搜档网
当前位置:搜档网 › 超分子化学技术及其应用进展

超分子化学技术及其应用进展

超分子化学技术及其应用进展
超分子化学技术及其应用进展

超分子化学技术及其应用进展

20世纪80年代末, 诺贝尔化学奖获得者J.M.Lehn 创造性地提出了超分子化学的概念,它的提出使化学从分子层次扩展到超分子层次,这种分子间相互作用形成的超分子组装体,带给人们许多认识上的飞跃,认识到分子已不再是保持物性的最小单位。功能的最小基本单位不是分子而是超分子,功能产生于超分子组装体之中,这种认识带来了飞跃。据估计,现在已有40 %的化学家要用超分子的知识来解决所面临的科学问题,超分子科学已成为21世纪新思想、新概念和高技术的一个主要源头[1]。

所谓超分子化学[2],是基于分子间的弱相互作用(或称次级键) 而形成复杂而有序且有特定功能分子聚集体的化学。不同于基于原子构建分子的传统分子化学,超分子化学是分子以上层次的化学,它主要研究两个或多个分子通过分子之间的非共价键弱相互作用,如氢键、范德华力、偶极/ 偶极相互作用、亲水/ 疏水相互作用以及它们之间的协同作用而生成的分子聚集体的结构与功能。

一、超分子化合物的分类[3]

1.1杂多酸类超分子化合物

杂多酸是一类金属一氧簇合物,一般呈笼型结构,是一类优良的受体分子,它可以与无机分子、离子等底物结合形成超分子化合物。作为一类新型电、磁、非线性光学材料极具开发价值,有关新型Keg-gin和Dawson 型结构的多酸超分子化合物的合成及功能开发日益受到研究者的关注。

1.2 多胺类超分子化合物

由于二氧四胺体系可有效地稳定如Cu ( Ⅱ) 和Ni ( Ⅱ) 等过渡金属离子的高价氧化态,若二氧四胺与荧光基团相连,则光敏物质荧光的猝灭或增强就与相连的二氧四胺配合物与光敏物质间是否发生电子转移密切相关,即通过金属离子可以调节荧光的猝灭或开启,起到光开关的作用。大环冠醚由于其自组装性能及分子识别能力而引起人们广泛的重视。近来,冠醚又成为在超分子体系中用于建构主体分子的一种重要的建造单元。李晖等利用了冠醚分子的分子识别能力及蒽

醌分子的光敏性,设计合成了一种新的氮杂冠醚取代蒽醌分子,并以该分子作为主体分子,以稀土离子作为客体构成超分子体系,并研究了超分子体系内的能量转移过程。

1.3卟啉类超分子化合物

卟啉及其金属配合物、类似物的超分子功能已应用于生物相关物质分析,展示了更加诱人的前景,并将推动超分子络合物在分析化学中应用的深入开展。

1.4树状超分子化合物

树状大分子(dendrimer) 是20 世纪80 年代中期出现的一类较新的合成高分子。薄志山等首次合成以阴离子卟啉作为树状分子的核,树状阳离子为外层,基于卟啉阴离子与树状阳离子之间静电作用力来组装树状超分子复合物。

1.5液晶类超分子化合物

侧链液晶聚合物具有小分子液晶和高分子材料的双重特性,晏华在《超分子液晶》中详细讨论了超分子和液晶的内在联系,探讨了超分子液晶分子工程和超分子液晶热力学。李敏等从分子设计的角度出发,合成了以对硝基偶氮苯为介晶基团的丙烯酸类液晶聚合物,液晶基元上作为电子受体的硝基和作为电子给体的烷氧基可与苯环、N N之间形成一个离域的π电子体系。初步的研究表明:电晕极化制备的该类聚合物的取向膜具有二阶非线性光学性质。

1.6酞菁类超分子化合物

田宏健等合成了带负电荷取代基的中位四(4′- 磺酸基苯基) 卟啉及锌络合物和带正电荷取代基的2 ,9 ,16 ,23四[ (4′- N ,N ,N三甲基) 苯氧基]酞菁季铵碘盐及锌络合物,并用Job 氏光度滴定的方法确定了它们的组成,为面对面的杂二聚体或三明治式的杂三聚体超分子排列。发现在超分子体系中卟啉与酞菁能互相猝灭各自的荧光,用纳秒级的激光闪光光解技术观察到卟啉的正离子在600~650 nm和酞菁负离子自由基在550~600 nm的瞬态吸收光谱。结果表明在超分子体系中存在分子间的光诱导电子转移过程。

二、超分子化学的理论基础[4]

超分子化学主要研究超分子体系中弱相互作用、基元结构的设计和合成、体系的分子识别和组装、体系组装体的结构和功能及超分子材料和器件等。超分子化合物是由主体分子和1 个或多个客体分子之间通过非价键作用而形成的复杂而有组织的化学体系。主体通常是富电子的分子,可作为电子给体( D ) ,如碱、阴离子、亲核体等。而客体是缺电子的分子,可作为电子受体(A),如酸、阳离子、亲电体等。超分子化学和配位化学同属于授受体化学,超分子体系中主体和客体之间不是经典的配位键,而是分子间的弱相互作用,大约为共价键的5 % ~ 1 0 %。因此可认为,超分子化学是配位化学概念的扩展。

超分子体系的微观单元是由若干乃至许许多多个不同化合物的分子或离子或其他可单独存在的具有一定化学性质的微粒聚集而成。聚集数可确定或不确定,这与一分子中原子个数严格确定具有本质区别。超分子形成不必输入高能量,不必破坏原来分子结构及价健,主客体间无强化学键,这就要求主客体之间应有高度的匹配性和适应性,不仅要求分子在空间几何构型和电荷,甚至亲疏水性的互相适应,还要求在对称性和能量上匹配。这种高度的选择性导致了超分子形成的高度识别能力。如果客体分子有所缺陷,就无法与主体形成超分子体系。

由此可见,从简单分子的识别组装到复杂的生命超分子体系,尽管超分子体系千差万别,功能各异,但形成基础是相同的,这就是分子间作用力的协同和空间的互补。这些作用力的实质是永久多极矩、瞬间多极矩、诱导多极矩三者之间的相互作用,相应的能量项可分别称为库仑能、色散能和诱导能。这些弱相互作用还包括疏水亲脂作用力、氢键力、3作用的协同性、方向性和选择性决定着分子与位点的识别。经过精心设计的人工超分子体系也可具备分子识别、能量转换、选择催化及物质传输等功能,其中分子识别功能是其他超分子功能的基础。三、超分子化学的应用

超分子以其独特的分子识别功能在日常生产与生活中得到广泛应用,主要表现在以下几个方面:

3.1、超分子化学在高科技涂料中的应用[2]

2003 年和2004 年欧洲涂料会议上报道的灵巧或响应性是指对外界的刺激

信息(如温度、应力、光、电或磁场等) 作出有选择性的响应。非共价作用力相对于共价键是弱的,这使其具有动态力学特征,蕴藏着丰富的信息内容,这种结构的动态可逆特点,使其对外部环境的刺激具有独特的响应性,呈现动态功能材料的特点。目前报道的主要是以配位键和氢键形成的超分子组装体在涂料中应用的可能。

配位键超分子组装体系是接到聚合物键上的三联吡啶配位体与金属离子形成的超分子组装体。三联吡啶是已知的能与多种金属(Fe ,Zn ,Cu ,Ni ,Co ,Cd 等) 生成配位化合物的配位体,用作制备含三联吡啶的聚合物的起始化合物1和2 ,近期文献报道此起始物已可大规模合成,以及进一步制备含三联吡啶的聚合物。此三元共聚物的特点是它可以作为常规聚合物进行加工与应用,同时还保有超分子非共价作用的潜在转换器( dormant suitch) 。U.S.Schubert称非共价反应与常规的热或UV交联相结合,可以导致一类新的薄膜,它具有可控黏度和循环的可能性,或者是通向多层系统(multi - layer systems) 的新途径。此例中的非共价键(如配位键或离子反应等) ,已经可以在低温下于水、溶液、或100 %纯度体系(包括粉末) 中形成。构成一种部分交联的材料,具有可调控黏度特性,直接由非共价交联单元的数目、配置与性质来调控。这种联结仍可转换与全循环,提供了具有优异可加工性的。

利用氢键非共价相互作用将相对比较简单的分子亚单元组装成二维或三维长程有序的超分子聚集体是设计新颖功能材料的一条新途径。由于弱相互作用具有动态可逆的特点,有望对外部环境刺激具有独特的响应性,呈现动态功能材料的特点。22氨基嘧啶酮较容易获得,它可由烷基酰基乙酸乙酯与胍合成,再与烷基二异氰酸酯反应可生成2 -脲基- 4 - 嘧啶酮,其分子间由四重氢键形成线性超分子聚合物这种线性超分子聚合物的溶液粘性具有很大的温度依赖性,当温度升高时,使连接在两个不同链上的脲基嘧啶酮之间的氢键强度先是变弱直至最后断开,因此在较高温度时材料表出现单体的性质,粘性降低,容易流动与使用。

3.2、超分子化学在手性药物识别中的应用[5]

随着手性药物的不断应用,手性药物的选择也成为一个热点课题。众所周知,药物的手性不同,进入体内后所产生的药理、毒理和药代动力学可能产生发生很

大偏差,甚至会出现相反特征。因此,选择一种合适的手性药物分离方法非常重要。传统的手性拆分方法有:手工挑选法,播种法,动力学方法,化学法,生物化学法等,但这些方法都因为分离效果较差,耗时长,自动化程度低,成本高而难以满足实际生产的需要。自确立超分子概念,创建和发展了主/客化学理论,发现并合成了冠醚分子,超分子以其特殊的结构和高选择性,迅速应用到手性化合物的识别与分离,显示出不可替代的优越性。

超分子的这种应用主要体现在与各种色谱连用上,通过对应体和超分子作用后的色谱行为差异,来进行分离。例如,毛细管电泳色谱(CE)的应用。李晓海等用CE的方法测定了一叶萩碱的生物样品对映体含量,得出了L型优先吸收,并优先在肝脏代谢,D型优先排泄的结论,显示出比HPLC法快速、准确、分离效果好的优点。反式曲马朵Ⅰ相代谢产物(+)-去甲基曲马多为活性代谢物,(-)型无活性。研究者用磺丁基-β-CD为添加剂,测定了大鼠生物样品中对应体含量。

3.3、超分子化学在油田化学中的应用[1]

在油田化学中主要利用的是超分子的疏水作用、配位作用、氢键作用和静电作用。疏水缔合水溶性聚合物通过疏水缔合作用形成暂时的三维立体网络结构。疏水缔合聚合物溶液的表观粘度由本体粘度和结构粘度两部分组成,当聚合物浓度高于某一临界缔合浓度后,大分子链通过疏水缔合作用以及静电、氢链或范德华力作用聚焦,形成以分子间缔合为主的超分子结构——动态物理交联网络,流体力学体积增大,溶液结构粘度增加使其表观粘度大幅度升高。这种结构的形成受外界条件的影响,如温度、矿化度和剪切速率等。因优良的增粘、抗温、抗盐和剪切稀释性能而用于聚合物驱油剂的研究。除用做驱油剂之外,还可用于流体输送的减阻剂、钻井液与完井液添加剂、阻垢分散剂、油田堵水剂等。

徐赋海等对超分子驱油剂WMM - 100 的性能进行了实验室研究。由于超分子WMM - 100中阳离子酞菁铜的分子环上有不定域的大共轭体系,环上未曾和氢结合的氮原子可以接受两个质子,形成正二价离子;已和氢结合的氮原子可以给出两个质子,与正价的金属铜离子形成配合物。这种分子结构的驱油剂与带负电的岩石表面有较强的超分子化学作用;而且分子之间可以通过共享一个或多个苯环聚集起来吸附在岩石表面形成超共轭体系。实验结果表明,该驱油剂在多孔介

质中有较大的附加流动阻力。

根据大分子之间的复合原理,两种或两种以上的大分子在水溶液中可以通过氢键、库仑力、电荷转移等作用形成超分子复合物,从而显示出不同于单一体系的特征。聚乙烯吡咯烷酮(PVP)是一种水溶性很好的内酰胺,具有许多独特的物理化学性质,且与许多聚合物都有良好的相容性,并能改善体系的性质。Maltesh 等曾用荧光的方法研究了芘修饰过的HPAM 与PVP 混合体系的特性,证明在HPAM 浓度较高时,PVP 与HPAM之间是以氢键作用相结合,而杨延莲等的光谱研究表明两者之间通过静电力形成超分子复合物。

3.4、超分子化合物作为分子器件方面的研究[6]

分子器件是一种由分子元件组装的体系(即超分子结构),它被设计成为在电子、离子或光子作用下能完成特定功能的体系。刘祁涛用对苯二甲酸terph为配体,合成了[Cu2(bpy)2(terph)]Cl2·4H2O晶体,其中bpy为2,2′联吡啶。应用苯三甲酸(TMA)为配体可以合成[Cu3(TMA)(H2O)3]n配位超分子晶体,为由配体超分子的途径制造纳米级的孔材料、实现纳米反应器的设想提供了可能。8-羟基喹啉、邻菲咯啉的许多金属配合物都具有荧光,且配合物稳定。把8-羟基喹啉或邻菲咯啉引入大环,由于两者都具有独立的配位功能,可以形成稳定的超分子化合物,并进一步发展为光化学器件。

另外,超分子化学在压电化学传感器、化学药物研究、超分子催化及模拟酶的分析等多方面均有广泛应用。

目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究将更加紧密与各化学分支相结合。可以预见,作为超分子化学起源的主客体化学将与有机合成化学、配位化学和生物化学互相促进,为生命科学、能源科学等共同发展做出巨大贡献。

参考文献

[1] 胡忠前,马喜平.超分子化学及其在油田化学中的应用.精细石油化工进

展,2006.7(9):15-19

[2] 苏慈生. 超分子化学引领高科技涂料应用. 涂料工业,2004 ,34(9):36-39

[3] 李文林,李梅兰.超分子化学的现状及进展.广东化工,2009,9(36):80-81

[4] 夏琳,邱桂学.化学科学的研究新领域---超分子化学. 化学推进剂与高分子

材料,2007,5(1):33-34

[5] 王伽伯,肖小河,赵燕玲等.超分子化学及其在手性药物识别中的应用.中国

新药杂志,2005,14(1):29

[6] 张中强,涂华民,葛旭升.超分子化学的研究和进展. 河北师范大学学

报,2006,30(4):456

超分子化学综述

超分子化学期末论文(设计)题目:超分子化学简介及应用 学院:化学与化工学院 专业:材料化学 班级:材化101 班 学号: 1 0 0 8 1 1 0 0 2 4 学生姓名:朱清元 指导教师:倪新龙 2013年12月10日

贵州大学本科毕业论文(设计) 诚信责任书 本人郑重声明:本人所呈交的毕业论文(设计),是在导师的指导下独立进行研究所完成。毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。 特此声明。 论文(设计)作者签名: 日期:

目录 摘要: (1) 关键字: (1) Abstract: (1) Keywords: (1) 第一章.前言 (1) 第二章.超分子化学的理论基础 (2) 第三章.超分子化合物的分类 (2) 3.1杂多酸类超分子化合物 (2) 3.2 多胺类超分子化合物 (3) 3.3 卟啉类超分子化合物 (3) 3.4 树状超分子化合物 (3) 3.5 液晶类超分子化合物 (3) 3.6 酞菁类超分子化合物 (4) 第四章.超分子化合物的特性 (4) 4.1 超分子的自组装 (4) 4.2 超分子的自组织 (5) 4.3 超分子的自复制 (5) 第五章.超分子化学的应用 (6) 5.1、在高科技涂料中的应用 (6) 5.2、在手性药物识别中的应用 (6) 5.3、在油田化学中的应用[1] (7) 5. 4、超分子化合物作为分子器件方面的研究 (7) 5. 5 超分子化合物在色谱和光谱上的应用 (7) 5. 6 超分子催化及模拟酶的分析应用 (8) 5. 7 在分析化学上的应用 (8) 第六章.结语 (8) 第七章.文献资料 (9)

高分子化学期末重点

8. 等摩尔的乙二醇和对苯二甲酸在280℃下封管内进行缩聚,平衡常数K=4,求最终n X 。另在排除副产 物水的条件下缩聚,欲得 100=n X ,问体系中残留水分有多少? 解: 3111 =+=-= K p X n L m ol n n K pn K p X w w w n /10*410011 4-==≈=-= 9. 等摩尔二元醇和二元酸缩聚,另加醋酸1.5%,p=0.995或0.999时聚酯的聚合度多少? 解:假设二元醇与二元酸的摩尔数各为1mol ,则醋酸的摩尔数为0.015mol 。N a =2mol ,N b =2mol , 015.0'=b N mol 985.0015 .0*222 2, =+= += b b a N N N r 当p=0.995时, 88.79995 .0*985.0*2985.01985 .01211=-++=-++= rp r r X n 当p=0.999时, 98.116999 .0*985.0*2985.01985 .01211=-++=-++= rp r r X n 13. 邻苯二甲酸酐与甘油或季戊四醇缩聚,两种基团数相等,试求: a. 平均官能度 b. 按Carothers 法求凝胶点 c. 按统计法求凝胶点 解:a 、平均官能度: 1)甘油: 3223 2.432 f ?+?= =+ 2)季戊四醇: 2241 2.6721 f ?+?==+ b 、 Carothers 法: 1)甘油: 833.04 .222=== f p c 2)季戊四醇: 749.067 .222=== f p c c 、Flory 统计法:

1)甘油: 1,1,703.0) 2([1 2 /1===-+= ρρr f r r p c 2)季戊四醇: 1,1,577.0)2([1 2 /1===-+= ρρr f r r p c 2. 下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。 CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2 答:CH 2=CHCl :适合自由基聚合,Cl 原子的诱导效应是吸电子基团,但共轭效应却有供电性,两者相抵后,电子效应微弱。 CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。 CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团,将使双键π电子云密度降低,有利于阴离子的进攻,对自由基有共轭稳定作用。 CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。 CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱,难以进行自、阳、阴三种聚合,用自由基聚合只能得无定型蜡状物低、分子量,用阴离子聚合只能得到低分子量油状物。 CH 2=C(CH 3)2 :阳离子聚合,CH 3 是供电子基团,与双键有超共轭。 CH 2=CHC 6H 5:三种机理均可,共轭体系π电子容易极化和流力。 CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小,F 体积小使四取缔啊仍聚合。 CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ),兼有共轭效应。 CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。 3. 下列单体能否进行自由基聚合,并说明原因。 CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3 CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl :不能,对称结构。 CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。 CH 3CH=CHCH 3:不能,结构对称。 CH 2=CHOCOCH 3:醋酸乙烯酯,能,吸电子基团。 CH 2=C(CH 3)COOCH 3:甲基丙烯酸甲酯,能。 CH 3CH=CHCOOCH 3 :不能,1,2双取代,位阻效应。 CF 2=CFCl :能,结构不对称,F 原子小。 6. 苯乙烯溶液浓度0.20 mol ?L -1, 过氧类引发剂浓度为4.0?10-3mol ?L -1, 在60℃下聚合,如引发剂半衰期44h, 引发剂效率f =0.80,k p =145 L ?(mol ?s)-1,k t = 7.0?107 L ?(mol ?s)-1, 欲达到50%转化率,需多长时间?

高分子化学与物理发展前景

高分子化学与物理 星期五, 02/26/2010 - 05:25 — wangting 高分子化学与物理 第一、专业介绍 高分子化学与物理是以高分子材料为基本研究对象的交叉学科,是高分子科学的基础。与化学的其它二级学科相比,它与现代物理学有着更加深刻的连带关系,其发展更加依赖于化学和物理学的进步,同时也对这两大轴心科学的进步产生深刻影响。高分子化学与物理研究的主要目的,是通过研究高分子材料的结构及化学、物理性质,设计、创制出高性能的高分子材料和制品。近年来,工业发展对新材料的大量需求和现代科技尤其纳米科技的飞速进展,从两方面极大地推动了该研究领域的深入发展。具有高强度和耐高温、强辐射等恶劣环境条件的特种高分子材料,具有特殊光、电、磁性能以及高效率能量传递和转化性能的高分子材料,具有对化学和生物多种刺激发生智能反应的高分子材料,环境友好高分子材料,医药高分子材料等不断涌现,为高分子化学与物理研究提出了全新的课题和广阔的研究空间。 第二、培养方案 各研究生招生单位的研究方向有所不同,在此,以北京大学为例: 1、研究方向 01.高分子可控合成与材料制备 02.高分子溶液及凝聚态物理

03.特种与高性能高分子材料 04.生物医用与环境友好高分子材料 05.光电功能高分子材料及相关器件 2、培养目标 掌握马克思主义、毛泽东思想的基本原理,坚持四项基本原则,热爱祖国,遵纪守法,品德良好,具备严谨的科学态度和优良学风,树立愿为社会主义现代化建设做贡献的思想。 具备良好的化学基础知识和实验技能训练,熟练的外语基础,初具独立开展科学研究的能力,能胜任本学科有关教学和解决实际问题。 3、硕士研究生入学考试科目 1)101思想政治理论 2 )201英语一 3 )607综合化学I (无机化学、有机化学) 4 )813综合化学II (分析化学和仪分、物化和结构) (各研究生招生单位的研究方向有所不同,以上以北京大学为例) 第三、推荐院校 全国高校中实力较强招生院校: 吉林大学、复旦大学、南开大学、北京大学、中山大学、南京大学、浙江大学、四川大学、上海交通大学、华南理工大学、中国科学技术大学、北京化工大学、清华大学、武汉大学、兰州大学……

生活中的超分子化学

《超分子化学的应用及前景》 学号:1630140051学院:初等教育学院 姓名:付金环

到20世纪末21世纪初,30%~40%的化学家将要运用包括分子识别在内的超分子化学的某些知识去解决所面临的问题。--------题记上世纪八十年代末诺贝尔化学奖获得者J.M.Lehn创造性的提出了超分子化学的概念,它的提出使化学从分子层次拓展到超分子层次,这种分子间相互作用形成的超分子组装体,是人类认识上的飞跃,更是化学领域的一大成就。从此以后,人们的认知水平提升了,认识到了分子已不再是保持物性的最小单位,化学界的功能的最小单位新秀超分子逐步登上历史舞台,分子作为最小单位的时代已随滚滚东流一同逝去,不复回环。功能产生于超分子组装体之中,此种认识带来的飞跃是人类历史上的一大步。据悉,如今已有百分之四十的化学家要用超分子化学的知识来解决自己所面临的化学问题。超分子化学已经成为当今时代新思想新概念和高技术的主要源头。“问渠那得清如许,为有源头活水来”,没错,当代社会的飞速发展离不开科技,科技是第一生产力,从国家事业到百姓生活,都与化学世界息息相关。接下来,让我们一起来了解一下超分子化学在生活中的应用及其前景。 首先来说说医药方面,人食五谷谁能不得病,所以医药类是最与人们息息相关的。超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药品是关系到广大人民群众生命安危与健康的特殊商品,考虑到储存、服用与携带的方便及制造成本等诸多因素,大部分药物都设计成固体剂型,而在药物的各种固体形态中,晶型药物由于稳定性、重现性及操作性等方面的优势而被优先选用.晶型药物包括了药物的多晶型、水合物、溶剂化物和盐类。药物活性分子通常因含有各种官能团而具有不同的生物活性.最新研究发现,这些官能团能够利用氢键或者其它非共价键作用而与其它有机分子通过分子间的识别作用生成超分子化合物,即药物共晶,从而有效改善药物本身的结晶性能、物化性质及药效,成为药物固体制剂的一个新选择被引入的有机分子,也称为共晶试剂,可以是辅料、维生素、矿物质、氨基酸及食品添加剂等。因此,对于一个给定的药物,可能生成数以百计的药物共晶,为剂型设计提供了更多的选择.此外,新的药物共晶可获得知识产权保护,延长原有药物的市场周期,具有广阔的应用前景。 不仅是医药方面,在其他方面超分子化学也是翘楚,由于能够模仿自然界已存在物质的许多特殊功能,形成器件,因此它的潜在应用价值已倍受人们青睐。超薄膜、纳米材料、高分子有机金属材料、非线性光学材料及高分子导电材料等已成为国内许多研究机构热点。此外,超分子化学在生物传感器、润滑材料、防腐蚀材料、膜材料、黏合剂及表面活性剂等方面也有很广泛的应用前景,目前,除了冠醚外,环糊精、环芳烃、索烃、旋环烃、级联大分子等作为新的超分子实体,也引起广泛关注。 于当下国际上超分子科学的研究开展得如火如荼之际,如发达国家和地区,如欧盟、美国和日本等都投入了大量的人力和物力进行超分子科学方面的研究与开发。在国家自然科学基金委、科技部、教育部、中国科学院等相关部门的大力支持下,我国的科学工作者较早地开展了超分-T-科学研究,并做出了一大批有特色的工作。在当下以经济和科技实际为基础的综合国力之间的较量的大环境下,我国必须重视科技,重视超分子化学的开发与运用,中国这只东方雄狮才能更好地屹立于世界之林。 接下来谈一谈超分子化学在油田开发中的应用。在油田化学中主要利用的是超分子的疏水作用、配位作用、氢键作用和静电作用。疏水缔合水溶性聚合物通过疏水缔合作用形成暂时的三维立体网络结构。疏水缔合聚合物溶液的表观粘度由本体粘度和结构粘度两部分组成,当聚合物浓度高于某一临界缔合浓度后,大分子链通过疏水缔合作用以及静电、氢链或范德华力作用聚焦,形成以分子间缔合为主的超分子结构——动态物理交联网络,流体力学体积增大,溶液结构粘度增加使其表观粘度大幅度升高。这种结构的形成受外界条件的影响,如温度、矿化度和剪切速率等。因优良的增粘、抗温、抗盐和剪切稀释性能而用于聚合物驱油剂的研究。除用做驱油剂之外,还可用于流体输送的减阻剂、钻井液与完井液添加剂、阻垢分

现代测试技术及应用学习课件【新版】

现代测试技术及应用作业学号2013010106 姓名刘浩峰 专业核技术及应用 提交作业时间2014 12 10

无损检测中的CT重建技术 1无损检测 1.1无损检测概述 无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。中国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。 无损检测缩写是NDT(或NDE,non-destructive examination),也叫无损探伤,是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术和设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查和测试。无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有射线检验(RT)、超声检测(UT)、磁粉检测(MT)、液体渗透检测(PT)、涡流检测(ECT)、声发射(AE)和超声波衍射时差法(TOFD)。 1、射线照相法(RT)是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损 检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。工作原理是射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。RT的定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。 2、超声波检测(UT)原理是通过超声波与试件相互作用,就反射、透射和散射的波进行研 究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。适用于金属、非金属和复合材料等多种试件的无损检测;可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;而且缺陷定位较准确,对面积型缺陷的检出率较高;灵敏度高,可检测试件内部尺寸很小的缺陷;并且检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。缺点是对具有复杂形状或不规则外形的试件进行超声检测有困难;并且缺陷的位置、取向和形状以及材质和晶粒度都对检测结果有一定影响,检测结果也无直接见证记录。 3、磁粉检测(MT)原理是铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表 面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米

最新高分子化学期末重点试题及答案

1、使自由基聚合反应速率最快的聚合方式是(C )。 A.热引发聚合 B.光聚合 C.光敏聚合 D. 热聚合 答案( C ) 2、在自由基聚合反应中,链自由基的( D )是过氧类引发剂引发剂效率降低 的主要原因 A.屏蔽效应 B.自加速效应 C.共轭效应 D.诱导效应 3、MMA(Q=0.74)与( C )最容易发生共聚 A. St(1.00 ) B. VC(0.044 ) C. AN ( 0.6 ) D. B( 2.39) 4、异戊二烯配位聚合理论上可制得( 6 )种立体规整聚合物。 A. 6 B. 4 C. 5 D.3 1、丁二烯配位聚合可制得(B )种立体规整聚合物。 A. 6 B. 4 C. 5 D.3 5、是阻聚剂并可用于测定引发反应速率的是( B ) A.对苯二酚 B.DPPH C.AIBN D.双酚A 3、丁二烯(e=-1.05)与(D )最容易发生交替共聚 A.苯乙烯(-0.8) B.氯乙烯(0.20) C.丙烯腈(0.6) D.马来酸酐(2.25) 4、不需要引发剂的聚合方法是(D )。 A.热引发聚合 B.光聚合 C.光敏聚合 D. 热聚合 5、常用于保护单体的试剂是( D ) A. BPO B.FeCl3 C.AIBN D. 对苯二酚 1、某一聚合反应,单体转化率随反应时间的延长而增加。它属于(连锁)聚合 反应。 2、BPO在高分子合成中是(引发剂)剂,对苯二酚加在单体中用作(阻聚剂)。 3、氧在低温时是(阻聚剂 )、在高温时是(引发剂)。 4、常用的逐步聚合反应方法有(熔融)缩聚、( 溶液) 缩聚、(界面 ) 缩聚。 5、链转移剂能使聚合物的分子量(降低 ) 7、梯形结构聚合物有较高的(热 )稳定性。 8、聚乙烯、聚苯乙烯、聚氯乙烯和聚丙烯的结构分别是(-[CH2CH2]n- )、(-[CH2CH(C6H5)]n- )、(-[CH2CHCl]n- )和(-[CH2CHCH3]n- )。 9、腈纶的化学名称是(聚丙烯腈)。 精品文档

超分子化学的应用及前景展望

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其

广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐药性小、生物相容性好、高疗效以及开发成本低、周期短、成功可能性大等诸多优点而备受关注,在抗肿瘤、抗炎镇痛、抗疟、抗菌、抗真菌、抗结核、抗病毒、抗癫痫、作为心血管和磁共振

超分子化学

超分子化学 一、超分子化学的概述 1973年,D.J.Cram报道了一系列具有光学活性的冠醚,可以识别伯胺盐形成的配合物;分子识别的出现为这一新的化学领域注入了强大的生命力,之后它进一步延伸到分子间相互识别和作用,并广泛扩展到其它领域,从此诞生了超分子化学。超分子化学的概念和术语是在1978年引入的,作为对前人工作的总结和发展。1987年,Nobel化学奖授予了C.J.Pederson、D.J.Cram和J.-M.Lehn,标志着超分子化学的发展进入了一个新的时代,超分子化学的重要意义也因此被人们更多的理解。[1] 超分子化学是关于若干化学物种通过分子间相互作用,包括氢键、主客体作用、疏水疏水作用、静电作用、堆积等作用结合在一起构筑的、具有高度复杂性和一定组织性的整体化学 超分子化学的定义可由下图所示 图一:从分子化学到超分子化学:分子、超分子、分子和超分子器件 由上图所示分子化学是基于原子间的共价键,而超分子化学则基于分子间的非共价键相互作用,即两个或两个以上的物质依靠分子间键缔合,所以超分子化学也可以被定义为分子之外的化学。

图二:分子与超分子 由弱相互作用加和形成强相互作用,由各向同性通过定向组合(选择性)形成各向异性,这是分子化学和超分子化学的分界线。 超分子化学不是靠传统的共价键力,而是靠非共价键的分子间作用力,如范德华力,即由分子内的永久偶极、瞬间偶极和诱导偶极在分子间产生的静电力、诱导力和色散力的相互作用,此外还包括氢键力、离子键力、阳离子一二和叮一二堆集力以及疏水亲脂作用力等。一般情况下,它是几种力的协同、加和,并且还具有一定的方向性和选择性,其总的结合力强度不亚于化学键。正是这些分子间弱相互作用的协调作用(协同性、方向性和选择性决定着分子与位点的识别。[2] 超分子化学并非高不可攀,有许多超分子结构都处于我们的日常生活中,如 的结构类似于圆弓西方把轮烯比为东方的算盘,索烃是舞池中的一对舞伴,C 60 建筑物,环糊精和当今的激光唱片一样有同样的功能--储存和释放信息,DNA双螺旋则与早餐的麻花形状相似。

现代测试技术及应用学习心得

《现代测试技术》课程总结 学校:太原科技大学 班级:力学141802班 姓名:曹华科 学号:201418020202

《现代测试技术》课程总结 经过这学期现代测试技术的学习,让我对测试技术有了一个全新的认识和理解。让我以前对现代测试技术浅薄的认知有了很大的变化,现代测试的飞速发展也让我对之充满信心。 随着自动化技术的高速发展,仪器及检测技术已成为促进当代生产的主流环节,同时也是生产过程自动化和经营管理现代化的基础,没有性能好、精度高、质量可靠的仪器测试到各种有关的信息,要实现高水平的自动化就是一句空话。随着自动化程度要求的不断提高,测试技的作用越来越明显。可以说,自动化的提高很大作用取决于现代测试技术的提高。科学技术的发展历史表明,许多新的发现和突破都是以测试为基础的。同时,其他领域科学技术的发展和进步又为测试提供了新的方法和装备,促进了测试技术的发展。 测试的基本任务是获取有用的信息,而信息又是蕴涵在某些随时间或空间变化的物理量中,即信号之中的。因此,首先要检测出被测对象所呈现的有关信号,再加以分析处理,最后将结果提交给观察者或其他信息处理装置、控制装置。测试技术已成为人类社会进步和各学科高级工程技术人员必须掌握的重要的基础技术。 测试系统是执行测试任务的传感器、仪器和设备的总称。当测试的目的、要求不同时,所用的测试装置差别很大。测试系统的基本特性是测试系统与其输入、输出的关系,它一般分为两类:静态特性和动态特性。在选用测试系统时,要综合考虑多种因素,其中最主要的一个因素是测试系统的基本特性是否能使其输入的被测物理量在精度要求范围内真实地反映出来。 基于计算机的测量师现代测试技术的特点。20多年来,仪器开始与计算机连接起来。如今,计算机已成为现代测试和测量系统的基础。随着计算机技术、大规模集成电路技术和通信技术的飞速发展,传感器技术、通信技术和计算机技术者3大技术的结合,使测试技术领域发生了巨大变化。 第一种结合是计算机技术与传感器技术的结合。其结果是产生了智能传感器,为传感器的发展开辟了全新的方向。多年来,智能传感器技术及其研究在国

高分子材料化学重点知识点总结只是分享

第一章水溶性高分子 水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格)

现代测试技术应用_论文

现代测试技术在液压缸设计中的应用 摘要:随着自动化技术的高速发展及其对测试技术要求的不断提高,从而使测试技术作为一种新产品开发的重要手段,可以有效缩短新产品研发周期,提高产品研发成功率。本文以液压缸缓冲设计为例,介绍测试技术在液压缸中的应用。结果表明,采用测试技术能够直观、量化缓冲性能指标及结果,并能进行改进前后性能的对比,缩短了元件满足主机性能需要的试制周期。最后,通过对工程机械的研发过程的总结,提出现代测试技术的主要任务及其发展方向。 关键词:测试技术,液压缸,智能化,集成化,网络化 1 引言 我国工程机械主机技术仍落后于发达国家,为其配套的关键液压元件是制约其发展的主要因素,尽快缩短与国外技术的差距,已在行业形成共识。 随着自动化技术的高速发展,仪器及检测技术已成为促进当代生产的主流环节,同时也是生产过程自动化和经营管理现代化的基础,没有性能好、精度高、质量可靠的仪器测试到各种有关的信息,要实现高水平的自动化就是一句空话。因此,借鉴测试技术与传感技术在工程技术的成功应用,在液压件开发领域中引入测试技术的理念,将大幅度提高国产液压件的发展速度。 液压缸作为主要的执行元件,在某些主机上对其缓冲性能要求越来越高。利用较好的缓冲结构延长液压缸的寿命越来越受到关注。本文介绍利用测试与传感技术建立计算机辅助测试系统,如何研究液压缸缓冲结构的设计和定型。利用测试结果,调节液压缸缓冲参数和节流孔参数。通过测试不同工况下缓冲腔工作压力及行程等参数,实现仿真设计,确保样机性能验证结果的可信度。 2 测试技术及传感技术 在传统的产品开发模式中,进行产品的改进是被动的,是由主机厂使用过程中发现问题、提出问题并反馈,得到信息后再进行设计改进的。鉴于传统产品开发模式耗费开发周期时间长,被动改进,我们提出了新型产品开发模式如图1。 图1 新型产品开发模式 结合自身的需求,我们开发出一套适用于液压缸缓冲结构研发过程中的计算机辅助测试系统。图2为计算机辅助测试系统的构成示意图,由液压系统传感器和数据采集系统组成,被测液压缸为带缓冲的液压缸,在主机上进行规定动作试验,采用多功能数据采集模块及数据采集软件,完成两腔压力( 缓冲压力或工作压力) 位移-时间的采集和测量。

(完整版)高分子化学重点

1.解释重复单元,结构单元,单体单元,单体含义 单体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子化合物 重复单元:重复组成高分子分子结构的最小的结构单元。 结构单元:构成高分子主链结构组成的单个原子或原子团。 单体单元:高分子分子结构中由单个单体分子衍生而来的 最大的结构单元 2 聚合度:单个聚合物分子中所含单体单元的数目。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以D P 表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以X n 表示 3 阻聚常数即阻聚剂的链转移常数,C s =K t r /K p 4.半衰期:指引发剂分解至起始浓度一半所需时间 5.凝胶点:开始出现凝胶瞬间的临界反应程度 6.凝胶现象:在交联逐步聚合反应过程中,随着聚合反应的进行,体系粘度突然增大,失去流动性,反应及搅拌所产生的气泡无法从体系中逸出,可看到凝胶或不溶性聚合物明显生成的实验现象 7.自动加速效应竞聚率:随着聚合反应的进行,单体转化率(c %)逐步提高,【I 】【M 】逐渐下降,聚合反应速率R p 理应下降,但在许多聚合体系中,R p 不但不下降,反而显著升高,这种现象是没有任何外界因素影响,在反应过程中自动发生的,因而称为自动加速现象;是指聚合反应中期,反应速率自动增加的现象。 8.竞聚率:同一种自由基均聚和共聚链增长速率常数之比,r 1=k 11/k 12 r 2=k 22/k 21 9.乳液聚合:单体在水中分散成乳液状态的聚合。体系有单体、水、水溶性引发剂、水溶性乳化剂组成。 10.引发剂:通常是一些可在聚合温度下具有适当的分解速率,生成自由基,并能引发单体聚合的化合物。 11.胶束:表面活性剂在溶液中的浓度达到某一临界值,如果浓度继续增加,表面活性剂分子中的长链亲油基团通过分子间吸引力相互缔合,自身相互抱成团,而亲水基团则伸向水中,与水分子结合形成聚集体,即胶束。 12.配位聚合:是指采用金属有机化合物与过渡金属化合物的络合体系作为引发剂的聚合反应。 13.交联:是使线型聚合物转化成为具有三维空间网状结构、不溶不熔的聚合物过程。 14.逐步聚合 :通常是由单体所带的两种不同的官能团之间发生化学反应而进行的。 15.时温等效原理 16.缩聚反应:带有两个或者两个以上官能团的单体之间连续、重复进行的缩合反应,称为缩合聚合反应,即缩聚反应。 17.数均分子量:聚合物中用不同分子量的分子数目统计的平均分子量。 18诱导期:在聚合反应初期,引发剂分解产生的初级自由基首先被体系中杂质消耗,使聚合反应速率实际为零,故此阶段称为诱导期 19阻聚剂:能与链自由基反应生成非自由基或不能引发单体聚合的低活性自由基而使聚合反应完全停止的化合物。 20 链转移速率常数是链转移速率常数和增长速率常数之比,代表链转移反应与链增长反应的竞争能力。向单体的链转移常数p M tr M k k C , 21 逐步加成聚合反应:形成大分子的方式如同连锁聚合那样是通过单体反复加成而进行的,而动力学过程如同缩聚那样是随着反应时间的延长聚合物的相对分子质量逐步增大。通常没有小分子副产物生成。 22 悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。 简答题 1.逐步聚合的实施方法 有熔融聚合、溶液聚合、界面缩聚、固相缩聚等 (1)熔融缩聚是单体和聚合产物均处于熔融状态下的聚合反应。是最简单的缩聚方法。只有单体和少量催化剂。优点:产物纯净,分离简单;通常以釜式聚合,生产设备简单;是工业上和实验室常用的方法。 (2)溶液缩聚是单体在溶剂中进行的一种聚合反应.溶剂可以是纯溶剂,也可以是混合溶剂.所用的单体一般活性较高,聚合温度可以较低,副反应也较少。用于一些耐高温高分子的合成,如聚砜、聚酰亚胺聚苯醚 (3)界面缩聚是将两种单体溶于两种互不相溶的溶剂中,混合后在两相界面处进行的缩聚反应。单体活性高,反应快,可在室温下进行;产物分子量可通过选择有机溶剂来控制;对单体纯度和当量比要求不严格,反应主要与界面处的单体浓度有关;原料酰氯较贵,溶剂回收麻烦,应用受限。 (4) 固相缩聚是在玻璃化温度以上、熔点以下的固态所进行的缩聚。它是上述三种方法的补充。 2.连锁聚合和逐步聚合的三个主要区别 答(1)增长方式:连锁聚合总是单体与活性种反应,逐步聚合是官能团之间的反应,官能团可以来自于单体、低聚体、多聚体、大分子 (2)单体转化率:连锁聚合的单体转化率随着反应的进行不断提高,逐步聚合的单体转换率在反应的一开始就接近100% (3)聚合物的分子量:连锁聚合的分子量一般不随时间而变,逐步聚合的分子量随时间的增加而增加。 3 控制线性缩聚反应的分子量可以采取什么措施? 因为缩聚物的分子两端仍保留着可继续反应的官能团,因此控制聚合物反应的分子量可以采取端基封锁的控制方法:在两官能团等当量的基础上使某官能团稍过量或加入少量单官能团物质。官能团的极少过量,对产物分子量就有显著影响;在线形缩聚中,要得到高分子量,必须保持严格的等当量比。

高分子化学知识总结

一、绪论 1.聚合物的分类及命名可按来源、合成方法、用途、热行为、结构等来分类,主要是按主链结构来分类,分为:(1)碳链聚合物,(2)杂链聚合物,(3)元素有机聚合物; 2.聚合物的命名 (1)单体来源命名法 烯类聚合物单体名前加“聚”; 两种单体合成的,取二者简名加后缀“树脂”“橡胶”; 杂链聚合物按其特征结构命名; *有些聚合物按单体名来命名容易引起混淆,例如[]22OCH CH --,可以从环氧乙烷、乙二醇、氯丙醇或氯甲醚来合成,因为环氧乙烷单体最常用,故通常称作聚环氧乙烷,按结构该聚合物应称作聚氧乙烯。 (2)系统命名法 命名原则和程序:先确定重复单元结构,再排好其中次级单元次序,给重复单元命名,最后冠以“聚”字,就成为聚合物的名称。写次级单元时候,先写侧基最少的元素,再写有取代的亚甲基,然后写无取代的亚甲基。 3.聚合反应 (1)按单体-聚合物结构变化分类 缩聚 官能团单体多次缩合成聚合物的反应,除形成缩聚物外,还有水、醇、 氨或氯化氢等低分子产物产生 加聚 烯类单体π键断裂而后加成聚合起来的反应称作加聚,产物称作加聚 物。加聚物结构单元的元素组成与其单体相同,仅仅是电子结构有所变化,因此加聚物的分子量是单体分子量的整数倍 开环聚合 环状单体σ键断裂而后聚合成线形聚合物的反应,反应时无低分子副 产物产生 (2)按聚合物机理分类 逐步聚合 多数缩聚和聚加成反应属于逐步聚合,其特征是低分子转变成高分 子是缓慢逐步进行的,每步反应的速率和活化能大致相同,单体分子首先聚合成二、三、四具体等低聚物(齐聚物),短期内单体转化率很高,随后,低聚物间相互缩聚分子量缓慢增加,直至集团反应程度很高分子量才达到较高的数值 *连锁聚合 多数烯类单体的加聚反应属于连锁聚合。有自由基、阴离子或阳离 子聚合,自由基聚合过程中,分子量变化不大,除微量引发剂外,体系始终由单体和高分子量聚合物组成,没有分子量递增的中间产物,转化率随时间而增大,单体则相应减少。活性阴离子聚合的特征是分子量随转化率的增大而线性增加。 4.分子量是影响强度的重要因素,聚合物强度随着分子量的增大而增加。 5.平均分子量 (1)数均分子量n M (通常由渗透压,蒸汽压等依数性方法测定)定义:某 体系的总质量m 被分子总数所平均。

现代测试技术及应用

现代测试技术及应用作业 学号2013010106 姓名刘浩峰 专业核技术及应用 提交作业时间2014 12 10 无损检测中的CT重建技术 1无损检测 1、1无损检测概述 无损检测就是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。中国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市与地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。 无损检测缩写就是NDT(或NDE,non-destructive examination),也叫无损探伤,就是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术与设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查与测试。无损检测就是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有射线检验(RT)、超声检测(UT)、磁粉检测(MT)、液体渗透检测(PT)、涡流检测(ECT)、声发射(AE)与超声波衍射时差法(TOFD)。 1、射线照相法(RT)就是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损检 测方法,该方法就是最基本的,应用最广泛的一种非破坏性检验方法。工作原理就是射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。RT的定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。 2、超声波检测(UT)原理就是通过超声波与试件相互作用,就反射、透射与散射的波进行研究, 对试件进行宏观缺陷检测、几何特性测量、组织结构与力学性能变化的检测与表征,并进而对其特定应用性进行评价的技术。适用于金属、非金属与复合材料等多种试件的无损检测;可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材与板材,也可检测几米长的钢锻件;而且缺陷定位较准确,对面积型缺陷的检出率较高;灵敏度高,可检测试件内部尺寸很小的缺陷;并且检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。缺点就是对具有复杂形状或不规则外形的试

高分子化学(第五版)潘祖仁版课后习题与答案及重点

第一章绪论 思考题 1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。 答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。 在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。 聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。 聚合度是衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平 X表示。均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以n 2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。 答:合成高分子多半是由许多结构单元重复键接而成的聚合物。聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule的术语。 从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。 根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。多数场合,聚合物就代表高聚物,不再标明“高”字。 齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。低聚物的含义更广泛一些。 3. 写出聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式(重复单元)。选择其常用

高分子化学知识点总结

第一章绪论 1.1 高分子的基本概念 高分子化学:研究高分子化合物合成与化学反应的一门科学。 单体:能通过相互反应生成高分子的化合物。 高分子或聚合物(聚合物、大分子):由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。相对分子质量低于1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。相对分子质量大于1 000 000的称为超高相对分子质量聚合物。 主链:构成高分子骨架结构,以化学键结合的原子集合。 侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。支链可以较小,称为侧基;也可以较大,称为侧链。 端基:连接在主链末端原子上的原子或原子集合。 重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节。 结构单元:单体分子通过聚合反应进入大分子链的基本单元。(构成高分子链并决定高分子性质的最小结构单位称为~)。 单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。 聚合反应:由低分子单体合成聚合物的反应。 连锁聚合:活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合:无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应:即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应:缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 1.2 高分子化合物的分类 1) 按高分子主链结构分类:可分为:①碳链聚合物:大分子主链完全由碳原子组成的聚合物。②杂链聚合物:聚合物的大分子主链中除了碳原子外,还有氧、氮,硫等杂原子。③元素有机聚合物:聚合物的大分子主链中没有碳原子孙,主要由硅、硼、铝和氧、氮、硫、磷等原子组成。④无机高分子:主链与侧链均无碳原子的高分子。 2)按用途分可分为:塑料、橡胶、纤维三大类,如果再加上涂料、粘合剂和功能高分子则为六大类。塑料:具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。橡胶:具有可逆形变的高弹性聚合物材料。在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低,分子量往往很大,大于几十万。纤维:聚合物经一定的机械加工(牵引、拉伸、定型等)后形成细而柔软的细丝,形成纤维。纤维具有弹性模量大,受力时形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。 3)按来源分可分为:天然高分子、合成高分子、半天然高分子(改性的天然高分子) 4)按分子的形状分:线形高分子、支化高分子、交联(或称网状)高分子 5)按单体分:均聚物、共聚物、高分子共混物(又称高分子合金) 6)按聚合反应类型分:缩聚物、加聚物 7)按热行为分:热塑性聚合物:聚合物大分子之间以物理力聚集而成,加热时可熔融,并能溶于适当溶剂中。热塑性聚合物受热时可塑化,冷却时则固化成型,并且可以如此反复进行。热固性聚合物:许多线性或支链形大分子由化学键连接而成的交联体形聚合物,许多大分子键合在一起,已无单个大分

相关主题