搜档网
当前位置:搜档网 › 对数及对数运算练习题.doc

对数及对数运算练习题.doc

对数及对数运算练习题.doc
对数及对数运算练习题.doc

对数与对数运算练习题一.选择题

- 1 )

1.2 3=化为对数式为 (

8

A.log12=- 3 B.log1(-3)=2

8 8

1 1 C.log28 =- 3 D.log2(-3)=8 2.log63+log6

2 等于 ( )

A.6 B. 5 C. 1

6 D. log 5

3.如果 lgx= lga+ 2lgb-3lgc,则 x 等于 ()

A.a+2b- 3c B. a+ b2-c3 4.已知 a= log 2,那么 log 8-2log 6 用 a 表示为 ( )

3 3 3

A.a-2 B. 5a-2

C.3a- (1+a)2 D.3a- a2-1 5.的值等于 ()

A.2+ 5 B.2 5

5 5 C.2+2 D.1+2 6.Log2 2的值为 ( )

A.- 2

1

C.-2

7.在 b=log(a-2)(5- a)中,实数 a 的取值范围是 ( ) A.a>5 或 a<2 B.2<a<3 或 3< a<5 C.2

8.方程 2log3x=1

的解是 ( )

4

1 x A.x=9 B.x=3 C.x= 3 D.x=9

9.若 log 2(log 3x)=log 3(log 4y)=log 4(log 2z)=0,则 x +y +z 的值为 ( )

A .9

B .8

C .7

D .6 .若 10 2x = 25,则 x 等于 ( )

10

1

1

A .lg 5

B .lg5

C . 2lg5

D .2lg 5

11.计算 log 89·log 932 的结果为 (

)

A .4

12.已知 log a x =2,log b x =1,log c x =4(a ,b ,c ,x >0 且≠ 1),则 log x (abc)

= (

)

二.填空题

1. 2log 510+= ____.

2.方程 log 3(2x -1)=1 的解为 x =_______.

3.若 lg(lnx)=0,则 x = _ ______.

4.方程 9x -6·3x - 7= 0 的解是 _______

5.若 log 34·log 48·log 8m =log 416,则 m = ________.

6.已知 log 2=m ,log 3=n ,则 log 18= _______.(用 m ,n 表示 )

a

a

a

7.log 6[log 4(log 381)]=_______.

8.使对数式 log (x -1) (3-x)有意义的 x 的取值范围是 _______

三.计算题 1.计算:

(1)2log 210+

(2)错误 !

6

1

-2log 6 +

1 6 2

+ + 2 -

(3)log 12

3

3log 27

(4)log ( 3 2) log (2

3);

2.已知 log34·log48·log8m=log416,求 m 的值.

对数与对数运算练习题答案

一.选择题

1. C 2. C 3. C 4. A 5. B 6. D 7. B 8 A 9. A 10.

二.填空题

1. 2

2. 2

3. e

4. x= log 7

3

5. 9

6. m+2n

7. 0

8. 1

三.计算题

1.解:(1)2log210+= log2(100 ×=log24=2

(2)错误!=错误!=错误!=1

6 1

- 2log6 +1 6 = 6

1

-log6 +

6

(3)log 12 3 3log 27 log 12 9 log 3

1 1 1

=log6( × × 3)=log6=- 2.

12 936

(4)log2( 3+2)+log2(2-3)

=l og2(2+ 3)(2- 3)=log21=0.

2.[解析 ] log416= 2, log34·log48·log8m=log3m=2,∴m= 9.

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n (ΛN * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5 )= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为

对数及其运算的练习题(附答案)

姓名_______ § 对数与对数运算 一、课前准备 1,。对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,lo g a N 是对数式。) 由于N a b =>0故lo g a N 中N 必须大于0。 2.对数的运算性质及换底公式. 如果 a > 0,a 1,b>0,M > 0, N > 0 ,则:(1)log ()a MN = ; (2)n m m n b a = log (3)log a M N = ;(4) log n a M = . (5) b a b a =log 换底公式log a b = . (6) b a b a =log (7)b a b a n n log 1log = 考点一: 对数定义的应用 】 例1:求下列各式中的x 的值; (1)23log 27=x ; (2)32log 2-=x ; (3)91 27log =x (4)162 1log =x 例2:求下列各式中x 的取值范围; (1))10(2 log -x (2)22) x ) 1(log +-(x (3)2 1)-x ) 1(log (+x 例3:将下列对数式化为指数式(或把指数式化为对数式) (1)3log 3 =x (2)6log 64 -=x (3)9 132-= (4)1641=x )( | 考点二 对数的运算性质 1.定义在R 上的函数f(x )满足f(x)=???>---≤-) 0(),2()1(log ) 0(),4(2x x f x f x x ,则f(3)的值为__________ 2.计算下列各式的值: (1)245lg 8lg 3 4 4932lg 21+- (2) 8.1lg 10lg 3lg 2lg -+ 3.已知)lg(y x ++)32lg(y x +-lg3=lg4+lgx+lgy,求x:y 的值 · 4.计算: (1))log log log 5 825 41252++()log log log 8 1254 252 5++( (2) 3 4 7 3 1 59725log log log log ??+) 5353( 2log --+ (3)求0.32 52log ?? 的值 (4):已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56. 随堂练习:

对数运算法则公式及其练习题

b n m b a m a n log log =对数运算法则公式 1、b a b a =log 2、n m n m a a a log log )(log +=? 3、n m n m a a a log log )(log -= 4、b n b a n a log log ?= 5、b n b a a n log 1log = 6、a b b c c a log log log =(换底公式) 7、1log log =?a b b a

1、求值: 1、log 89log 2732 2、lg 243 lg9 3、44912log 3log 2log 32?- 4、9 1log 81log 251log 532?? 5、4839(log 3log 3)(log 2log 2)++ 6、2345log 3log 4log 5log 2 7、0.21log 35 - 8、log 427·log 94+log 44 64; 9、(log 2125+log 425+log 85)(log 52+log 254+log 1258) 10、log 932·log 6427+log 92·log 427.

1.82log 9log 3 的值是 2.34 3的值是 3.2323223log 2log 3(log 2log 3)log 3log 2 +--的值是 4.若02log 2log m n >>时,则m 与n 的关系是 A .1m n >> B .1n m >> C .10m n >>> D .10n m >>> 5.233351log 5log 15log 5log 3 ?--的值是 A .0 B .1 C .5log 3 D .3log 5 6.若3log 124 x =,则x =_____________. 7.有下列五个等式,其中a>0且a ≠1,x>0 , y>0 ①log ()log log a a a x y x y +=+, ②log ()log log a a a x y x y +=?, ③1log log log 2 a a a x x y y =-, ④log log log ()a a a x y x y ?=?, ⑤22log ()2(log log )a a a x y x y -=- 将其中正确等式的代号写在横线上______________. 8.化简下列各式: (1)14lg 23lg5lg 5+- (2)3lg lg 70lg 37+- (3) 2lg 2lg5lg 201+?-

对数函数运算公式

对数函数运算公式集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

对数及其运算基础知识及例题

对数及其运算基础知识及例题 1、定义: 2、性质: ~ 3、对数的运算性质: 4、换底公式: 5、对数的其他运算性质 ! 6、常用对数和自然对数: 【典型例题】 类型一、对数的概念 例1.求下列各式中x 的取值范围: (1)2log (5)x -;(2)(1)log (2)x x -+;(3)2 (1)log (1)x x +-. ; 类型二、指数式与对数式互化及其应用 例2.将下列指数式与对数式互化: (1)2log 164=;(2)1 3 log 273=-;(3)3x =;(4)3 5125=;(5)1 122-=;(6)2 193-?? = ??? . 类型三、利用对数恒等式化简求值 \ 例3.求值: 71log 5 7+ 类型四、积、商、幂的对数 例4. z y x a a a log ,log ,log 用表示下列各式 \

235 3 (1)log ; (2)log (); (3)log ; (4)log a a a a x y xy x x y z z 例5.已知18log 9,185b a ==,求36log 45. : 类型六、对数运算法则的应用 例6.求值 (1) 9 1log 81log 251log 32log 532 64??? . (2) 7 lg142lg lg 7lg183 -+- (3))36log 4 3 log 32(log log 42 1 22++ (4)()248125255log 125log 25log 5(log 8log 4log 2)++++ — 对数及其运算练习题 一、选择题 1、 2 5)(log 5 a -(a ≠0)化简得结果是( ) ~

对数公式的运算

对数公式的运用 1.对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即a b=N,那么数b叫做以a为底N的对数,记作:log a N=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③log a1=0,log a a=1,a logaN=N(对数恒等式),log a a b=b。 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN; 以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作log e N,简记为lnN. 2.对数式与指数式的互化 式子名称a b=N 指数式a b=N(底数)(指数)(幂值) 对数式log a N=b(底数) (真数) (对数) 3.对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)log a(MN)=log a M+log a N. (2)log a(M/N)=log a M-log a N. (3)log a M n=nlog a M(n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②log a a n=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子a b=N,log a N=b名称:a—幂的底数b—N— a—对数的底数b—N— 运算性质: a m·a n=a m+n a m÷a n= a m-n (a>0且a≠1,n∈R) log a MN=log a M+log a N log a MN= log a M n= (n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①a<0,则N的某些值不存在,例如log-28=? ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数? ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数? 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?

《对数及其运算》教学设计

《对数及其运算》教学设计 【教学目标】 一、知识与能力: 1.理解对数的概念及对数的性质。 2.熟练的掌握对数式与指数式的相互转化。 二、过程和方法: 1.由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求对数式和指数式之间的关系。 2.培养学生自主、合作、探究的能力,通过讲练结合法与多媒体辅助教学法向学生渗透对比、类比的数学思想方法。 三、情感态度与价值观: 1.培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯。 2.体会事物之间互相转化的辨证思想。 【教学重点、难点】 1.重点:对数的概念及对数式与指数式的相互转化。 2.难点:对数概念的理解。 【学情分析】 由于前面几堂课我们学习了指数函数的相关性质,今天的内容通过相关的引导与练习,可以以找规律的形式带动学生的积极性,掌握本堂课的知识。 【教学手段】 多媒体教学辅助法 【教学时数】 一课时 【教学过程】

一、发散思维,导入新课 1、提出问题: 2000年我国国民经济生产总值为a亿元,如果按平均每年增长8.2%估算,那么经过多少年国民经济生产总值是2000年的2倍。 假设经过x年,国民经济生产总值是2000年的2倍,依题意,有 2.8 +, 1(= %) a a x2 x. 即2 .1= 082 指数x取何值时满足这个等式呢? 2、对数起源: 约翰·纳皮尔John Napier(1550~1617),苏格兰数学家、神学家,对数的发明者。Napier出身贵族,于1550年在苏格兰爱丁堡附近的小镇梅奇斯顿(MerchistonCastle,Edinburgh,Scotland)出生,是Merchiston城堡的第八代地主,未曾有过正式的职业。 年轻时正值欧洲掀起宗教革命,他行旅其间,颇有感触。苏格兰转向新教,他也成了写文章攻击旧教(天主教)的急先锋(主要文章于1593年写成)。其时传出天主教的西班牙要派无敌舰队来攻打,Napier就研究兵器(包括拏炮、装甲马车、潜水艇等)准备与其拚命。虽然Napier的兵器还没制成,英国已把无敌舰队击垮,他还是成了英雄人物。 他一生研究数学,以发明对数运算而著称。那时候天文学家Tycho Brahe (第谷,1546~1601)等人做了很多的观察,需要很多的计算,而且要算几个数的连乘,因此苦不堪言。1594年,他为了寻求一种球面三角计算的简便方法,运用了独特的方法构造出对数方法。这让他在数学史上被重重地记上一笔,然而完成此对数却整整花了他20年的工夫。1614年6月在爱丁堡出版的第一本对数专著《奇妙的对数表的描述》("Mirificilogarithmorum canonis descriptio")中阐明了对数原理,后人称为纳皮尔对数:Nap logX。1616年Briggs(亨利·布里格斯,1561 - 1630)去拜访纳皮尔,建议将对数改良一下以十为基底的对数表最为方便,这也就是后来常用的对数了。可惜纳皮尔隔年于1617年春天去世,后来就由Briggs以毕生精力继承纳皮尔的未竟事业,以10为底列出一个很详细的对数表。并且于1619年发表了《奇妙对数规则的结构》,于书中详细阐述了对数计算和造对表的方法。 说明:通过介绍对数产生的历史背景与概念的形成过程,体会引入对数的必要性。激发学生学习对数的兴趣,培养对数学习的科学研究精神。 二、激发兴趣,自主学习 1.对数的概念:

对数及其运算基础知识及例题

对数及其运算基础知识及例题 1、定义: 2、性质: 3、对数的运算性质: 4、换底公式: 5、对数的其他运算性质 6、常用对数和自然对数: 【典型例题】 类型一、对数的概念 例1.求下列各式中x 的取值范围: (1)2log (5)x -;(2)(1)log (2)x x -+;(3)2(1)log (1)x x +-. 类型二、指数式与对数式互化及其应用 例2.将下列指数式与对数式互化: (1)2log 164=;(2)1 3log 273=-;(3)3x =;(4)35125=;(5)1122-=;(6)2 193-??= ???. 类型三、利用对数恒等式化简求值 例3.求值: 71log 57+ 类型四、积、商、幂的对数 例4. z y x a a a log ,log ,log 用表示下列各式 35(1)log ;(2)log ();(3)log (4)log a a a a xy x y z

例5.已知18log 9,185b a ==,求36log 45. 类型六、对数运算法则的应用 例6.求值 (1) 91log 81log 251log 32log 532 64??? (2) 7lg142lg lg 7lg183-+- (3))36log 4 3log 32(log log 421 22++ (4)()248125255log 125log 25log 5(log 8log 4log 2)++++ 对数及其运算练习题 一、选择题 1、 2 5)(log 5a -(a ≠0)化简得结果是( ) A 、-a B 、a 2 C 、|a | D 、a 2、 log 7[log 3(log 2x )]=0,则21 -x 等于( ) A 、31 B 、321 C 、221 D 、331 3、 n n ++1log (n n -+1)等于( ) A 、1 B 、-1 C 、2 D 、-2 4、 已知32a =,那么33log 82log 6-用表示是( )

对数公式总结

1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am?an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①若a<0,则N的某些值不存在,例如log-28 ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1

对数及其运算的练习题(附答案)

精选 姓名_______ §2.2.1 对数与对数运算 一、课前准备 1,。对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,lo g a N 是对数式。) 由于N a b =>0故lo g a N 中N 必须大于0。 2.对数的运算性质及换底公式. 如果 a > 0,a ≠ 1,b>0,M > 0, N > 0 ,则:(1)log ()a MN = ; (2)n m m n b a = log (3)log a M N = ;(4) log n a M = . (5) b a b a =log 换底公式log a b = . (6) b a b a =log (7)b a b a n n log 1log = 考点一: 对数定义的应用 例1:求下列各式中的x 的值; (1)23log 27=x ; (2)32log 2-=x ; (3)91 27log =x (4)162 1log =x 例2:求下列各式中x 的取值范围; (1))10(2 log -x (2)22) x ) 1(log +-(x (3)2 1)-x ) 1(log (+x 例3:将下列对数式化为指数式(或把指数式化为对数式) (1)3log 3 =x (2)6log 64 -=x (3)9 132-= (4)1641=x )( 考点二 对数的运算性质 1.定义在R 上的函数f(x )满足f(x)=???>---≤-) 0(),2()1(log ) 0(),4(2x x f x f x x ,则f(3)的值为__________ 2.计算下列各式的值: (1)245lg 8lg 3 4 4932lg 21+- (2) 8.1lg 10lg 3lg 2lg -+ 3.已知)lg(y x ++)32lg(y x +-lg3=lg4+lgx+lgy,求x:y 的值 4.计算: (1))log log log 5 825 41252++()log log log 8 1254 252 5++( (2) 3 4 7 3 1 59725log log log log ??+) 5353( 2log --+

对数函数基础运算法则及例题-答案

对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为 ),(+∞-∞. 对数的四则运算法则: 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈. (4)N n N a n a log 1 log = 对数函数的图像及性质

例1.已知x =4 9时,不等式 (x 2 – x – 2)> (–x 2 +2x + 3)成立, 求使此不等式成立的x 的取值范围. 解:∵x =49使原不等式成立. ∴[249)49(2--]> )34 9 2)49(1[2+?+? 即16 13>16 39. 而16 13<16 39. 所以y = 为减函数,故0<a <1. ∴原不等式可化为??? ????++-<-->++->--3220 320222 2 2x x x x x x x x , 解得??? ???? <<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2 5, 2( 例2.求证:函数f (x ) =x x -1log 2 在(0, 1)上是增函数. 解:设0<x 1<x 2<1, 则f (x 2) – f (x 1) = 212 221log log 11x x x x ---2 1221 (1) log (1)x x x x -=-= .11log 2 1 122 x x x x --? ∵0<x 1<x 2<1,∴1 2x x >1,2111x x -->1. 则2 1 122 11log x x x x --? >0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数 例3.已知f (x ) = (a – ) (a >1).

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

对数及其运算

第3讲:对数及其运算 【复习要求】 1、理解对数的意义,会熟练地将指数式与对数式互化; 2、初步学会换底公式的基本运用; 3、掌握积、商、幂的对数性质。会用计算器求对数。 【知识要点】 1、对数的定义:如果(01)a a a >≠且的b 次幂等于N ,那么b 称为以a 为底N 的对数,记作:log a b N =,其中a 称为底数,N 称为真数。 2、指数式与对数式的互化:log b a a N N b =?=; 3、对数恒等式:N a N a =log (0,01N a a >>≠且)。 4、换底公式及衍生性质: ()1 log log log m a m N N a = (0a >,1a ≠,0m > , 1m ≠,0N >) ()2a b b a log 1log = ,()3c c b a b a log log log =?, ()4b n m b a m a n l o g l o g = 5、对数的运算性质:如果0,1,0,0a a N M >≠>>有 log ()log log a a a MN M N =+; l o g l o g l o g a a a M M N N =-; log log n a a M n M =; 1 log log n a a M M n = 【基础训练】 1、如果2 (0,1)a b b b =>≠,则有 ( D ) (A )2log a b = (B )2log b a = (C )log 2a b = (D )log 2b a = 2、若2521 log 3log 3 m = +,则有 ( B ) (A )12m << (B )23m << (C )34m << (D )45m << 3、已知:25lg m =,则lg 2= 1 12 m - (用m 表示) 4、计算:(1)2 lg 4lg 92lg 6lg 361++-+= 2 (2)2234 1222 3log (8log 16)log log +-= 60

(完整)对数与对数运算知识点及例题解析,推荐文档

对数与对数运算知识点及例题解析 1、对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. 2、以10为底的对数叫做常用对数,log 10N 记作lg N . 3、以无理数e=2.718 28…为底的对数称为自然对数,logeN 记作ln N 4、对数的性质: (1)log 10, log 1a a a ==(2)对数恒等式①a log aN =N ;②log a a N =N (a >0,且a ≠1). 5、对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ⑤log a m M n =n m log a M . ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 特殊情形:log a b = 1 log b a ,推广log a b ·log b c ·log c d =log a d . 类型一、指数式与对数式互化及其应用 例1、将下列指数式与对数式互化: (1);(2);(3) ;(4);(5);(6). 思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5);(6). 例2、求下列各式中x 的值: (1) (2) (3)lg100=x (4) 思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x. 解:(1) ; (2) ; (3)10x =100=102,于是x=2; (4)由

对数公式的推导(全)

对数函数公式的推导(全) 由指数函数 (01)n a a a b >≠=且,可推知:log a n b =,从而: ()log a b a b =对数恒等式 性质1、log ()log log a a a MN M N =+ <证法1> 由于m n m n a a a +?= 设 ,m n M a N a == 则: log a M m = l o g a N n = m n MN a += 于是: ()log log log a a a M N MN m n =+=+ <证法2> log log log a a a M N M N M N M N a a a =?=?对数恒等式 即: log log log a a a MN M N a a +=由于指数函数是单调函数,故: log ()log log a a a MN M N =+ 性质2、log log log M a a a N M N =- <证明> log log log log log M M N a a a a N a M N a M M N N a a a -== =对数恒等式 由于指数函数是单调函数,故:log log log M a a a N M N =- 性质3、log log ()(0,1)log b b a N N a b b >≠= 换底公式 特例:1log log a b b a = <证明> 由对数恒等式可知:log log a b N N N a b ==,log b a a b = log log log log a b b a N a N a N b b ???→==?? log log log b b a N a N N b b ?→== 由于指数函数是单调函数,故:log log log b b a N a N =? 故:log log log b b a N N a = 性质4、log log n a a M n M = 特例:1 log log n a a n M M =

对数+常用公式方便搜到的人

对数 来自维基百科 各种底数的对数: 红色函数底数是e, 绿色函数底数是10,而紫色函数底数是1.7。在数轴上每个刻度是一个单位。所有底数的对数函数都通过点(1,0),因为任何数的0次幂都是1,而底数β的函数通过点(β, 1),因为任何数的1次幂都是自身1。曲线接近y轴但永不触及它,因为x=0的奇异性。 在数学中,数?x(对于底数?β)的对数是βy?的指数?y,使得?x=βy。底数?β?的值一定不能是1或0(在扩展到复数的复对数情况下不能是1的方根),典型的是e、?10或2。数x(对于底数β)的对数通常写为

。 当x和β进一步限制为正实数的时候,对数是1个唯一的实数。例如,因为 , 我们可以得出 , 用日常语言说,对81以3为基的对数是4。 对数函数 函数log αx依赖于α和x二者,但是术语对数函数在标准用法中用来称呼形如log αx的函数,在其中底数α是固定的而只有一个参数x。所 以对每个基的值(不得是负数、0或1)只有唯一的对数函数。从这个角度看,底数α的对数函数是指数函数y= αx的反函数。词语“对数”经常用来称呼对数函数自身和这个函数的1个特定值。 对数函数图像和指数函数图像关于直线y=x对称,互为逆函数。 对数函数的性质有:

1.都过(1,0)点; 2.定义域为|R|≠0,值域为R; 3.α>1,在(0,+∞)上是增函数;1>α>0时,在(0,+∞)上是减函数。常用公式 ?和差 ?基变换

?指系 ?还原 ?互换 ?倒数

链式 有理和无理指数 如果n是有理数,βn表示等于β的n个因子的乘积: 。 但是,如果β是不等于1的正实数,这个定义可以扩展到在一个域中的任何实数n(参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数β,有一个对数函数和一个指数函数,它们互为反函数。

对数及其运算的练习题(附答案)

姓名_______ §2.2.1 对数与对数运算 一、课前准备 1,。对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,lo g a N 是对数式。) 由于N a b =>0故lo g a N 中N 必须大于0。 2.对数的运算性质及换底公式. 如果 a > 0,a ≠ 1,b>0,M > 0, N > 0 ,则:(1)log ()a MN = ; (2)n m m n b a = log (3)log a M N = ;(4) log n a M = . (5) b a b a =log 换底公式log a b = . (6) b a b a =log (7)b a b a n n log 1log = 考点一: 对数定义的应用 例1:求下列各式中的x 的值; (1)23log 27=x ; (2)32log 2-=x ; (3)91 27log =x (4)162 1log =x 例2:求下列各式中x 的取值范围; (1)) 10(2 log -x (2)22) x )1(log +-(x (3)2 1)-x ) 1(log (+x 例3:将下列对数式化为指数式(或把指数式化为对数式) (1)3log 3 =x (2)6log 64 -=x (3)9 132-= (4)1641=x )( 考点二 对数的运算性质 1.定义在R 上的函数f(x )满足f(x)=? ??>---≤-)0(),2()1(log ) 0(),4(2x x f x f x x ,则f(3)的值为__________ 2.计算下列各式的值: (1) 245lg 8lg 344932lg 21+- (2) 8 .1lg 10 lg 3lg 2lg -+ 3.已知)lg(y x ++)32lg(y x +-lg3=lg4+lgx+lgy,求x:y 的值 4.计算: (1))log log log 5 825 4125 2++()log log log 8 1254 252 5++( (2) 3 4 7 3 1 59725log log log log ??+) 5353( 2log --+ (3 )求0.32 log ?? 的值 (4):已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56. 随堂练习: 1.9312 -=??? ??写成对数式,正确的是( ) 2.=343 49log ( ) A.7 B.2 C.3 2 D. 2 3 3.成立的条件y x xy 33)(3 log log log +=( ) A.x>0,y>0 B.x>0,y<0 C.x<0.y>0 D.R y R x ∈∈,

对数计算公式.

性质 ①loga(1)=0; ②loga(a)=1; ③负数与零无对数. 2对数恒等式 a^logaN=N (a>0 ,a≠1) 3运算法则 ①loga(MN)=l ogaM+l ogaN; ②loga(M/N)=l ogaM-logaN; ③对logaM中M的n次方有=nlogaM; 如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数 的底。定义:若a^n=b(a>0且a≠1) 则n=log(a)(b)

基本性质: 1、a^(log(a)(b))=b 2、log(a)(MN)=l og(a)(M)+l og(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nl og(a)(M) 5、log(a^n)M=1/nl og(a)(M) 推导: 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3、与(2)类似处理 M/N=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N)

对数及其运算教材分析

一、本教材的外部知识结构 对数既是一个重要的概念,又是一种重要的运算,而且它是与指数概念密切相连的,它们是对同一关系从不同角度的刻画。本节课是在学习了指数函数及其性质后学习的,其主要内容是对数概念、对数与指数的互化以及对数的运算。对数是对指数性质的巩固,也是后面研究对数函数、探讨函数应用的基础,因此本节课在知识结构上起了承上启下的作用。 二、本教材的内部知识结构 1、知识点 对数的定义、对数的运算法则、换底公式、两个重要对数 2、内部知识结构图

1、概念分析 ⑴一般地,对于指数式N a b ,我们把“以a 为底N 的对数b ”记作b N a =log ,其中 a 叫作对数的底数,N 叫作真数. ①概念的地位与作用 对数的概念与指数的概念密切相连,对于日后学习对数函数有重要意义,并在工程、生 物、社会科学中有着重要应用 ②概念的存在性 所谓概念的存在性,即概念外延有无的问题, 对数的存在性可采用直观方式说明。对于 细胞分裂,我们知道第x 次分裂后,细胞分裂的个数为y =2而在实际问题中,我们常常 需要由细胞分裂出的个数y 来计算细胞分裂的次数x ,因此引入一个新的概念——对数, 即对数是存在的 ③概念的类与概念的定义 对数的概念是可定义概念。定义方式为关系定义 ④定义与补充规定 a.0和负数没有对数,即N>0 b.1的对数为0,底的对数等于1即)1≠ 0>(1=log ,0=1log a a a a a 且 c.其中log 是对数英文logarithm 的缩写 ⑤注意 a.N>0即真数大于零,如果N 小于零经计算后可能得不到解 b.a>0且a ≠1,当a=1时,解无穷多个,当a ≤0时可能无解 在给出对数定义之后,给出两个特殊对数: 一个是当底数a =10时称为常用对数,简记作N lg ,另一个是底数a =e (2.71828…)时, 称为自然对数,简记作N ln , ①概念的地位与作用 引入常用对数是为了简便,并通常把10略去不写。常用对数多数应用于表达声音强度(分 贝),酸碱度等,当数值相差的层次很大的比较,比如10与10000000,可以使“十变1”使“亿变8”。另外,求一个正实数的常用对数可通过查常用对数表或使用科学计算器求解, 方便快捷。无理数e 在科学技术中用的非常多,一般不使用以10为底的对数,也可用科学 计算器直接求自然对数。此外,二者可方便的用于换底公式。 ②概念的存在性 由对数的存在性可知常用对数与自然对数显然成立 ⑶概念的类与概念的定义 常用对数的概念是可定义概念。定义方式为属+种差的定义方式,“属”是对数,“种差” 是以10为底,关键词是对数和以10为底。 自然对数的概念是可定义概念。定义方式为属+种差的定义方式,“属”是对数,“种差” 是以e 为底,关键词是对数和以e 为底。

相关主题