1的三角形.

解三角形经典练习题集锦附答案

解三角形 令狐采学 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -即是( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝 角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底 边的夹角为0 60,则底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 即是( ) A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最年夜角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A sin sin 的最年夜值是_______________。 2 . 在 △ABC 中 , 若 =++=A c bc b a 则,222_________。 3.在△ABC 中 , 若 ====a C B b 则,135,30,200_________。 4.在△ABC 中, 若 sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最年夜值是________。 三、解答题 1.在△ABC 中,若,cos cos cos C c B b A a =+则 △A BC 的形状是什么? 2.在△ABC 中,求证:)cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求证: C B A C B A cos cos cos sin sin sin ++>++。 4.在△ABC 中,设,3 ,2π =-=+C A b c a 求B sin 的 值。 解三角形 一、选择题 1.在△ABC 中,::1:2:3A B C =,则::a b c 即是 ( ) A .1:2:3 B .3:2:1 C .1:2 D .2 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .年夜于零 B .小于零 C .即是零 D .不克不及确定 3.在△ABC 中,若B A 2=,则a 即是( ) A .A b sin 2 B .A b cos 2 C .B b sin 2 D .B b cos 2 4.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( ) A .直角三角形 B .等边三角形 C .不克不 及确定 D .等腰三角形 5.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ()

相关主题