搜档网
当前位置:搜档网 › 大学数学竞赛辅导 极限和连续

大学数学竞赛辅导 极限和连续

大学数学竞赛辅导 极限和连续
大学数学竞赛辅导 极限和连续

第一讲 极限和连续

一、极限的定义:数列N ε-定义、函数,X εδε--定义。(略)

二、极限的计算方法:

1)代入法(利用函数的连续性()()0

0lim x x f x f x →=);

2)单调有界准则和夹逼准则;

3)两个重要极限:0sin 1lim 1,lim 1x

x x x e x x →→∞??=+= ???

4)极限的四则运算法则;

5)有界量与无穷小的积还是无穷小;

6)等价无穷小的替换:()0x α→时,()()()()

sin tan 1x x x a x e

ααα-

()()

()

()()1

l n 1

a r c t a n ,

1c o s 2

x x x x αααα+-

; 7)复合函数求极限法则:条件()()()0

00lim ,lim x x u u x u f u f u ?→→==,则有 ()()()(

)()()

00

0l i m l i m l i m x x u

u

x

x

f x f u f u f

x ??→→→===

????;

8)洛必达法则;

9)利用泰勒公式求极限;

10)利用定积分的定义计算极限; 11)利用级数的一些结果计算极限; 12)海涅归结原则:(利用它可以把一些数列问题化为函数极限问题);

定理1:1、函数极限()0

lim x x f x A →=的充要条件是:对任何数列{}n x ,若0lim n n x x →∞

=,

则有()lim n n f x A →∞

=;

2、函数极限()lim x f x A →∞

=的充要条件是:对任何数列{}n x ,若lim n n x →∞

=∞,则有

()lim n n f x A →∞

=。

13)施托尔茨(Stolz )定理(数列极限的洛必达法则); 定理2:设数列{}n b 单调增加且lim n n b →∞

=+∞,如果1

1

lim

n n n n n a a b b -→∞---存在或为∞,则有

11

lim

lim n n n n n n n n a a a

b b b -→∞→∞--=-。

证明:设1

1

lim

n n n n n a a A b b -→∞--=-,则对任给的0ε>,存在正整数N ,当n N ≥时恒有

1111

n n n n n n n n a a a a

A A A b b b b εεε-------

由于数列{}n b 单调增加,所以有

()()()()111N N N N N N A b b a a A b b εε-----<-<+- ()()()()111N N N N N N A b b a a A b b εε+++--<-<+- ………… ………… ()()()()111n n n n n n A b b a a A b b εε-----<-<+- 由此可得

()()()()1

1111

n N n N n N n N n N a a A b b a a A b b A b b εεε--------<-<+-?

-<-

又因为

1111

111n n n N n N N n N n n N n n N n N n a a b b a a a b b A A A b b b b b b b b b -------??----=?-=+?- ?---??

111

1

1n N n N N N n N n n a a b b a Ab A b b b b -----??---=-?+

?-??

由于lim n n b →∞

=+∞,所以存在1N N >,当1n N >时有

11

N N n

a A

b b ε---<,并且有

1

1n N n

b b b --<,所以当1n N >时有

111

12n n N N N n n N n

a a a a A

b A A b b b b ε-------≤-+<- 由此即得11lim

lim n n n n n n n n a a a b b b -→∞→∞--=-。11

lim n n n n n a a

b b -→∞--=∞-的情形类似证明。

例1:证明极限的平均值定理 1、设lim n n a →∞

存在或为∞,则有12lim

lim n

n n n a a a a n

→∞→∞+++= ;

2、设0,1,2,n a n >= ,且lim n n a →∞

存在或为∞,则有

lim n n n a →∞

=

证明:利用施托尔茨定理证明 1、()()

12112112lim

lim lim 1n n n n

n n n n a a a a a a a a a a a n n n --→∞→∞→∞++++-++++++=--

2

12ln ln ln n

a a a n

e +++ ,所以

12ln ln ln lim

lim ln ln lim lim n n

n

n n n a a a a a n n n n e

e e

a →∞→∞

→∞

+++→∞

==== 。

例2:设lim ,lim n n n n x a y b →∞

→∞

==,证明数列1211

n n n n x y x y x y z n

-++=

收敛于ab 。

证明:由极限与无穷小的关系,存在数列{}{},n n αβ且有lim 0,lim 0n n n n αβ→∞→∞

==,使得,n n n n x a y b αβ=+=+,

12111212n n n n n

n x y x y x y z ab b a n n n

αααβββ-++++++++=

=+?+?

1211

n n n n

αβαβαβ-++++

由例1可得1

212lim 0,lim 0n n

n n n n αααβββ→∞→∞++++++== ,由lim 0n n α→∞=可得数列{}n α有界,即存在0M ≥有

,1,2,n M n α≤= ;由l i m 0n n β→∞

=可得l i m 0n n β→∞

=,再由例1得12lim

0n

n n

βββ→∞

++= ,由于

121211

n

n n n M n

n

βββαβαβαβ-++++++≤

?

所以有1211

lim

0n n n n n

αβαβαβ-→∞

+++=

再利用极限与无穷的关系得lim n n z ab →∞

=。

例3:设数列{}n a 有界,对任给的n 总有23,n n n n a a a a ++≤≤,证明lim n n a →∞

存在。

证明:由于2n n a a +≤及{}n a 有界,由单调有界准则,数列{}{}221,n n a a -收敛,再由

3n n a a +≤及{}n a 有界可得数列{}3m a 是收敛的。

又因为{}6n a 分别是{}{}23,n n a a 的子列,(){}

321n a -分别是{}{}213,n n a a -的子列,所以221lim lim n n n n a a -→∞

→∞

=,

即有lim n n a →∞

存在。

例4:设11a ≤,数列()121n n a a +-=,证明极限lim 1n n a →∞

=。

证明:考虑函数()12f x x x =

--,可得()()

2

1

12f x x '=--。当1x ≤时,()0f x '≤,即函数()f x 是单调递减的,所以当1x ≤时有 ()()1

102x f x f x

-=≥=- 又因为1x ≤时有1012x <

≤-,由1111,2n n

a a a +≤=-即可得 01n a <≤,2,3,n = 11

0,1,2,2n n n n

a a a n a +-=

-≤=- 由单调有界准则lim n n a →∞

存在,无妨设lim n n a a →∞

=,则有

()2

212101a a a a a -=?-+=?=

例5:设()()101121,,1,2,2n n

n x n x x a x b x n n

-++-===

= ,求极限lim n n x →∞

。 解:由()11212n n n x n x x n

-++-=

可得()111

2n n n n x x x x n +--=--

()()()()()()1121011112212!2!

n

n

n n n n n n x x x x x x b a n n n n +--??

---=---=-=- ? ?-?? 112100n n n n n x x x x x x x x ---=-+-++-+

()()()()()12

112011112121!22!21!!k

n n n n n k b a a a n n k -----=??

- ???---??

=-++++=+ ? ?--???

所以有()()120

12lim !k

n n k x a b a a b a e k ∞-→∞=??

- ???=+-=+-∑。

例6:设111,,a b c 是正数,它们的和为1。定义数列

2

22

1112,2,2n n n n n n n n n n n n a a b c b b a c c c a b +++=+=+=+

证明:当n →∞时,三个数列{}{}{},,n n n a b c 的极限都存在,并求出极限。 证明:因为()2

1111111,n n n n n n a b c a b c a b c +++++=++=++,所以我们有 1

1,2,n n n a b c n ++== (1)

由此可得数列{}{}{},,n n n a b c 都是有界数列,设,,n n n a b c 的最大值与最小值分别为,n n M m ,则数列{}{},

n n M m 也是有界数列,又因为

2

12n n n n n n n n n n n a a b c M a M b M c M +=+≤++= 212n n n n n n n n n n n b b a c M a M b M c M +=+≤++= 212n n n n n n n n n n n c c a b M a M b M c M +=+≤++= 212n n n n n n n n n n n a a b c m a m b m c m +=+≥++= 212n n n n n n n n n n n b b a c m a m b m c m +=+≥++= 212n n n n n n n n n n n c c a b m a m b m c m +=+≥++=

所以有11,n n n n M M m m ++≤≥,由单调有界准则lim ,lim n n n n M m →∞

→∞

存在。

由于()()112n n n n n n n a b a b a b c ++-=-+-

()()()()n n n n n n n n a c b c a c b c =---?-+-???????? ()()()222

n n n n n n a c b c M m =---≤- 同理可得()

()2

2

1111,

n n n n n n n n a c M m b c M m ++++-≤--≤-,因此有

()()()2

4

2111111n

n n n n n n M m M m M m M m ++---≤-≤-≤≤- 再根据1101M m <-<可得()lim 0lim lim n n n n n n n M m M m →∞

→∞

→∞

-=?=。

因为

,,n n n

n n n n n n m a M m b M m c M ≤≤≤≤≤≤

由夹逼准则可得lim lim lim lim lim n n n n n n n n n n a b c m M →∞

→∞

→∞

→∞

→∞

====,利用(1)可得

1lim lim lim lim lim 3

n n n n n n n n n n a b c m M →∞

→∞

→∞

→∞

→∞

=====

例7:

,,, 收敛,并求

其极限。

解:设此数列为{}n a

,则有2n a +=

0n a <存在设lim n n a a →∞

=,则有()()

()4222

1442010420a a a a a a --+=?----= ()()

32

2210210a a a a -+--=

由于32

210210a a a +--=有一个实根在3和4之间,所以有2a =。

考虑函数(

)0,

f x x ?=∈?,

(

)1

116

f x '=

≤< 利用拉格朗日中值定理

()()()()1

222216

f x f x f f x x ξ'-=-=-≤- 其中ξ在2,x 之间,由此我们有

(

)2222210222216n n n a f a a --≤-=-≤

-≤≤ (

)21232310222216n n n a f a a ---≤-=-≤-≤≤ 由夹逼准则得221lim lim 2lim 2n n n n n n a a a -→∞

→∞

→∞

==?=。

三、连续函数及其性质

1)闭区间上连续函数的性质:最大值最小值定理;零点定理;介值定理。 2)一致收敛与一致连续

定义1:对于函数列()[],,,1,2,n f x x a b n ∈= 和常数A ,如果对任给的

0ε>,存在0N >,当n N >时,对于任意的[],x a b ∈恒有

()n f x A ε-< 则称(){}

n f x 在[],a b 上一致收敛于A 。

定义2:对于函数()[],,f x x a b ∈,如果对任给的0ε>,存在0δ>,对于任意的

[]12,,x x a b ∈,当12x x δ-<时恒有

()()12f x f x ε-< 则称()f x 在[],a b 上一致连续。

例8:设()f x 在(),-∞+∞上连续,且()1f e =,对于任给的,x y R ∈恒有 ()()()f x y f x f y += 证明:()x f x e =。

证明:由于()()()()000001f f f f +=?=或()00f =,如果()00f =则有()()()()110100f f f f =+==,这与已知矛盾,所以()01f =。 对于任意正有理数

,,m

n m n

为正整数有 ()1111111n n n e f f f f e n n n n n ?? ?????==+++=?= ? ? ????? ???

个 1m

m n m f f e n n ????== ? ?????

若n r 是负有理数,则()()()()()()

1

10n r n n n n n n f f r r f r f r f r e f r ==-=-?==-

如果x 是无理数,则存在有理数列{}n r 使得lim n n r x →∞

=

()()

()lim lim lim lim n

n n r r

x n n n n n f x f r f r e e e →∞→∞

→∞

→∞

=====

例9:设()f x 在闭区间[]0,1上连续,()()01f f =。证明:对于任给的正整数n ,总存在()0,1n ξ∈使得()1n n f f n ξξ??=

+ ???

。 证明: 四、练习题

1)设p 是正整数,计算1

12lim p p p

p n n n +→∞+++ 。

2)设(

)1111,0;,1,2,2

n n

n n x y x a y b

a b x y n +++==<<=

=

= ,证

明数列{}{},n n x y 极限都存在且相等。

3)求极限2

221

lim

n n j n

n j →∞=+∑。 4)某短跑选手再一次百米赛跑时的成绩刚好是10秒,有人说此选手在比赛过程中的某

个一秒钟内刚好跑了10米,这个说法正确吗?说明自己的理由。

5)设()(),f x g x 在闭区间[],a b 上连续,并有数列{}[],n x a b ?,使得

()()1,1,2,n n f x g x n +== ,证明存在一点[]0,x a b ∈使得()()00f x g x =。

初中数学竞赛辅导讲义及习题解答 含答案 共30讲 改好278页

初中奥数辅导讲义培优计划(星空课堂)

第一讲走进追问求根公式 第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理 第四讲明快简捷—构造方程的妙用 第五讲一元二次方程的整数整数解 第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想 第八讲由常量数学到变量数学 第九讲坐标平面上的直线 第十讲抛物线 第十一讲双曲线 第十二讲方程与函数 第十三讲怎样求最值 第十四讲图表信息问题 第十五讲统计的思想方法 第十六讲锐角三角函数 第十七讲解直角三角形 第十八讲圆的基本性质 第十九讲转化灵活的圆中角

第二十讲直线与圆 第二十一讲从三角形的内切圆谈起第二十二讲园幂定理 第二十三讲圆与圆 第二十四讲几何的定值与最值 第二十五讲辅助圆 第二十六讲开放性问题评说 第二十七讲动态几何问题透视 第二十八讲避免漏解的奥秘 第二十九讲由正难则反切入 第三十讲从创新构造入手

第一讲 走进追问求根公式 形如()的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。而公式法是解一元二次方程的最普遍、最具有一般性的方法。 求根公式内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了 一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。 【例题求解】 【例1】满足的整数n 有 个。 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。 【例2】设、是二次方程的两个根,那么的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出、的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如,。 【例3】 解关于的方程。 思路点拨:因不知晓原方程的类型,故需分及两种情况讨论。 【例4】 设方程,求满足该方程的所有根之和。 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。 【例5】 已知实数、、、互不相等,且, 试求的值。 思路点拨:运用连等式,通过迭代把、、用的代数式表示,由解方程求得的值。 注:一元二次方程常见的变形形式有: (1)把方程()直接作零值多项式代换; (2)把方程()变形为,代换后降次; (3)把方程()变形为或,代换后使之转化关系或整体地消去。 02=++c bx ax 0≠a a ac b b x 2422 ,1-±-=1)1(22=--+n n n 1x 2x 032=-+x x 1942231+-x x 1x 2x 1213x x -=2223x x -=x 02)1(2=+--a ax x a 01=-a 01≠-a 04122=---x x a b c d x a d d c c b b a =+=+ =+=+1 111x b c d a x 02=++c bx ax 0≠a 02=++c bx ax 0≠a c bx ax --=202=++c bx ax 0≠a c bx ax -=+2bx c ax -=+2x

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

体育比赛中的数学问题

体育比赛中的数学 体育比赛中的数学是组合问题的重要组成部分,主要结合逻辑推理考察孩子的分析能力和思维的灵活性,走美杯每年都会考到本知识点,这个内容也是2015年四年级学而思杯很可能考到的内容,家长可以让孩子看这个资料适当预习下,咱们这讲内容会在春季下半册书上学习。 一、对单循环赛、淘汰赛的认识 在体育比赛中,每两个人之间都要赛一场并且只赛一场,称这样的比赛为单循环赛。例如:有n 个队参加比赛,其中每个队都要和其他队各赛一场,即每个队都赛了(n- 1) 场。每一场比赛都被算在两个(n- 1) 中,也就是说在n 个(n- 1) 每一场比赛都计算了两次。那么一共进行了n ?(n- 1) ÷ 2 场比赛。 练习1 (2008 年第四届“IMC 国际数学邀请赛”(新加坡)初赛)学校进行乒乓球选拔赛,每个选手都要和其它所有选手各赛一场,一共进行了36 场比赛,有()人参加了选拔赛。 A、8 B、9 C、10 分析:36 ? 2 =72 (场)。如果有n 个选手,那么n ?(n- 1) =72。两个连续的自 然数乘积为72,n =9 。

在体育比赛中,规定每一场赛事中败者淘汰胜者晋级,称这类比赛为淘汰赛。在淘汰赛中,每一轮淘汰掉一半选手,直至产生最后的冠军。n 个队进行淘汰赛,每进行一场比赛就要淘汰一个队,最后只剩下冠军,也就是说其它选手都被淘汰 掉了,决出冠军需要进行(n- 1) 场比赛。 练习 2 16 个人进行淘汰赛, (1)决出冠军需要进行几场比赛?冠军一共参加了几场比赛? (2)要决出前三名需要进行几场比赛?分析:(1)第 16 ÷2 =8 (场),8 名胜利者晋级! 第二轮:8 ÷2 =4 (场),4 名胜利者晋级! 第三轮:4 ÷2 =2 (场),2 名胜利者晋级! 第四轮:2 ÷2 = 1 (场),决出冠军! 要决出冠军共需要进行8 +4 +2 + 1 = 15 (场)。在每一轮比赛中,冠军都参加了其中一场比赛,冠军一共参加了1 ? 4 =4 场比赛。 (2)第四轮比赛中的两位选手分别是1、2 名,3、4 名应该是第三轮中淘汰的两位选手,他们之间要再进行一场比赛才能定出来名次。决出前三名供需15 + 1 = 16 场比赛。 二、比赛中的积分 若规定比赛中胜积2 分,负积0 分,平局积1 分。从比赛结果看,每一场比赛中,若能出现胜者,对手就一定是败者,双方一共积了2 +0 = 2 分;若能出现平局,比赛的双方共积了1 +1 = 2 分。从以上分析可见,每一场比赛后,所有选手的总积分都会增加2 分。若进行了m 场比赛,比赛的总积分一定是2 m 。 若规定比赛中胜积3 分,负积0 分,平局积1 分。每一场比赛中,若有胜负,双方共积3 +0 =3 分;若能出现平局,比赛双方共积2 分,由此可见,其中每出现一场平局,总积分就会减少1 分。若进行了m 场比赛,比赛的总积分在2 m 到3 m之间。 练习 3 (09 年迎春杯决赛)A,B,C,D,E,F 六个足球队进行单循环比赛,每两个队之间都要赛一场,且只赛一场.胜者得3 分,负者得0 分,平局每队各得1 分.比赛结果,各队得分由高到低恰好为一个等差数列,获得第3 名的队得了8 分,那么这次比赛中共有场平局.

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

初中数学教研组新学期工作计划

初中数学教研组新学期工作计划 初中数学教研组工作计划 一、指导思想: 认真贯彻校教务处工作计划。 初中数学教研组工作计划。以组风建设为主线,以新课程标准为指导,以教法探索为重点,以构建“自主学习”课堂教学模式为主题,以提高队伍素质,提高课堂效率,提高教学质量为目的。深化课堂教学改革,努力改善教与学的方式,使我校数学教学、教研质量进一步提高。 二、工作目标 1、加强组风建设,狠抓教学常规,更新教学观念,提高教师实践能力。 2、构建“自主学习”课堂教学模式,努力改善教与学的方式。 3、进一步提高教师的信息技术与数学教学整合能力。 XX 4、抓好培优补差工作,努力解决厌学问题。 5、继续抓好培养青年教师工作。 6、进一步加强科研力度,树立科研兴教思想。 三、重点及主要措施 1、加强组风建设,把数学组建设成师徳形象好,教研

风气浓,协作意识和团体凝聚力强,特别是对学生、对学校发展有强烈责任感和使命感的教研组。主要通过组内讨论,与领导交流,师生沟通及自修师德,听专家讲座等形式,增强教师的责任感和使命感,同时教研组长配合教导处承担对数学教学的指导和管理,以抓"课堂常规"为突破口,抓好各项常规管理。严格执行教导处的各项计划。 2、更新教学观念,构建“自主学习”课堂教学模式 ⑴、用新课程改革的理念来转变和更新教学观念,武装自己,指导平常的教学工作,提高课堂教学效率。 XX ⑵、强调智力因素和非智力因素的结合,创造愉快振奋的学习情绪,调动学生智力活动的积极性,积极实行启发式和讨论式教学,培养学生自主学习。激发学生独立思考和创新意识,切实提高教学质量。废除"注入式"、"满堂灌",挣脱阻碍学生主动发展的束缚,构建充满生命活力的“主动发展型”新模式,还学生主体参与的权力,实现学生主体、主动,创新可持续发展。 ⑶、继续树立学生是学习的主人,教师是学生学习的组织者、引导者、合作者和促进者的思想观念,以平等、宽容的态度对待学生,在沟通和“对话”中实现师生的共同发展,努力建立互动的师生关系。。 ⑷、强化基础学科和学科基础知识,在注重基础知识和

【数学竞赛各阶段书籍推荐】

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》 《数学选修4-5:不等式选讲》 《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习专用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星) 1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社 2、《数学竞赛培优教程(一试)》浙江大学出版社 3、命题人讲座《数列与数学归纳法》单樽 4、《数列与数学归纳法》(小丛书第二版,冯志刚) 5、《数列与归纳法》浙江大学出版社韦吉珠 6、《解析几何的技巧》单樽(建议买华东师大出版的版本) 7、《概率与期望》单樽 8、《同中学生谈排列组合》苏淳 9、《函数与函数方程》奥林匹克小丛书第二版 10、《三角函数》奥林匹克小丛书第二版 11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 12、《圆锥曲线的几何性质》 13、《解析几何》浙江大学出版社 二试 平几 1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星)

2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》 不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神 10、《重要不等式》中科大出版社 11、奥林匹克小丛书《柯西不等式与平均值不等式》 数论 (9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题) 12、奥林匹克小丛书初中版《整除,同余与不定方程》 13、奥林匹克小丛书《数论》 14、命题人讲座《初等数论》冯志刚 组合 15、奥林匹克小丛书第二版《组合数学》 16、奥林匹克小丛书第二版《组合几何》 17、命题人讲座刘培杰《组合问题》 18、《构造法解题》余红兵 19、《从特殊性看问题》中科大出版社 20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦 《近代欧式几何学》 《近代的三角形的几何学》 《不等式的秘密》范建熊、隋振林 《奥赛经典:奥林匹克数学中的数论问题》沈文选 《奥赛经典:数学奥林匹克高级教程》叶军 《初等数论难题集》 命题人讲座《图论》 奥林匹克小丛书第二版《图论》 《走向IMO》

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

高中数学竞赛辅导讲义第十四章 极限与导数

第十四章 极限与导数 一、 基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞ →+∞→,另外)(lim 0 x f x x + →=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类 似地)(lim 0 x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)± g(x)]=a ±b, 0 lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+ Δx)-f(x 0)).若x y x ??→? lim 存在,则称f(x)在x 0处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导 的必要条件。若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。

2020初中数学培优补差工作计划范文

很快又开学了,培优补差工作是一个学校教学工作的重中之重,接下来为你带来2020初中数学培优补差范文,希望对你有帮助。 2020初中数学培优补差工作计划范文篇一 新世纪呼唤新课改,当前,小学数学教学正处在一个大的变革之中,作为教师,我们要努力探讨如何在数学教学中进行素质教育和培养学生的创新精神,如何为学生的终身发展打好基础。为了全面提高本班学生学习的主动性和积极性,实行以点带面,全面提高、通过培优补差使学生转变观念,认真对待学习,发展智力,陶冶情操,真正做到教师动起来,学生活跃起来、并且长期坚持下去,真正让学生树立起学习的信心和勇气、克服自卑的心里、在学生中形成“赶、帮、超”浓厚的学习兴趣,使每个学生学有所长,学有所用、因此,特制订本班2020初中数学培优补差工作计划范文。 一、工作目标 1、加强对培优补差工作的常规管理和检查。 2、通过培优补差,使学生能充分认识到学习的重要性。 3、认真挑选好培优补差的对象。

4、认真做好学生的辅导工作,每周至少2次的辅导,辅导要有针对性和可行性。 二、具体内容 1、培优内容思维能力方面的训练。 2、补差内容义务教育课程标准试验教科书三年级上册。 三、培优补差对象和形式 对象本班优等生和后进生 形式1、利用课堂时间相机辅导2、利用学校午休时间3、老师、家长相配合 四、具体措施 1、利用课堂时间相机辅导 在课堂上多提问他们,对优等生,多提问一些有针对性、启发性的问题;对后进生多提问一些基础知识,促使他们不断进步。当后进生作业出现较多错误时,教师要当面批改,指出错误,耐心指导。当少数后进生因基础差而难以跟班听课

时,我们应采取系统辅导的方法,以新带旧,以旧促新,帮助后进生弥补知识上的缺陷,发展他们的智力,增强他们学好语文的信心。另外,在课堂上对后进生多提问,发现他们的优点和成绩就及时表扬,以此来提高他们的学习成绩。 2、课余时间个别辅导 在限定的课堂教学时间内,是很难满足和适应不同学生的需要的。因此,组织课外辅导,作为课堂教学的补充是很有必要的。对于优等生,我打算制定课外资料让他们阅读,布置要求较高的作业让他们独立思考,指定他们对其他学生进行辅导,使他们的知识扩大到更大的领域,技能、技巧达到更高的水平,使他们永远好学上进,聪明才智得到更好地发挥。同时,在每周的星期二、四午休活动定期对后进生进行辅导,对当天所学的基础知识进行巩固,对掌握特别差的`学生,进行个别辅导。平时,在后进生之间让他们开展一些比赛,比如看谁进步快、看谁作业得满分多、看谁成绩好等。 3、家长和老师相配合 我打算布置适当、适量的学习内容,让家长在家里对后进生进行协助辅导,老师定期到优等生和后进生家里进行家访,摸清他们在家的学习情况和作业情况。定期让优等生介绍他们的学习经验,让后进生总结自己的进步。 五、在培优补差中注意几点

高中数学竞赛资料-数论部分 (1)

初等数论简介 绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1. 请看下面的例子: (1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首届匈牙利 数学竞 赛第一题) (2) ①设n Z ∈,证明213 1n -是168的倍数。 ②具有什么性质的自然数n ,能使123n ++++ 能整除123n ??? ?(1956年上海首届数学竞赛第一题) (3) 证明:3 231 122 n n n + +-对于任何正整数n 都是整数,且用3除时余2。(1956年北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数 214 143 n n ++不可约简。(1956年首届国际数学奥林匹克竞赛第一题) (5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证: [][][][]()()()() 2 2 ,,,,,,,,,,a b c a b c a b b c c a a b b c c a =??(1972年美国首届奥林匹克数学竞赛第一题) 这些例子说明历来数论题在命题者心目中首当其冲。 2.再看以下统计数字: (1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。 (2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占10.8% 。 这说明:数论题在命题者心目中总是占有一定的分量。如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。 3.请看近年来国内外重大竞赛中出现的数论题: (1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( ) A 、 0 B 、1 C 、3 D 、无穷多 (2007全国初中联赛5) (2)已知,a b 都是正整数,试问关于x 的方程()2 1 02 x abx a b -++=是否有两个整数解? 如果有,请把它们求出来;如果没有,请给出证明。 (2007全国初中联赛12)

初中数学竞赛《排列与组合问题》练习题及答案 (10)

初中数学竞赛《排列与组合问题》练习题 1.世界杯足球赛每个小组共有四个队参加比赛,采用单循环赛制(即每两个队之间要进行一场比赛),每场比赛获胜的一方得3分,负的一方得0分,如果两队战平,那么双方各得1分,小组赛结束后,积分多的前两名从小组出线.如果积分相同,两队可以通过比净胜球或其他如抽签等方式决定谁是第二名,确保有两支队伍出线. (1)某队小组比赛后共得6分,是否一定从小组出线? (2)某队小组比赛后共得3分,能从小组出线吗? (3)某队小组比赛后共得2分,能从小组出线吗? (4)某队小组比赛后共得1分,有没有出线的可能? 【分析】(1)假设四个球队分别为A、B、C、D,如四个球队的比赛结果是A战胜了B,D,而B战胜了C,D,C战胜了A,D,D在3场比赛中都输了,可知不能出线,则知不一定从小组出线; (2)假如A在3场比赛中获得全胜,而B战胜了C,C战胜了D,战胜了B,这样,小组赛之后,A积9分,B、C、D都积3分,则可出线; (3)假如A队三战全胜,B、C、D之间的比赛都战平,则有出线的可能; (4)如果只得1分,说明他的3场比赛成绩是1平2负,而他负的两个球队的积分至少是3分,则可知必然被淘汰. 【解答】解:(1)不一定. 设四个球队分别为A、B、C、D, 如四个球队的比赛结果是A战胜了B,D, 而B战胜了C,D,C战胜了A,D,D在3场比赛中都输了, 这样,小组赛之后,ABC三个球队都得6分,D队积0分, 因此小组中的第三名积分是6分, ∴不能出线; (2)有可能出线. 如A在3场比赛中获得全胜,而B战胜了C,C战胜了D, D战胜了B,这样,小组赛之后,A积9分,B、C、D都积3分, 因此这个小组的第二名,一定是3分出线;

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

初一数学辅导计划

初一数学辅导计划 一、指导思想: 在新课程改革背景指导下,坚持学习先进的教育教学理念,坚持教为主导,学为主体,坚持学生为中心地位不动摇,使人人学会能用得上的数学,切实提高学生的成绩。 二、主要措施: 1、摸清学生底子,深入学生,深入教学,通过作业、课堂、试卷等切实摸清学生的 功底,并能将学生进行分类,分组,做到有的放矢。 2、改革课堂教学模式,提高学生的参与性,提高学生学习数学的兴趣,构建高效课堂。 3、充分利用小组,采取合作学习的方式,消除学生心中的疑惑和自卑心理。 4、认真批改学生作业,及时纠正学生作业中出现的错误,尽量做到面批。 5、利用自习辅导时间,老师争取集中抽查的方式,发现学生的不足,及时辅导纠正。 6、采用定时间:每天下午自习,集中进行差生辅导。 7、注重学习后的抽查,给差生吃“小灶”,对出现的错误及时纠正辅导。 8、建立错题集,提高学生的警惕性,避免犯同样的错误。 9、定时召开学习经验交流会,让他们谈感想、体会、学习心得,畅所欲言,相互学习,取长补短。 10、教师要立足于实际,多表扬学生,注意发现学生的闪光点,采用多表扬、少批评 或不批评的措施,来提高学生学习的自信心和兴趣。 11、在辅导过程中,要根据成绩、基础、学习态度和其他非智力因素,将学生分为上、中、下三等,予以区别对待,采取相应的措施力促他们得以相应提高。 三、主要时间安排: 1、第一周:结合上学期期末考试成绩,给学生分类,制定本学期辅导计划。 2、第二——八周,日常活动。 3、第九、十周,期中考试专题辅导及试卷分析讲评。 4、第十一——十八周,调整辅导策略。

5、第十九、二十周,总结辅导实施情况,学生学习经验交流。 一、学情分析 七年级是初中学习过程中基础和入门,学好七年级数学能为以后的学习做铺垫。现在班上的学生基础较差,但也有优秀的学生。他们都很热爱学习,只要端正学生们的学习态度,大家共同努力,让学生掌握学习数学的方法和技巧,激发学生学习数学的兴趣,这样才能极大提高学生的学习成绩。 二、教学辅导内容和目标 七年级数学辅导内容和目标 第五章、相交线与平行线 本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行。本章重点:垂线的概念和平行线的判定与性质。本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。第六章、平面直角坐标系 本章主要内容是平面直角坐标系及其简单的应用。本章重点:平面直角坐标系的理解与建立及点的坐标的确定。本章难点:平面直角坐标系中坐标及点的位置的确定。 第七章、三角形 本章主要学习与三角形有关的线段、角及多边形的内角和等内容。本章重点:三角形有关线段、角及多边形的内角和的性质与应用。本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。 第八章、二元一次方程组 本章主要学习二元一次议程组及其解的概念和解法与应用。本章重点:二元一次方程组的解法及实际应用。本章难点:列二元一次方程组解决实际问题第九章、不等式与不等式组 本章主要内容是一元一次不等式组的解法及简单应用。本章重点:不等式的基本性质与一元一次不等式组的解法与简单应用。本章难点:不等式基本性质的理解与应用、列一元一次不等式组解决简单的实际问题。 第十章、实数 本章主要内容是学习了平方根、立方根及实数的相关概念。本章重难点:是会运用平方根立方根进行简单化简计算。 三、辅导教学的具体措施

(完整版)小学奥数中的数论问题

小学奥数中的数论问题 在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。 一、小学数论究包括的主要内容 我们小学所学习到的数论内容主要包含以下几类: 整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容) 余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小) (2)同余的性质和运用 奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理 一、两个自然数分别除以它们的最大公约数,所得的商互质。 二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。 (2)约数个数决定法则(小升初常考内容) 整数及分数的分解与分拆:这一部分在难度较高竞赛中常

出现,属于较难的题型。二、数论部分在考试题型中的地位 在整个数学领域,数论被当之无愧的誉为“数学皇后”。翻开任何一本数学辅导书,数论的题型都占据了显著的位置。在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。 出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。三、孩子在学习数论部分常常会遇到的问题 数学课本上的数论简单,竞赛和小升初考试的数论不简单。 有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数? 这道题就经常在孩子们平时的作业里和单元测试里出现。可是小升初考题里则是:例2:求3600有多少个约数? 很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划

初中数学竞赛专题复习第四篇组合第25章染色问题试题人教版

第25章 染色问题 25.1.1★★圆周上等间距地分布着27个点,它们被分别染为黑色或白色.今知其中任何2个黑点之间 至少间隔2个点.证明:从中可以找到3个白点,它们形成等边三角形的3个顶点. 解析 我们将27个点依次编号,易知它们一共可以形成9个正三角形 (1,10,19),(2,11,20),…,(9,18,27). 由染色规则知,其中至多有9个黑点. 如果黑点不多于8个,则其中必有一个正三角形的所有顶点全为白色.如果黑点恰有9个,那么由 染色规则知,它们只能是一黑两白相间排列,其中也一定有一个正三角形的所有顶点全为白色. 25.1.2★★某班有50位学生,男女各占一半,他们围成一圈席地而坐开营火晚会.求证:必能找到一位两旁都是女生的学生. 解析 将50个座位相间地涂成黑白两色,假设不论如何围坐都找不到一位两旁都是女生的学生,那么25个涂有黑色记号的座位至多坐12个女生.否则一定存在两相邻的涂有黑色标记的座位,其上面都坐着女生,其间坐着的那一个学生与假设导致矛盾.同理,25个涂有白色标记的座位至多只能坐12个女生,因此全部入座的女生不超过24人,与题设相矛盾.故命题得证. 25.1.3★在线段AB 的两个端点,一个标以红色,一个标以蓝色,在线段中间插入n 个分点,在各个分 点上随意地标上红色或蓝色,这样就把原线段分为1n +个不重叠的小线段,这些小线段的两端颜色不同者叫做标准线段.求证:标准线段的个数是奇数. 设最后一个标准线段为1k k A A +.若0k A A =,则仅有一个标准线段,命题显然成立;若n k A A =,由 A 、 B 不同色,则0A 必与k A 同色,不妨设0A 与k A 均为红色,那么在0A 和k A 之间若有一红 蓝的标准 线段,必有一蓝红的标准线段与之对应;否则k A 不能为红色,所以在0A 和k A 之间,红蓝和 蓝红的标准线段就成对出现,即0A 和k A 之间的标准线段的个数是偶数,加上最后一个标准 线段1k k A A +,所以,A 和B 之间的标准线段的个数是奇数. 25.1.4★★能否用面积为14?的一些长方块将1010?的棋盘覆盖? 解析 如图中标上1~4这些数,显然每个1×4的长方块各占1、2、3、4一个,于是如果可以覆盖,则1、2、3、4应一样多,但1有25个,2则有26个,矛盾!因此不能覆盖.

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

初中数学特长生、后进生辅导计划

九年级数学辅导计划 付连敏 一、特长生辅导计划: (一)、学生情况分析 每个班中有部分学生对数学科比较感兴趣,学习成绩也较为突出,除了掌握课本的内容外,有着进一步学习其他数学知识的愿望。他们的手中虽然有一些相关的数学材料,但不会灵活加以运用,发挥不出其应有的功效。 (二)、辅导对象 每个班中数学成绩前十名的学生。 (三)、主要辅导内容 1.课本中知识的拓宽、推广和应用。 2.学习方法、技巧、规律归纳。 3.数学竞赛相关内容的辅导与讲解。 4.数学参考资料的选择与使用。 5.探究、操作性问题的解答方法介绍。 (四)、辅导措施 1.认真备课,准备好每次辅导时所需要的相关内容材料。 2.对参加辅导的学生严格要求,发现问题,及时解决。 3.保证做到时间、地点、人员、内容四落实。 4.每次辅导都保证活动的实效,不搞形式主义。 (五)、辅导目标 1.发挥数学特长,培养数学兴趣。 2.增强应用数学意识,提高综合运用数学知识能力。 3.中考尽可能在各科中排在前列。

二、临线生辅导计划 一、学生情况分析 在班级中,有部分学生学习成绩徘徊在及格线和优秀线左右,对数学学习兴趣不高,成绩忽上忽下,又有可能努努力就达到及格线和优秀线,是提高成绩的关键所在。 二、辅导对象 班级中成绩后处在及格线和优秀线左右的学生。 三、主要辅导内容 1.进行学习方法介绍。 2.课本知识的复习与归纳。 3.疑难问题解答、点拨。 4、课上、课下的重点关注。 四、辅导措施 1.辅导内容人人过关,过完关后还要进行及时的再回顾。 2.对学生严格要求,辅导中发现问题要及时解决。 3.每次辅导都认真组织,做到时间、地点、人员、内容四落实,保证活动的实效。 五、辅导目标 1.提高学生的思想觉悟,培养数学兴趣,养成良好的学习习惯。 2.学好数学基础知识,并能够不断取得进步,缩短与优生的差距。 3、争取在中考中取得好成绩。 三、学困生辅导计划 一、学生情况分析 在班级中,有少数学生学习成绩较差,对数学不感兴趣,不求

高中数学竞赛数论

高中数学竞赛 数论 剩余类与剩余系 1.剩余类的定义与性质 (1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。K 0,K 1,…,K m-1为模m 的全部剩余类. (2)性质(ⅰ)i m i K Z 1 0-≤≤=Y 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里. (ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ?a ≡b(modm). 2.剩余系的定义与性质 (1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,2 1 ,,1,0,1,,121,21--+----m m m ΛΛ;当m 为偶数时,12 ,,1,0,1,,12,2--+-- m m m ΛΛ或2,,1,0,1,,12m m ΛΛ-+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系?两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系. 证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!

相关主题