搜档网
当前位置:搜档网 › 流体动压润滑理论

流体动压润滑理论

流体动压润滑理论
流体动压润滑理论

流体动压润滑理论

(简介)在摩擦副两表面间被具有一定粘度的流体

完全分开。将固体间的外摩擦转化为流体的内摩擦。以防

止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是流体润滑。它的发展与人们对滑轮和摩擦的研究密切相关

发展简史

1.流体动压现象)

当动环回转时,由于静环表面有很多微孔,动环的转动使其表面与静环表面上的微孔形成收敛缝隙流体膜层,使每一个孔都像一个微动力滑动轴承。也就是说,当另一个表面在多孔端面上滑动时,会在孔的上方及其周边产生流体动压力,这就是流体动压效应。

(实例)

流体动压润滑

——流体动压润滑是依靠运动副两个滑动表面的形状,在其相对运动时,形成产生动压效应的流体膜,从而将运动表面分隔开的润滑状态。

特点)

a.流体的粘度,一般遵循粘性切应力与切应变率成比例规律

b.楔形润滑膜,依靠运动副的两个滑动表面的几何形状,在相对运动时

产生收敛型流体楔,形成足够的承载压力,以承受外载荷。

形成动压润滑的条件:

a.润滑剂有足够的粘度

b.足够的切向运动速度(或者轴颈在轴承中有足够的转速)

c.流体楔的几何形状为楔形(轴在轴承中有适当的间隙)

2.流体动压润滑理论)

在摩擦副两表面间被具有一定粘度的流体完全分开。将固体间的外摩擦转化为流体的内摩擦。以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低。滑动轴承运动副间要现成流体薄膜,必须使运动副锲形间隙中充满能够吸附于运动副表面的粘性流体,并且运动副表面相对运动可以带动润滑流体由大端向间隙小断运动,从而建立起布以承受载荷。它的发展与人们对滑轮和摩擦的研究密切相关。

流体润滑具有极低的摩擦阻力,摩擦系数在0.001~0.008或更低(气体润滑),并能有效地降低磨损。

流体润滑的分类:根据液体压力形成的方式可分为流体静压润滑和流体动压润滑。流体静压润滑是从外部供给具有一定压力的流体来平衡外载荷。流体动压润滑是由摩擦表面几何形状和相对运动,借助粘性流体的动力学产生动态压力,用此润滑膜的动压来平衡外载荷。

液体动压轴承

靠液体润滑剂动压力形成的液膜隔开两摩擦表面并承受载荷的滑动轴承。液体润滑剂是被两摩擦面的相对运动带入两摩擦面之间的。产生液体动压力的条件是:①两摩擦

面有足够的相对运动速度;

②润滑剂有适当的粘度;③

两表面间的间隙是收敛的

(这一隙实际很小,在图

1[油楔承载]中是夸大画的),

在相对运动中润滑剂从间隙的大口流向小口,构成油楔。这种支承载荷的现象通常称为油楔承载(见润滑)。

机械加工后的两摩擦表面微观是凹凸不平的,如图1[油楔承载]中局部放大图。在正常

运输的液体动压轴承中,油膜最薄(即通称最小油膜厚度)处两表面的微观凸峰不接触,因而两表面没有磨损。这时的摩擦完全属于油的内摩擦,摩擦系数可小至0.001。油的粘度越低,摩擦系数越小,但最小油膜厚度也越薄。因此,油的最低粘度受到最小油膜厚度的限制。当最小油膜厚度处两表面的微观凸峰接触时,油膜破裂,摩擦和磨损都增大。摩擦功使油发热而降低油的粘度。为使油的粘度比较稳定,一般采用有冷却装置的循环供油系统或在油中加入能降低油对温度敏感的添加剂(见润滑剂)。液体动压轴承在启动和停车过程中,因速度低不能形成足够隔开两摩擦表面的油膜,容易出现磨损,所以制造轴瓦或轴承衬须选用能在直接接触条件下工作的滑动轴承材料。液体动压轴承要求轴颈和轴瓦表面几何形状正确而且光滑,安装时精确对中。

液体动压轴承分液体动压径向轴承和液体动压推力轴承。液体动压径向轴承又分单油楔和多油楔两类(见表[液体动压径向轴承类型]

)。

单油楔液体动压径向轴承轴颈周围只有一个承载油楔的轴承。图2 [单油楔轴承的几何参数]中是剖分式的单油楔轴承。O为轴承几何中心,O为承受载荷F后的轴颈中心。这两中心的连线称为连心线。连心线与载荷作用线所夹锐角[o1]称为偏位角。受载瓦面包围轴颈的角度称为轴承包角。O与O 之间的距离称为偏心距。轴承孔半径R与

轴颈半径之差称为半径间隙。与之比[4]称为相对间隙。与之比称为偏心率。

最小油膜厚度[min]=-=(1-),所在方位由[o1]确定。轴承宽度B(轴向尺寸)与轴承直径之比称为宽径比。

油楔只能在轴承包角内生成。当=0时,O与O

重合,轴承则不能(靠油楔)承载。载荷越大偏心率也越

大。当=1时,最小油膜厚度为零,轴颈与轴承即直接

接触,这时会出现严重的摩擦和磨损。在液体动压润滑的

数学分析中,将油的粘度、载荷(单位面积上的压力)、

轴的转速和轴承相对间隙[4]合并而成的无量纲数

/[4](称为轴承特性数。对给定包角和宽径比的轴承,

轴承特性数只是偏心率的函数。对已知工作状况的轴

承,可由此函数关系求其偏心率和最小油膜厚度,进而核验该轴承能否实现液体动压润滑;也可按给定的偏心率或最小油膜厚度确定轴承所能承受的载荷。轴承特性数反映液体动压润滑下载荷、速度、粘度和相对间隙之间的相互关系:对载荷大、速度低的轴承应选用粘度大的润滑油和较小的相对间隙;对载荷小、速度高的轴承,则应选用粘度小的润滑油和较大的相对间隙。

相对间隙对轴承性能的影响很大,除影响轴承的承载能力或最小油膜厚度外,还影响轴承的功耗、温升和油的流量(图3[单油楔轴承各参数与相对间隙的关系])。对不同尺

寸和工作状况的轴承,都有最优的相对间隙

范围,通常为0.002~0.0002毫米。

轴承宽径比是影响轴承性能的又一重要

参数。宽径比越小,油从轴承两端流失越多,

油膜中压力下降越严重,这会显著降低轴承

的承载能力。宽径比大时,要求轴的刚度大,

与轴承的对中精度高。通常取宽径比为

0.4~1。

单油楔轴承在高速轻载时偏心率小,容易出现失稳,产生油(气)膜振荡。油膜振荡能引起设备损坏等重大事故。因此,单油楔轴承多用于中等以上速度或高速重载的机械设备,如轧机和一般机床。

多油楔液体动压径向轴承轴颈周围有两个或两个以上油楔的轴承。多油楔径向轴承承受载荷前,即轴颈中心与轴承几何中心重合时,相对各段瓦面曲率中心都存在偏心,不过偏心值相等,在各瓦面油膜中生成的压力相同,轴颈受力平衡。承受载荷后,这些偏心值有的增大,有的减小,各瓦面上的油膜压力随之减小或增大,轴承的承载能力便

是这些油膜压力的向量和。多油楔轴承比单油楔轴承承载能力低,但在主承载瓦面的对面附加有油膜压力,因而能提高轴承运转的稳定性。因此,多油楔径向轴承多用于高速轻载的设备,如汽轮机、风力机和精密磨床等。多油楔径向轴承型式很多,而且还在不断出现消振能力较高的新结构。

液体动压推力轴承是由若干个油楔组成的推力轴承,其承载能力为各油楔油膜压力之和,常用于水轮机、汽轮机、压气机等中等以上速度的设备(见推力滑动轴承)。

3.雷诺方程(Reynolds equation )

定义1:

对湍流流动,把纳维-斯托克斯方程的各项取时间平均值后的方程。

应用学科:

航空科技(一级学科);飞行原理(二级学科)

定义2:

黏性流体动量守恒和质量守恒的综合方程,是流体动力润滑的基本方程

式。

应用学科:

机械工程(一级学科);摩擦学(二级学科);润滑(三级学科)

以上内容由全国科学技术名词审定委员会审定公布

(雷诺方程):

雷诺方程式(Formula Renault)是世界上著名及最普及的一种方程式赛车,该项赛事是由法国雷诺集团推广发展起来的,方程式赛车由意大利TATUUS公司制造,该类单座赛车的马力为200HP, 最高时速可达到一小时260公里。

(雷诺赛车)

雷诺方程式2000赛车的良好性能和价钱的

完美结合保证了其在全世界的普及程度,这种

2000型的赛车每年制造超过700 万辆。雷诺

2000方程式赛车给全世界的热衷赛车运动的年

轻人提供了一个驾驶技能和身体心理状态适应

的学习及提高的环境,为他们走向该项运动的顶级赛事F1,成为未来之星做下铺垫。雷诺方程式2000赛事从2000年起举办至今(2004年),短短的四年里,已经成功地把雷克南(Kimi Raikkonen)、马萨(Felipe Massa)及克莱恩(Christian Klien)推向F1的大舞台。

a.底盘配套更可靠

悬挂系统与其他方程式赛车大致相同,前悬挂使用单筒式吸震筒及弹簧,后悬挂则为左右独立吸震筒及弹簧。而“雷诺运动”在摇臂配搭位置作出新设计,在调校上更为容易,而且当遇上意外时,对车身主体的损毁亦可同时减低。制动方面,四轮同时采用通风碟配ALCON四活塞对向卡钳,并采用独立线路运作,保障了制动力的功率,令制动系统更为可靠。

b.空气动力设计车身

在车体上,“雷诺运动”特别以空气动力学的原理设计,再配合强大的引擎马力输出,无论于直路飞驰或及高速攻弯,均能发挥其最佳稳定作用。除此之外,其前翼的下昂式设计配合车尾复合式定风翼,与当今一级方程式可谓同出一辙。

c.扭力分布平均

动力是采用雷诺F4RS型引擎发动,而该台引擎是根据“雷诺运动”,在三级方程式引擎技术开发,并配以Magneti Marelli的第四代电子引擎管理系统。最高马力及最大扭力分别为181ps/6,300rpm及21.7kgm/5,300rpm;单看数据可能感到是平平无奇,但深想推动一个只有480kg重的车体,的确是很过份。而这台引擎的特性是扭力分布极之平均,车手可利用中至高转发挥扭力,而且在同级方程式中首次采用Sequential六前速顺序排档,在操控上可谓更胜一筹。而这台Sequential六前速顺序排档箱是由“雷诺运动”特别设计,并备有三套不同的排档齿轮比例,以配合不同赛道特色,同时亦能减少车手参赛的运作成本。

弹性流体动力润滑

流体润滑的基本原理 之 弹性流体动力润滑 弹性流体动力润滑 2. 1 定义 弹性流体动力润滑是指流体进入在两个相互运动的固体摩擦接触表面后,受到接触表面产生的巨大接触压力而发生的性状改变,以分割固体摩擦接触表面,减少摩擦。 弹性流体动力润滑是利用流体受到高压时,流体的物理特性及形态发生变化的特性来分隔高压下的摩擦副,从而达到润滑的目的. 2.2 弹性流体动力润滑原理 所谓弹性流体是指流体在高压下会从流体的形态转变成固体的形态。但当压力去掉后,就会恢复到原来的形态。流体变形的过程随着压力的变化而变化,压力升高,流体的粘度变大,当压力达到一定高度时,流体的形态开始变化,而流体的粘度不再变化,流体形态开始从液体向玻璃体转化,当压力继续升高,流体完全会转化为玻璃体(固体);当压力下降时,玻璃体又会回到液体状态。弹性流体动压润滑就是利用流体的弹性随压力变化而变化的特性,来实现分割量高压表面而达到润滑的目的,弹性流体动压润滑也特别适合滚压摩擦副。 2.3 弹性流体动力润滑理论是流体动压润滑理论新的重要发展。 在弹性流体动压润滑理论中,主要研究在两个具有相互运动的固体表面相互接触(一般是点或线接触)过程中,固体的弹性变形和流体粘度变化对流体动压润滑的作用。

弹性流体动力润滑有两个重要特点,一是油膜极薄,仅为接触区宽度的千分之一以上;另一个特点是接触压力极大,可达几千个兆帕(MPa)的压力峰值,因而在表面间的润滑油粘度比正常室温下的粘度大许多倍。同时,引起弹性体很大的局部变形,它能急剧地改变润滑膜几何形状,而润滑膜形状又能决定油膜压力的分布,因此,—个弹性流体动力学问题的解必须同时满足弹性力学和流体力学润滑的基本方程式。 当滚动轴承、齿轮、凸轮等高副接触时,名义上是点、线接触,实际上受载后产生弹性变形,形成一个窄小的承载区域。弹性变形引起的接触区域增大和接触区表面形状的改变,都有利于润滑膜的形成。 由于载荷集中作用,接触区内产生极高压力,其峰值甚至可达几千兆帕。压力引起接触区内润滑剂的粘度的增大是极为显著的,比常温常压下的粘度要大几百几千倍。一般,粘度随压力按指数规律增大。同时,接触区摩擦产生的温度很高,又会减低润滑剂的粘度。 因此,在这种情况下的弹性效应、粘-压效应、粘-温效应等是不能忽略的。考虑了这些效应的流体动压润滑就称为弹性流体动压润滑。

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 验原理 重力作用下不可压缩流体静力学基本方程 (1.1) 中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 此可用仪器(不用另外尺)直接测得S0。 验分析与讨论 同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根。 当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真。 )同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油 至油面的垂直高度h和h0,由式,从而求得γ0。 如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛由下式计算 中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、时均有毛细现象,但在计算压差时,互相抵消了。 过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μμ?'=-=-?,24y y u p a y μμ?'=-=?, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图 所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。(请将 d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2d (1)2d h y p y y u v h x h h μ=- - (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。 当 d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式中2d ()2d h p p v x μ= - (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2 x g u zh z ,单宽流量 3 sin 3 gh q 。

ZDRH-2000智能集中润滑系统说明书

目录 一、系统简介------------------------------------2 二、系统工作原理------------------------------3 三、系统主要部件的基本配置与技术 参数-----------------------------------------11 四、润滑系统工作制度-----------------------13 五、润滑系统操作规程-----------------------14 六、系统维护与注意事项--------------------22

一、系统简介 ZDRH-2000型智能集中润滑系统是我公司研制开发的新一代高新润滑技术产品(专利号:012402260.5),系国内首创。该润滑系统可根椐设备现场温度、环境等不同条件或设备各部位润滑要求的不同,而采用不同油脂,适应单台设备或多台设备的各种润滑要求。 润滑系统突出优点是在设备配置、工作原理、结构布置上都做了最大的改进,改变了以往以单线或双线为主的传统润滑方式,采用微电脑技术与可编程控制器相结合的方式,使设备润滑进入一个新的里程。系统中主控设备、高压电动油泵、电磁给油器、流量传感器、压力传感器等每一个部件都是经过精心研制并专为智能润滑系统所设计的。 设备采用SIEMENS S7-200系列可编程控制器作为主要控制系统,为润滑智能控制需求提供了最恰当的解决办法,可网络挂接与上位机计算机系统进行连接以实时监控,使得润滑状态一目了然;现场供油分配直接受可编程控制器的控制,供油量大小,供油循环时间的长短都由主控系统来完成;流量传感器实时检测每个润滑点的运行状态,如有故障及时报警,且能准确判断出故障点所在,便于操作工的维护与维修。操作员可根据设备各点润滑要求的不同,通过文本显示器远程调整供油参数,以适应烧结机的润滑要求。整个润滑系统的供油部分,通过公司最新研制的

润滑理论

润滑理论一、润滑的作用和类型 1.润滑的作用 润滑的目的是在机械设备摩擦副相对运动的表面间加入润滑剂以降低摩擦阻力和能源消耗,减少表面磨损,延长使用寿命,保证设备正常运转。润滑的作用如下: 1)降低摩擦 2)减少磨损 3)冷却,防止胶合 4)防止腐蚀 此外,润滑剂在某些场合可以起阻尼、减振或缓冲作用。润滑剂的流动,可将摩擦表面上污染物、磨屑等冲洗带走,起清洁作用。 有些场合,润滑剂还可起到密封作用,减少冷凝水、灰尘及其他杂质的侵入。 2.润滑的类型 1)液体润滑(摩擦),两表面完全为润滑剂隔开,摩擦为流体内的粘性阻力形成。 2)混合润滑(摩擦),两表面之间又有液体润滑状态,又有边界润滑状态的混合情况。 3)边界润滑(摩擦),两表面之间由边界膜(吸附膜或化学膜等)形成的润滑。

4)无润滑(干摩擦),无或很少润滑剂的情况。 流体润滑自然是最佳的润滑状态。形成液体润滑的方式主要有:流体动压润滑、弹性流体动压润滑、流体静压润滑等。 二、流体动压润滑 运动副工作时,两工作表面之间的相对运动可将润滑剂带入工作区,并建立一定的油压(动压)支撑外载荷,形成油膜,保护工作表面,形成所谓"流体动压润滑"。流体动压润滑的形成需要三个条件: 1)两表面之间有相对的运动(滚动或滑动); 2)两表面之间有楔形间隙,润滑油从大口进入; 3)两表面之间有润滑剂(有粘度)。 这就是所谓的流体动压润滑三要素。 动压润滑理论就是探讨间隙中流体的流动、压力等关系。1886年雷诺导出了经典的Reynolds 方程。 1.雷诺方程 雷诺方程是流体润滑理论的基本方程: 4) 变密度效应。

第四章 流体润滑原理

第四章流体润滑原理 概述 用具有润滑性的一层膜把相对运动的两个表面分开,以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是润滑。 根据分隔固体表面的材料不同,润滑可分为以下三类: ①流体润滑:摩擦副两表面间被具有一定粘度的流体完全分开。将固体间的外摩擦转化为流体的内摩擦。 ②边界润滑:摩擦界面上存在着一层具有良好润滑性的边界膜,但不是介质的膜。相对于干摩擦来说,边界润滑具有比较低的摩擦系数,能有效地减轻接触表面的磨损。 ③固体润滑:广义来说,固体润滑也是一种边界润滑。就是用摩擦系数比较低的材料(固体润滑剂或固体润滑材料),在摩擦界面上形成边界膜,以降低接触表面的磨损和摩擦系数。 对于流体润滑的系统研究约在19世纪末逐渐展开。 1883年塔瓦(Tower)发现了轴承中的流体动压现象。彼得洛夫(Петров)研究了同心圆柱体的摩擦及润滑。随即雷诺(Reynold)应用了数学和流体力学的原理对流体动压现象进行了分析,发表了著名的雷诺方程。为流体动力润滑奠定了基础。后来一些科学家,在求解雷诺方程,以及将雷诺方程应用于工程实际中作出了贡献,并解决了很多雷诺方程假设以外的问题,。 对于线接触及点接触的滚动件,在重载条件下的润滑问题,考虑了接触零件表面间的弹性变形及润滑剂的粘-压效应。于20世纪中叶,格鲁宾(Грубин)提出了著名的弹性流体动力润滑的计算公式。以后的道松(Dowson)郑绪云(Cheng)温诗铸等的进一步发展,使弹性流体动力润滑理论日趋成熟。 随着科学技术的发展,流体润滑中的紊流、惯性、热效应等以及非牛顿流体润滑等问题也展开了研究。 流体润滑定义:在适当条件下,摩擦副的摩擦表面由一层具有一定厚度的粘性流体完全分开,由流体的压力来平衡外载荷。流体层中的分子大部分不受金属表面离子、电子场的作用而可以自由地移动。这种状态称为流体润滑。流体润滑

流体动压润滑理论

流体动压润滑理论

流体动压润滑理论 (简介)在摩擦副两表面间被具有一定粘度的流体 完全分开。将固体间的外摩擦转化为流体的内摩擦。以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是流体润滑。它的发展与人们对滑轮和摩擦的研究密切相关 发展简史 时间人物经典理论及现象 1883年塔瓦(Tower)流体动压现象 1886年雷诺(Reynold)流体动压润滑理论及雷诺方程 1.流体动压现象) 当动环回转时,由于静环表面有很多微孔,动环的转动使其表面与静环表面上的微孔形成收敛缝隙流体膜层,使每一个孔都像一个微动力滑动轴承。也就是说,当另一个表面在多孔端面上滑动时,会在孔的上方及其周边产生流体动压力,这就是流体动压效应。 (实例) 流体动压润滑 ——流体动压润滑是依靠运动副两个滑动表面的形状,在其相对运动时,形成产生动压效应的流体膜,从而将运动表面分隔开的润滑状态。 特点) a.流体的粘度,一般遵循粘性切应力与切应变率成比例规律 b.楔形润滑膜,依靠运动副的两个滑动表面的几何形状,在相对运动时

产生收敛型流体楔,形成足够的承载压力,以承受外载荷。 形成动压润滑的条件: a.润滑剂有足够的粘度 b.足够的切向运动速度(或者轴颈在轴承中有足够的转速) c.流体楔的几何形状为楔形(轴在轴承中有适当的间隙) 2.流体动压润滑理论) 在摩擦副两表面间被具有一定粘度的流体完全分开。将固体间的外摩擦转化为流体的内摩擦。以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低。滑动轴承运动副间要现成流体薄膜,必须使运动副锲形间隙中充满能够吸附于运动副表面的粘性流体,并且运动副表面相对运动可以带动润滑流体由大端向间隙小断运动,从而建立起布以承受载荷。它的发展与人们对滑轮和摩擦的研究密切相关。 流体润滑具有极低的摩擦阻力,摩擦系数在0.001~0.008或更低(气体润滑),并能有效地降低磨损。 流体润滑的分类:根据液体压力形成的方式可分为流体静压润滑和流体动压润滑。流体静压润滑是从外部供给具有一定压力的流体来平衡外载荷。流体动压润滑是由摩擦表面几何形状和相对运动,借助粘性流体的动力学产生动态压力,用此润滑膜的动压来平衡外载荷。 液体动压轴承 靠液体润滑剂动压力形成的液膜隔开两摩擦表面并承受载荷的滑动轴承。液体润滑剂是被两摩擦面的相对运动带入两摩擦面之间的。产生液体动压力的条件是:①两摩擦 面有足够的相对运动速度; ②润滑剂有适当的粘度;③

工程流体力学课件

流体力学 绪论 第一章流体的基本概念 第二章流体静力学 第三章流体动力学 第四章粘性流体运动及其阻力计算 第五章有压管路的水力计算 第六章明渠定常均匀流 第九章泵与风机 绪论 一、流体力学概念 流体力学——是力学的一个独立分支,主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 研究内容:研究得最多的流体是水和空气。 1、流体静力学:关于流体平衡的规律,研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系; 2、流体动力学:关于流体运动的规律,研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。 基础知识:主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程(反映物质宏观性质的数学模型)和物理学、化学的基础知识。 二、流体力学的发展历史

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通 江河的传说;秦朝李冰父子带领劳动人民修建的 马人建成了大规模的供水管道系统等等。 流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 流体力学的主要发展: 17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。使流体力学开始成为力学中的一个独立分支。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘性流体。这种理论当然阐明不了流体中粘性的效应。 19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维(法)建立了粘性流体的基本运动方程;1845年,斯托克斯

线接触流体动压润滑的定解条件

·20· 机械 2005年 第32卷 增刊 线接触流体动压润滑的定解条件 刘鸪然1,焦彬1,王武东1,C.Y .Chan 2 (1.上海电机学院,上海 200240;2.香港理工大学) 摘要:对线接触流体动压润滑进行一些研究,提出线接触流体动压润滑的定解条件。 关键词:线接触;流体;动压; 马丁理论在流体动压润滑发展历史上有重要意义,但马丁公式与实测相差1~2个数量级。其一原因是假定油膜起始和终止点 h 0

工程流体力学及水力学实验报告(实验总结)

工程流体力学及水力学实验报告实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测 压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B <0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂 直高度h和h 0,由式,从而求得γ 。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm, =0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 6.用图1.1装置能演示变液位下的恒定流实验吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒

水力学工程流体力学

水力学工程流体力学 实验指导书及实验报告 专业农田水利班级 学号姓名 河北农业大学城乡建设学院水力学教研室

目录 (一)不可压缩流体恒定流能量方程(伯诺里方程)实验 (1) (二)不可压缩流体恒定流动量定律实验 (4) (三)雷诺实验 (8) (四)文丘里实验 (10) (五)局部水头损失实验 (14) (六)孔口与管嘴出流实验 (18)

(一)不可压缩流体恒定流能量方程(伯诺里方程)实验 一.实验目的要求: 1.掌握流速、流量、压强等动水力学水力要素的实验两侧技术; 2.验证恒定总流的能量方程; 3.通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。 二.实验装置: 本实验的装置如图1.1所示,图中: 1.自循环供水器; 2.实验台; 3.可控硅无级调速器; 4.溢流板; 5.稳水孔板; 6.恒压水箱; 7.测压计; 8.滑动测量尺; 9.测压管;10.实验管道;11.测压点;12.毕托管;13.实验流量调节阀。 三.实验原理:

在实验管路中沿管内水流方向取n 个过水断面,可以列出进口断面(1)至断面(i )的能量方程式(2,3,,i n =??????) 1i z + +=z +++22 1 1 1122i i i w i p v p v h g g 取121n a a a ==???=,选好基准面,从已设置的各断面的测压管中读出z+ p 值,测出通过 管路的流量,即可计算出断面平均流速v 及2 2v g ,从而即可得到各断面测管水头和总水头。 四.实验方法与步骤: 1.熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2.打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3.打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测管水头的变化情况。 4.调节阀13开度,待流量稳定后,侧记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。 5.再调节阀13开度1~2次,其中一次使阀门开度最大(以液面降到标尺最低点为限),按第4步重复测量。 五.实验成果及要求: 实验台号No 1.把有关常数记入表1.1 表1.1 有关常数记录表 水箱液面高程0?= cm,上管道轴线高程s ?= cm 。 注:(1)打“*”者为毕托管测点(测点编号见图1.2) (2)2、3为直管均匀流段同一断面上的二个测压点,10、11为弯管非均匀流段同一断面上的二个测点。 2.量测(z+ p )并记入表1.2。

流体静压润滑

流体润滑的基本原理 之 流体静压润滑 流体静压润滑 定义,什么是流体静压润滑 流体静压润滑是利用专用外界的流体装置,是流体产生压力,并将具有压力的流体输入到摩擦表面,将两摩擦表面用一层静压流体膜分开以支持外载荷的润滑。 流体静压润滑的特点 主要优点是: (1)适用速度范围广由于流体静压润滑本身不需要相对运动的功能,因而在任何速度下包括很高速或很低速,启动或停车以及正反转都能建立—层完整的流体膜,并获得良好的工作性能。 (2)摩擦系数很小其一般摩擦系数μ只有0.0001~0.0008,例如采用32号机械油的静压导轨,其起动摩擦系数一般在0.0005,因而功耗小,效率高,并在低速条件下不会产生粘滑现象。 (3)使用寿命长因为两个相对运动的表面不直接接触、磨损很小、能长期保持精度,同时对摩擦副的材料没有特殊要求等,因而大大地延长了其使用寿命。 (4)运动精度高液体静压膜具有某种“平均误差”的作用,可以补偿制造误差的影响。因而对轴颈或轴承的加工精度和表面粗糙度要求一般比液体动压润滑轴承为低。这点同滚动元件支承相比尤为明显。

(5)适应性和抗振性能好静压润滑的适应性很广,能满足轻裁到重载,小型到大型,低速到高速的各种机床和机械设备的要求、同时,静压流体膜有良好的吸振性能,运动均匀平稳,振动、噪音都很小。 主要缺点: 其缺点主要是工作时要一套可靠的高压供油装置,投资费和维护费较高,也增加了机器所占空间,而总效率较低,从这个角度分析.不如动压润滑机构简单,费用低。因此.究竞选用何种润滑方式,应根据具体要求综合考虑,必要时也可设计成动静压联合润滑方式。 3.2:流体静压润滑支承原理 流体静压支承的共同特点是各摩擦面都开有几个流体腔,每个流体腔的四周均有封流体的面,一般将一个流体腔及其封流体的面称为一个文承单元(或流体垫),若干个支承适当配置,便构成流体静压支承,整个摩擦副的承栽能力,是各支承单元承载能力的合成结果。所以理解单个支承单元的工作原理,是全面了解整个支承的基础。

流体动力润滑

流体润滑的基本原理 之 流体动力润滑 流体润滑研究和发展 机器在运动时,运动的零部件之间必定会发生摩擦从而造成磨损,而润滑是减小摩擦、减轻甚至避免磨损的直接措施。人类进入工业社会以后,润滑已逐渐发展成为一门重要的技术,井已成为工业部门和学术机构重要的研究领域。19世纪未流体润滑现象被首次发现,几乎同时流体润滑理论也被提出来了。二战期间军事装备的需求促使润滑技术高速发展,也对润滑理论,持别是流体润滑理论提出了更高的要求。战后各工业国立即投入大量人力物力,开展有关方面的研究。 现在比较成熟的流体润滑原理主要包括三个方面内容,它们是:1.流体动力润滑 2.流体静压润滑 3.弹性流体动力润滑 流体动力润滑原理 1.1:定义 流体动力润滑是利用流体的黏附性,使流体黏附在摩擦表面,并在摩擦副做相对运动时被带入两摩擦副的摩擦表面之间。如果两摩擦副的表面形成收敛的楔形空间,则被带入摩擦副的两摩擦表面中的流体就会形成一定的压力,这种压力会随着摩擦副的运动速度和流体的粘度发生改变。当流体的粘度一定时,摩擦副的运动速率越大,则流体形成的压力就越大;当摩擦副的运动速率一定时,流体的粘度越大,则流体形成的压力就越大。

进入摩擦表面的流体会像一个楔子,由于摩擦副在不断的做相对运动,所以会产生一定的压力,迫使流体向楔子一样楔入两摩擦表面,从而将两摩擦表面分隔开来,阻止两摩擦表面直接接触。 简单地说,流体动力润滑是利用相对运动的摩擦表面间的相对速度、流体的粘滞行和摩擦副之间的楔形墙体,迫使流体压缩而产生压力膜将两表面完全分隔开,并依靠流体产生的压力来平衡外载荷。 两个作相对运动物体的摩擦表面,用借助于相对速度和流体的粘滞性而产生的粘性流体膜将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷,称为流体动力润滑。所用的粘性流体可以是液体(如润滑油)也可以是气体(如空气等),相应地称为液体动力润滑和气体动力润滑。 流体动力润滑是依靠表面运动而产生的动力学效应。这种动力学效应所表现的最重要的形式就是润滑膜压力的升高,所以,这种润滑常被称为流体动压润滑。润滑膜压力升高,就意味着它具有高承载能力。 从定义中我们可以看出流体动力润滑必须具备以下几个要素: A:摩擦副的运动速度。动压润滑必须是摩擦副做相对运动,运动速率越大,动压就越大。 B:粘性流体。动压的形成及大小与摩擦副的相对运动速率、流体的黏度有关。 C:两摩擦副的表面形成收敛的楔形空间。 上三个要素被称为流体动力润滑的三要素。也是形成流体动力润滑的必要条件 1.2流体动力润滑机理 正如流体润滑定义中所述一样,流体动力润滑必要条件之一就是摩擦副的相对运动,没有运动,就谈不上动力润滑。 但是这种运动并非相对运动,因为流体膜中产生压力的根本原因是流体的粘滞性和在两摩擦面之间通道的粘附作用,这两者提供了运动表面对流体的裹狭效

发动机-润滑系统工作原理

发动机-润滑系工作原理 字体: 小中大| 打印编辑:master 发布时间:2008-5-26 12:29 查看次数:208次 关键词:发动机 润滑系基本作用是不间断地把机油送到各运动部件及摩擦表面,清除掉摩擦面上的磨屑,并加以冷却。 在气缸壁和活塞环之间由于存在油膜,还可起到密封气缸的作用。凡机油流经的部件表面不易生锈。倘若有摩擦运动的表面得不到润滑,非但消耗功率,令部件很快磨损,而且会导致摩擦运动的部件表面烧蚀熔化,使发动机无法继续运转。 发动机的润滑方式基本上有两类: 一类是强制性润滑,称之为压力润滑。 如曲轴主轴承、连杆轴承和凸轮轴轴承等处承受的负荷和运动速度较大的这些部位,需要有一定压力的机油才能保证这些部位的摩擦表面形成足够厚度的油膜。 另一类是随意性润滑,称之为飞溅润滑。 在诸如气缸壁、活塞销、凸轮以及挺杆等承受负荷较小和运动速度较低的部位,可利用曲轴转动带起来的机油油滴和油雾进行飞溅润滑。此外,发动机的某些部位如水泵、发电机轴承等处可利用润滑脂(黄油)定期地予以润滑。有些轴承干脆使用含油轴承根本不需润滑。 为了使机油产生压力,在系统中要采用机油泵。为了形成循环油路,还应设有贮油容器(油底壳)、输油管路,并在某些部件上开通油道。为了不让各摩擦运动部件表面所产生的磨屑和杂质进入润滑泵油路,还须设有机油滤清器对机油加以过滤。机油长期在发动机高温条件下工作,不但粘度降低不易形成油膜,而且使机油老化变质,无法利用。为此应对机油加以冷却。一般是利用汽车行驶造成的前方迎风来冷却油底壳内的机油。讲究一些的车子则在散热器前设立机油冷却器。为了驾车人能随时掌握机油温度和压力,车上还设有机油压力表和机油温度表。至于应采用的机油品质,应严格按制造厂所规定的规格使用。

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μ μ?'=-=-?,24y y u p a y μμ ?'=-=?, 4x x p p p p a μ '=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而 引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。 (请将d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2 d (1)2d h y p y y u v h x h h μ=-- (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切 流动。它只是由于平板运动,由于流体的粘滞性

带动流体发生的流动。 当d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式 中 2d () 2d h p p v x μ=- (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为 2sin (2) 2x g u zh z r q m =-,单宽流量 3 sin 3gh q r q m =。

流体润滑原理小结

1.粘度 润滑油的粘度决定了流体润滑状态下的压力分布、油膜速度、流量、摩擦系数和油膜厚度等,所以是十分重要的参数。应了解粘度的多种表示法,和影响润滑油粘度的因素。 动力粘度(绝对粘度):η 单位:P=10-1 Pa ·s ;cP=10-2 P=10-3 Pa ·s=102 kgf ·s/cm 2 量纲:ML -1T -1 (质量·长度-1 ·时间-1 ) 运动粘度:ν=η/ρ 单位:St=10-4m 2 /s ;cSt=10-2 St=102 cm 2 /s 量纲:L 2T -1 (长度2 时间-1 ) 影响粘度的重要因素:温度和压力。 粘-温曲线: 称雷诺粘度方程 β 粘温指数。 粘压曲线: 0 p p e αηη= α 粘-压系数 2.流体动压润滑 ⑴雷诺方程:流体动压润滑油膜压力分布的微分方程 雷诺方程推导的依据是:粘性流体力学的基本方程和一些简化假定。 方法是:由简到繁,由特例到普遍。 建立油膜压力的条件有:收敛油楔的几何形状,具有一定粘度的润滑剂和相对运动速度。 油楔效应: 摩擦对偶间必须有收敛油楔的几何形状,根据流体不可压缩和流量必须连续导出一维雷诺方程: 36dp h h U dx h η-= ······················ (R-1) 由于两表面间速度随时间变化的情况不多,故雷诺方程中的伸张项常被忽略: () 0't t e k --=βη

挤压效应: 两表面间有法向接近(相对运动 )时的雷诺方程: 312dp dh x x dx dt h η-= ·· (R-2) 雷诺方程的普遍式: ()()()() 331212216612h p h p x x z z h U U h U U V V x x ρρηηρρρ???? ????+ ? ????????? ?? =-+++-??(R-3) 对于不可压缩液体的普遍式: ()()3312 126612h p h p h U U h U U V x x z z x x ηη?????????? +=-+++ ? ??????????? ··· (R-4) 雷诺方程中引起压力的因素有三:油楔效应,伸张效应和挤压效应。 ⑵斯托克斯方程:流体动压润滑膜的压力与速度关系方程。 流体在间隙中的速度方程,u,w 分别为速度在x 和z 方向的分量。 ()21112U U p u y y h y U x h η-?= -++? ()12p w y y h z η?=-? 将速度方程中的u 和w 对y 积分,可得流量方程: 3120 212h x U U h p q udy h x η+?==- ?? 由压力、速度、粘度、油膜厚度可求摩擦力: () 212x U U h p h x ητ-?= ± ? 当y=h 时,用‘+’;y=0时,用‘-’。 当y=h 时,用‘+’;y=0时,用‘-’。 沿润滑膜边界积分可求得总摩擦力。 30 12h z h p q wdy z η?==- ??z p h z ??± =2τ

工程流体力学水力学禹华谦章习题解答样本

第一章 绪论 1-1.20℃的水2.5m 3, 当温度升至80℃时, 其体积增加多少? [解] 温度变化前后质量守恒, 即2211V V ρρ= 又20℃时, 水的密度31/23.998m kg =ρ 80℃时, 水的密度32/83.971m kg =ρ 32 1125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=? 1-2.当空气温度从0℃增加至20℃时, 运动粘度ν增加15%, 重度γ减少10%, 问此时动力粘度μ增加多少( 百分数) ? [解] 原原ρννρμ)1.01()15.01(-+== 原原原μρν035.1035.1== 035.0035.1=-=-原 原原原原μμμμμμ 此时动力粘度μ增加了3.5% 1-3.有一矩形断面的宽渠道, 其水流速度分布为μρ/)5.0(002.02y hy g u -=, 式中ρ、 μ分别为水的密度和动力粘度, h 为水深。试求m h 5.0=时渠底( y =0) 处的切应力。 [解] μρ/)(002.0y h g dy du -= )(002.0y h g dy du -==∴ρμ τ 当h =0.5m, y =0时 )05.0(807.91000002.0-??=τ Pa 807.9= 1-4.一底面积为45×50cm 2, 高为1cm 的木块, 质量为5kg, 沿涂有润滑油的

斜面向下作等速运动, 木块运动速度u=1m/s, 油层厚1cm, 斜坡角22.620 ( 见图示) , 求油的粘度。 [解] 木块重量沿斜坡分力F 与切力T 平衡时, 等速下滑 y u A T mg d d sin μθ== 001 .0145.04.062.22sin 8.95sin ????==δθμu A mg s Pa 1047.0?=μ 1-5.已知液体中流速沿y 方向分布如图示三种情况, 试根据牛顿内摩擦定律y u d d μ τ=, 定性绘出切应力沿y 方向的分布图。 [解] 第二章 流体静力学 2-1.一密闭盛水容器如图所示, U 形测压计液面高于容器内液面h=1.5m, 求

流体动压润滑理论

流体动压润滑理论 (简介)在摩擦副两表面间被具有一定粘度的流体 完全分开。将固体间的外摩擦转化为流体的内摩擦。以防 止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是流体润滑。它的发展与人们对滑轮和摩擦的研究密切相关 发展简史 1.流体动压现象) 当动环回转时,由于静环表面有很多微孔,动环的转动使其表面与静环表面上的微孔形成收敛缝隙流体膜层,使每一个孔都像一个微动力滑动轴承。也就是说,当另一个表面在多孔端面上滑动时,会在孔的上方及其周边产生流体动压力,这就是流体动压效应。 (实例) 流体动压润滑 ——流体动压润滑是依靠运动副两个滑动表面的形状,在其相对运动时,形成产生动压效应的流体膜,从而将运动表面分隔开的润滑状态。 特点) a.流体的粘度,一般遵循粘性切应力与切应变率成比例规律 b.楔形润滑膜,依靠运动副的两个滑动表面的几何形状,在相对运动时 产生收敛型流体楔,形成足够的承载压力,以承受外载荷。

形成动压润滑的条件: a.润滑剂有足够的粘度 b.足够的切向运动速度(或者轴颈在轴承中有足够的转速) c.流体楔的几何形状为楔形(轴在轴承中有适当的间隙) 2.流体动压润滑理论) 在摩擦副两表面间被具有一定粘度的流体完全分开。将固体间的外摩擦转化为流体的内摩擦。以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低。滑动轴承运动副间要现成流体薄膜,必须使运动副锲形间隙中充满能够吸附于运动副表面的粘性流体,并且运动副表面相对运动可以带动润滑流体由大端向间隙小断运动,从而建立起布以承受载荷。它的发展与人们对滑轮和摩擦的研究密切相关。 流体润滑具有极低的摩擦阻力,摩擦系数在0.001~0.008或更低(气体润滑),并能有效地降低磨损。 流体润滑的分类:根据液体压力形成的方式可分为流体静压润滑和流体动压润滑。流体静压润滑是从外部供给具有一定压力的流体来平衡外载荷。流体动压润滑是由摩擦表面几何形状和相对运动,借助粘性流体的动力学产生动态压力,用此润滑膜的动压来平衡外载荷。 液体动压轴承 靠液体润滑剂动压力形成的液膜隔开两摩擦表面并承受载荷的滑动轴承。液体润滑剂是被两摩擦面的相对运动带入两摩擦面之间的。产生液体动压力的条件是:①两摩擦 面有足够的相对运动速度; ②润滑剂有适当的粘度;③ 两表面间的间隙是收敛的 (这一隙实际很小,在图 1[油楔承载]中是夸大画的), 在相对运动中润滑剂从间隙的大口流向小口,构成油楔。这种支承载荷的现象通常称为油楔承载(见润滑)。 机械加工后的两摩擦表面微观是凹凸不平的,如图1[油楔承载]中局部放大图。在正常

相关主题